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Abstract

For x > 0, let 7r(x) be the number of prime numbers not exceeding
X. One shows that, for x > 7, there exists at least one prime number
between x and x 4 7r(x), thus obtaining a result that is sharper than
the one postulated by Bertrand.
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1. INTRODUCTION

Bertrand [1] checked in 1845 that, for every integer n with 2 < n <
3,000,000, the interval (n,2n) contains at least one prime number. Cheby-
ehev [2] gave in 1852 a first proof of this fact. One mentions in [5] the authors
of other proofs, and similar results as well. Among these results, let us recall
the following:

Nagura [6] proves in 1952 that, for x > 25, there exists at least one prime
number in the interval X, Ix). Rohrbach and Weis [ show in 1964 that,
for every integer x > 118, the interval (x. j|x) contains at least one prime
number. Costa Pereira [3] later gives an elementary proof for the existence
of a prime number in the interval X, for x > 485.492.

For x > 0, denote by t(x) the number of prime numbers not exceeding
X. By making use of non-elementary tools. Rosser and Schoenfeld [9] prove
several results concerning t(x). These results have been recently improved
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by P. Dusart. More precisely, he shows in [4] that for every integer x we have
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These inequalities take on in [7] a more convenient form. One shows that for
real numbers x we have
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Of course, these inequalities easily lead to proofs of the Bertrand type in-
equalities, that is,

F(kx) —7*(x) > 1for x > n0(k), )

the niunber nO(k) being determined when k is fixed.
In what follows, we prove a result which is stronger than the results of

type (5).
2. THE MAIN RESULT

Theorem. For every real number x > 7 there exists at least one prime
number in the interval (x,x + 7r(x)).
Proof. One shows in [9] that for x > 17 we have
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hence it suffices to show that
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If view of (3), if x + t(x) > 32,359, that is, x > 30.000, we have
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Since for y > 0 we have log(l +y) <y, it follows that
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We have R)ig_x_“ 'f-’aa-x-_ r/mg—x < pg’):l for x > 2168. It follows that
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Now (4) and (8) imply that
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logx" nX > (log2x —ogx + 0.41)(log2x —logx —1.51)
X
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for x > 30,000.

It then follows that for x > 30,000 we have

F(x+ x(x))-"(x)> (logxx+1)2 ©)

Now the checking performed for x < 30,000 finishes the proof. m

Remark. One proved in [7] that for all integers x,y > 2 with #(x) <
y < X we have

TTx+y) < u(x) +n(y).
This implies that
((x + 7r(x)) < 7r(x) + 7r(7r(x)). (10

Since #(x) ~ x/logx, it follows that #(#(x)) ~ x/log2x hence by (9) anc
(10) we get
X+ 7T(X) - 7109 ~ = (11

It is fairly easy to show that for each fixed natural number n we have

((+-(x) - *() = Xg . 0

113



From (11) we get a0 = 1 It would be interesting to determine the other
coefficients al522,..., a,, as well.
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