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HOW FERMAT’'S GREAT THEOREM HELPS SOLVING

THE DIOPHANTINE EQUATION 12x3-">{y).y2= 3.(<p(y))3
Mladen V. Vassilev - Missana
5, V. Hugo Str., Sofia-1124, Bulgaria.

In the title of the paper ip denotes the famous Euler’s totient function.
Except
12r3—(p(y).y2= 3.(v?(y))3, (1)

in this note the Diophantine equations

(2)

(3)
have also been studied with k being an integer parameter.

A special trick is used to solve each of the above equations. The trick is based on
Fermat’s Great Theorem, especially for the case n = 3, which was proved by L. Euler (see
1. Of course, the same tricks are possible for the cases n = 4,5, 6,..., too, but with respect
to suitably chosen Diophantine equations of ??-th power.

The author used this approach for the first time in [2] to solve the Diophantine equation

(3)

and some others Diophantine equations connected with it.
The first result in the present paper is
Theorem 1. All integer solutions {x,y) of (1) are given by

where a and (3 run the set of all positive integers.
Proof: Let the couple (x,y) be an arbitrary integer solution of (1). Then we note that
x N 0. Also, we have that y is a positive integer, because Euler’s function is defined for
positive integers only.

The trick mentioned above is the following.

We introduce three new numbers u,v,w, using the substitutions

u V- 3<ply), v=6.r, w=y+ 3.<p{y). (6)



Obviously, we have v A 0, w” 0, because of x / 0, y > 0. Also, u,v,w are integers.
Moreover, one may verify that these numbers satisfy the equality

ud+ i8= w3, (7

The last relation follows from the fact that the couple (.r,y) is supposed to be a solution
of (1). But if we have u ™ 0, then (7) contradicts to Fermat’s Great Theorem (for the case
n = 3). Therefore, u= 0. Hence v = w and as a result we obtain

V= 3.<p(y), (8)

X = ip(y), )

Let us consider (8). We conclude that y > 2, since y = land y = 2 are not solutions of
(8). Hence <p(y) and y are even numbers. Therefore,

Kk
y - 2mi.n P?'" (10)
i="2
where k > 2 is an integer, pi (i = 2,3,..., A) are different primes greater than 2, and
rn, (i = 1,2,..., k) are positive integers.
We must note the that case y = 2mi is impossible, because of (8).
Using (10) and Euler’s formula

k
i=2
we obtain
k k
2-n «=3-n<K-1)
i=2 i=2

Let us denote by if; the left and by Hr the right side of (11). Obviously, if k > 2, we
have
I1r = O(moc/4),

but the same congruence is not fulfilled for 77;. So, (11) is impossible for k > 2. Therefore,
k= 2and y —2IM.p™2. From (8) it follows that p2 —3. Finally, we get

y —2mi 3™ (12)
and (9) immediately yields from (12)
a= 2mi.3m2_ 1. (13)
From (12) and (13) we obtain (5) by substituting mi = a and m2 = /i.
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Now, let the couple (x,y) be given by (5). In this case one may easyly verify that (1)
holds and Theorem 1 is proved.

The second result is
Theorem 2: All integer solutions (x,y) of (2) are given by x = kand y = +3.A

To prove this Theorem we must substitute u = y—3.k, v = 6.x, w —y+ 3.k and observe
that if (.r,y) is a solution of (2), then we have again u3+ v3= wa3.

The third result is
Theorem 3: All integer solutions (.r,y) of (3), when k ~ 0, are given by x = 2.Aand
y = 1A\

To prove this Theorem we substitute in (3): x —2.k.a and we obtain y —k.b. Hence,

4a2—362= 1 (14)

But as a corollary of Theorem 2, in the case A= 1, it follows that all integer solutions of
(14) are a —1and b =x1. Therefore, x = 2.k and y = #A' are all integer solutions of (3).

We must note that if the couple (a, b) is a solution of (14), then numbers u —b—1, v =
2.0, w = 6+1 satisfy the equation »3+ v3 —w3. From here, as in the previous case, we
conclude again that all integer solutions of (14) area= land b= 1.

Also, as a corollary of Theorem 2, when A= 1, we obtain that all integer solutions of
(4) are x = 1land y = 3.
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