NECESSARY AND SUFFICIENT CONDITIONS FOR SIMPLE \mathcal{O} -BASES

Calvin Long, Washington State University

and

Carl Swenson, Seattle University

Let $\mathcal{O} = \{A_i\}_{i\geq 1}$ where A_i is a set of m_i distinct integers with $m_i\geq 2$ and $0 \in A_i$ for each *i*. It is shown that $\mathscr N$ possesses a simple $\mathscr N$ -base if and only if A_i is a complete residue system modulo m_i for each *i* and the elements of $\bigcup_{i=h}^{\infty} A_i$ are relatively prime for every positive integer *h.*

The notions of simple and non-simple α -bases are due to Long and Woo [3] and generalize those of simple and non-simple A-bases due to de Bruijn [l].

DEFINITION 1. Let $\mathcal{A} = \{A_i\}_{i\geq 1}$ where each A_i is a set of m_i distinct integers with $m_i \geq 2$ and $0 \in A_i$ for each *i*. The integer sequence $B = \{b_i\}_{i \geq 1}$ is called an α -base for the set of integers provided every integer *n* can be written uniquely in the form

$$
n=\sum_{i=1}^{r(n)}a_ib_i\quad,\quad a_i\in A_i\quad\forall_i.
$$

If, with possible rearrangement, *B* can be written in the form $B = \{d_i M_{i-1}\}_{i \geq 1}$ where the d_i are integers and where $M_0 = 1$ and $M_i = \prod_{j=1}^i m_j$ for $i \geq 1$, then it is called a simple α -base.

DEFINITION 2. Let A be a set of m distinct integers with $m \geq 2$ and $0 \in A$. If $A_i = A$ for all i, the integer sequences of Definition 1 are called A-bases and simple A-bases respectively.

Properties of A - and α -bases were studied by de Bruijn and by Long and Woo but, until recently, necessary and sufficient for the existence of bases were not known. In [5] we gave necessary and sufficient conditions for the existence of simple A-bases. In the present paper we give necessary and sufficient conditions for the existence of simple α -bases. Necessary and sufficient conditions for the existence of non-simple A- and α -bases are not known, but finding meaningful conditions seems unlikely since Swenson [4] has shown that any two sets *C* and *D* such that $c - c' \neq d - d'$ for all $c, c' \in C$ and $d, d' \in D$ can be extended to form a non-simple A-base.

In [3], Long and Woo point out that the sequence $\{d_i M_{i-1}\}_{i\geq 1}$ forms an α -base only if A_i is a complete residue system modulo m_i and $(d_i, m_i) = 1$ for each *i*. They also observe that it is necessary that the elements of the set $\bigcup_{i=1}^{\infty} A_i$ be relatively prime and that ${d_i M_{i-1}}_{i\geq 1}$ is an \emptyset -base if and only if ${d_{i+1} M_i / M_s}_{i\geq s}$ is an \emptyset -base where $\mathcal{A}' = \{A_{i+1}\}_{i\geq s}$ for all $s \geq 0$. Of course, this further implies that it is necessary that the elements of $\bigcup_{i=h}^{\infty} A_i$ be relatively prime for all $h \geq 1$. In the present paper we show that these conditions on \mathcal{A} are both necessary and sufficient.

We first prove two lemmas.

LEMMA 1. Let $\mathcal{A} = \{A_i\}_{i\geq 1}$ where A_i is a complete residue system modulo m_i

and $m_i \geq 2$ for each *i*. Let $\{M_i\}_{i\geq 0}$ be as above. If the elements of $\bigcup_{i=h}^{\infty} A_i$ are relatively prime for each $h \geq 1$ then, for each $s \geq 1$, there exists an integer $q > s$ and elements $a_i \in A_i$ for $s \leq i \leq q$ such that

(1)
$$
\left(a_s \frac{M_{s-1}}{M_{s-1}}, a_{s+1} \frac{M_s}{M_{s-1}}, \cdots, a_q \frac{M_{q-1}}{M_{s-1}}\right) = 1.
$$

Proof. Choose an arbitrary element $a_n \in A_n$. If $a_n = \pm 1$, the desired result is clearly true for any *q*. If $a_s \neq \pm 1$, divide the distinct prime divisors of a_s into two classes:

$$
B_1 = \{p : p \mid a_s \text{ and } p \mid m_i \text{ for some } i \geq s\}
$$

$$
B_2 = \{p : p \mid a_s \text{ and } p \nmid m_i \text{ for any } i \geq s\}
$$

