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ABSTRACT

A modification of Lah numbers is suggested in this paper by defining them in relation to 
the rising factorial coefficients instead of the falling factorial coefficients. Some of their 
properties are then developed, particularly those in relation to Bernoulli and Stirling num
bers and Laguerre polynomials. A partial recurrence relation for the modified Lah numbers 
is also studied.
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1 INTRODUCTION

Koutras [9] has developed a unified approach to the study of Eulerian numbers in which the 
common properties of the various quantities were displayed. In particular, relevant properties 
of Stirling and Lah numbers and Laguerre polynomials were canvassed there. It is the purpose 
of this paper to consider modified Lah numbers based on references in the literature which 
complement the bibliography of Koutras. These modified Lah numbers also include generalized 
Stirling numbers. The idea for them was provided by a paper of Gould [8].

Lah numbers are defined by

( 1 . 1)

where x— = x(x — 1 ).. .(x — n + 1),

is the falling factorial coefficient which is related to the rising factorial coefficient by
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where the lnk are modified Lah numbers defined by
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2 PROPERTIES OF MODIFIED NUMBERS
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The ordinary Lah numbers and the modified Lah numbers are related by

Ink  = ( - l ) n+*LnJfe (2.1)

with Ino =  ( l ) ra<Vio =  <Vio

and
n £ L

(2.2)

where 8nf. is the Kronecker delta.

The proof of the last statement follows after the lemma.
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as required.

Now
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Whence, from the lemma
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The first few values of the lnk are given in Table 1.

k = l 2 3 4 5
n = l -1

2 - 2  1
3 - 6  6 -1
4 -2 4  36 -12  1
5 -120 240 -120 20 -1

Table 1. First Five Modified Lah Num bers.
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Theorem:

Proof:
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Other modified Lah number results include
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This can be illustrated as follows:
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3 OTHER RELATIONSHIPS

(2.3)

proof:

Y1  k(*)*fe = exP 7 3 7
fc=o vx 1

00 00 i /

(3.1)

128



= exp
xt

t - l j  '

This indicates that the modified Lah numbers are related to the Laguerre polynomials which 
are defined by

/  r f \  00 in
exP ( 7— r)  = (1 -  t) L „ 0 ) - ;

vt n=0 n-
here the Ln(x) are Laguerre polynomials. Carlitz has dealt with them in [2,7] for example.

k
Ink = E ( - l  )n+j+ksnjSjk (3.2)

3 = 0

where snj and Sjk are Stirling numbers of the first and second kind respectively, defined by

n
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and
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and used by Carlitz in a number of papers [1,3,4,5,6].
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From the generating function for Bernoulli numbers in the even suffix notation, namely,
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in which umbral coefficients are used for the exponential expansion, we can define
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(3.4)B n  = ^ 2 ( - l ) n+ksnkB k,
k = 0

which relates Bn, which may be called a ‘Bernoulli rising n-factorial’, to the Bernoulli numbers 
and the Stirling numbers of the first kind. The reason for (3.4) can be seen in terms of umbral 
coefficients:

B =■ = = £ ( - l  )n+ksnkB k.
k = 0

The B^  can also be related to the modified Lah numbers as follows. Riordan [10] has shown 
that

Bn = £ ( - l ) fc&!Snfc/(A: +  l).
k=0
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In conclusion, it is of interest to note that Tauber [11] has developed Lah numbers for Fibonacci 
and Lucas polynomials.
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