S+l If $p \in B_1$, there is a least $i = i(p) \geq 1$ such that $p \mid m_i$. Since $A_{i(p)}$ is a complete residue system modulo $m_{i(p)}$, there exists a specific element $a_{i(p)} \in A_{i(p)}$ such that $a_{i(p)} \equiv 1 \pmod{m_{i(p)}}$. Hence, we can choose $a_{i(p)}$ such that $p \nmid a_{i(p)}$ and $p \mid m_{i(p)}$. Of course, we can do this for each of the primes in B_1 and we note that it may be the case that $i(p) = i(p')$ for $p \neq p'$. But then $pp' \nmid a_{i(p)}$ and $pp' \mid m_{i(p)}$. Indeed, if π is the product of all the primes $q \in B_1$ such that $i(q) = i(p)$, then $\pi \nmid a_{i(p)}$ and $\pi \mid m_{i(p)}$. Let $t = \max_{p \in B_1} \{i(p)\}\$ and let

$$
d = \left(a_{s} \frac{M_{s-1}}{M_{s-1}}, a_{s+1} \frac{M_{s}}{M_{s-1}}, \cdots, a_{t} \frac{M_{t-1}}{M_{s-1}}\right)
$$

where the $a_i = a_{i(p)}$ for $p \in B_1$ and a_i is an arbitrary but fixed element of A_i for all other $i, s \leq i \leq t$. Since $p \nmid a_{i(p)} M_{i(p)-1}$ for $p \in B_1$, it follows that $p \mid d$ for any such p. Now consider the primes in B_2 . Since, by hypothesis, the elements of $\bigcup_{i=t+1}^{\infty} A_i$ are relatively prime, we may choose specific elements $a_i \in A_i$ for $t+1 \leq i \leq t+u$ such that $(a_{t+1}, a_{t+2}, \dots, a_{t+u}) = 1$. But then

$$
\left(a_{s}\frac{M_{s-1}}{M_{s-1}},a_{s+1}\frac{M_{s}}{M_{s-1}},\cdots,a_{t+u}\frac{M_{t+u-1}}{M_{s-1}}\right)=1
$$

since $p \in B_1$ implies

$$
p\nmid \left(a_s \frac{M_{s-1}}{M_{s-1}}, a_{s+1} \frac{M_s}{M_{s-1}}, \cdots, a_t \frac{M_{t-1}}{M_{s-1}}\right)
$$

and $p \in B_2$ implies that

$$
p\nmid
$$
 $\left(a_{t+1}\frac{M_t}{M_{s-1}}, a_{t+2}\frac{M_{t+1}}{M_{s-1}}, \cdots, a_{t+u}\frac{M_{t+u-1}}{M_{s-1}}\right).$

Therefore, setting $t + u = q$, we have

$$
\left(a_s \frac{M_{s-1}}{M_{s-1}}, a_{s+1} \frac{M_s}{M_{s-1}}, \cdots, a_q \frac{M_{q-1}}{M_{s-1}}\right) = 1
$$

as claimed.

Note that if q satisfies Lemma 1 for a given s , then any larger value of q does also.

LEMMA 2. Let $\mathcal{A} = \{A_i\}_{i\geq 1}$ and $\{M_i\}_{i\geq 0}$ be as in Lemma 1 and let $0 \in A_i$ for each *i*. Then, for any $s \geq 1$, every integer *n* can be represented in the form

(2)
$$
n = a_s d_s \frac{M_{s-1}}{M_{s-1}} + a_{s+1} d_{s+1} \frac{M_s}{M_{s-1}} + \cdots + a_q d_q \frac{M_{q-1}}{M_{s-1}}
$$

where $q > s$ and d_s, d_{s+1}, \dots, d_q are integers with $(d_i, m_i) = 1$ and $a_i \in A_i$ for each i.

Proof. Of course, 0 is trivially representable in the desired form. For $n \neq 0$, we distinguish two cases.

Case 1. $n = 1$.

Since A_s is a complete residue system modulo m_s , there exists $a \in A_s$ such that $a \equiv 1 \pmod{m_s}$. By Lemma 1, there exists an integer $q > s$ and elements $a_i \in A_i$ for

31

 $s \leq i \leq q$ such that

$$
\left(a_s \frac{M_{s-1}}{M_{s-1}}, a_{s+1} \frac{M_s}{M_{s-1}}, \cdots, a_q \frac{M_{q-1}}{M_{s-1}}\right) = 1.
$$

Thus, the diophantine equation

(3)
$$
1 = a_s \frac{M_{s-1}}{M_{s-1}} x_s + a_{s+1} \frac{M_s}{M_{s-1}} x_{s+1} + \cdots + a_q \frac{M_{q-1}}{M_{s-1}} x_q
$$

has a solution $(d'_{s}, d'_{s+1}, \cdots, d'_{q})$. This implies that

$$
a_{s}d'_{s}\equiv 1\equiv a(\text{mod } m_{s})
$$

and hence that $(d'_s, m_s) = 1$. We now set $d_s = d'_s$ and proceed by a limited induction to determine $d_{s+1}, d_{s+2}, \dots, d_q$ satisfying (2) and such that $(d_i, m_i) = 1$ for $s \leq i \leq q$. Since we have found d_s , we assume that we have determined d_i for $s \leq i < k$ where *k* is fixed and $k \leq q$. Thus, we have

(4)
$$
1 = a_{s}d_{s}\frac{M_{s-1}}{M_{s-1}} + \cdots + a_{k-1}d_{k-1}\frac{M_{k-2}}{M_{s-1}} + a_{k}d'_{k}\frac{M_{k-1}}{M_{s-1}} + \cdots + a_{q}d'_{q}\frac{M_{q-1}}{M_{s-1}}
$$

with $(d_i, m_i) = 1$, for $s \le i < k$. If $(d'_k, m_k) = 1$, we set $d_k = d'_k$. If $(d'_k, m_k) \ne 1$, set

(5)
$$
e_k = \left(d'_k, a_s d_s \frac{M_{s-1}}{M_{s-1}} + a_{s+1} d_{s+1} \frac{M_s}{M_{s-1}} + \cdots + a_{k-1} d_{k-1} \frac{M_{k-2}}{M_{s-1}}\right)
$$

so that

$$
\left(\frac{d'_{k}}{e_{k}}, \frac{1}{e_{k}}\left(a_{s}d_{s}\frac{M_{s-1}}{M_{s-1}}+a_{s+1}d_{s+1}\frac{M_{s}}{M_{s-1}}+\cdots+a_{k-1}d_{k-1}\frac{M_{k-2}}{M_{s-1}}\right)\right)=1.
$$

Then, by Dirichlet's theorem, there exists r_k such that

$$
\frac{d'_{k}}{e_{k}} - \frac{r_{k}}{e_{k}}\left(a_{s}d_{s}\frac{M_{s-1}}{M_{s-1}} + a_{s+1}d_{s+1}\frac{M_{s}}{M_{s-1}} + \cdots + a_{k-1}d_{k-1}\frac{M_{k-2}}{M_{s-1}}\right) = p_{k}
$$

where p_k is a prime and $p_k+(M_q/M_{s-1})$. Also set

(6)
$$
d_k = d'_{k} - r_k \left(a_s d_s \frac{M_{s-1}}{M_{s-1}} + a_{s+1} d_{s+1} \frac{M_s}{M_{s-1}} + \cdots + a_{k-1} d_{k-1} \frac{M_{k-2}}{M_{s-1}} \right)
$$

$$
= p_k e_k.
$$

32

Now assume that $(d_k, m_k) \neq 1$. Then there exists a prime *p* such that $p | d_k$ and $p | m_k$ and hence $p = p_k$ or $p \mid e_k$. But $p \neq p_k$, since $p_k \nmid (M_q/M_{s-1})$ and $p \mid (M_q/M_{s-1})$. Therefore, $p \mid e_k$ and hence, by (5), $p \mid d'_k$ and

(7)
$$
p \mid \left(a_{s}d_{s}\frac{M_{s-1}}{M_{s-1}}+a_{s+1}d_{s+1}\frac{M_{s}}{M_{s-1}}+\cdots+a_{k-1}d_{k-1}\frac{M_{k-2}}{M_{s-1}}\right).
$$

But then, by (4) and (7), $p \mid 1$ since $p \mid d'_{k}$ and $p \mid m_{k}$. But this is a clear contradiction and it follows that $(d_k, m_k) = 1$. Moreover, using (4) and (6), we have that

$$
1 = a_{s}d_{s}\frac{M_{s-1}}{M_{s-1}}\left(1 + a_{k}r_{k}\frac{M_{k-1}}{M_{s-1}}\right) + a_{s+1}d_{s+1}\frac{M_{s}}{M_{s-1}}\left(1 + a_{k}r_{k}\frac{M_{k-1}}{M_{s-1}}\right)
$$

$$
+ \cdots + a_{k-1}d_{k-1}\frac{M_{k-2}}{M_{s-1}}\left(1 + a_{k}r_{k}\frac{M_{k-1}}{M_{s-1}}\right)
$$

$$
+ a_{k}\frac{M_{k-1}}{M_{s-1}}\left[d_{k}^{'} - r_{k}\left(a_{s}d_{s}\frac{M_{s-1}}{M_{s-1}} + a_{s+1}d_{s+1}\frac{M_{s}}{M_{s-1}} + \cdots + a_{k-1}d_{k-1}\frac{M_{k-2}}{M_{s-1}}\right)\right]
$$

$$
+ a_{k+1}d_{k+1}'\frac{M_{k}}{M_{s-1}} + \cdots + a_{q}d_{q}'\frac{M_{q-1}}{M_{s-1}}
$$

$$
= a_{s}d_{s}\frac{M_{s-1}}{M_{s-1}} + a_{s+1}d_{s+1}\frac{M_{s}}{M_{s-1}} + \cdots + a_{k}d_{k}\frac{M_{k-1}}{M_{s-1}} + a_{k+1}d_{k+1}'\frac{M_{k}}{M_{s-1}} + \cdots + a_{q}d_{q}'\frac{M_{q-1}}{M_{s-1}}.
$$

This completes the induction and the proof for Case 1.

Case 2. $n \neq 1$.

It suffices to consider *n* such that all prime factors of *n* divide infinitely many of the m_i . For suppose $n = n_1 n_2$ where every prime factor of n_1 divides only finitely many of the m_i . Then the q of Lemma 1 and t may be chosen sufficiently large that $(n_1, M_q/M_{t-1}) = 1$. Now suppose that n_2 can be represented in the desired form

(8)
$$
n_2 = a_t d'_t \frac{M_{t-1}}{M_{s-1}} + a_{t+1} d'_{t+1} \frac{M_t}{M_{s-1}} + \cdots + a_q d'_q \frac{M_{q-1}}{M_{s-1}}
$$

with $(d'_{i}, m_{i}) = 1$ and $a_{i} \in A_{i}$ for $t \leq i \leq q$. Then

$$
n = n_1 n_2
$$

\n
$$
= a_t(n_1 d'_t) \frac{M_{t-1}}{M_{s-1}} + a_{t+1}(n_1 d'_{t+1}) \frac{M_t}{M_{s-1}} + \cdots a_q(n_1 d'_q) \frac{M_{q-1}}{M_{s-1}}
$$

\n
$$
= a_s d_s \frac{M_{s-1}}{M_{s-1}} + a_{s+1} d_{s+1} \frac{M_s}{M_{s-1}} + \cdots + a_t d_t \frac{M_{t-1}}{M_{s-1}} + \cdots + a_q d_q \frac{M_{q-1}}{M_{s-1}}
$$

where $a_i = 0$ and $d_i = 1$ for $s \leq i \leq t - 1$ and $d_i = n_1 d'_i$ for $t \leq i \leq q$. Then, since $(n_1, M_q/M_{t-1}) = 1$ and $(d'_i, m_i) = 1$ for $t \leq i \leq q$, it follows that $(d_i, m_i) = 1$ for $s \leq i \leq q$ and *n* is represented in the desired form.

Therefore, we must show that all values of n such that all prime factors of n divide infinitely many of the m_i can be represented as in (8) . If we asume that n has this property, it follows that the q of Lemma 1 and $t < q$ can be chosen sufficiently large that

$$
n \mid \frac{M_{q-1}}{nM_{t-1}}
$$
 and $m_i \mid \frac{M_{q-1}}{nM_{t-1}}$

for $t \leq i \leq q$. Set

$$
A' = A_t \frac{M_{t-1}}{M_{s-1}} \oplus A_{t+1} \frac{M_t}{M_{s-1}} \oplus \cdots \oplus A_{q-1} \frac{M_{q-2}}{M_{s-1}}
$$

where

$$
kA_i = \{b : b = ka, a \in A_i\}
$$
 and $A \oplus B = \{c : c = a + b, a \in A, b \in B\}$.

It is easy to see that *A'* forms a complete residue system modulo M_{q-1}/M_{t-1} . Thus, there exists $\alpha \in A'$ such that

(9)
$$
n \equiv \alpha \left(\mod \frac{M_{q-1}}{M_{t-1}} \right)
$$

and there exists as integer r such that

$$
(10) \t\t\t n = \alpha + r \frac{M_{q-1}}{M_{t-1}}.
$$

Since $\alpha \in A'$, we have that

(11)
$$
\alpha = a_{\alpha,t} \frac{M_{t-1}}{M_{s-1}} + a_{\alpha,t+1} \frac{M_t}{M_{s-1}} + \cdots + a_{\alpha,q-1} \frac{M_{q-2}}{M_{s-1}}
$$

with $a_{\alpha,i} \in A_i$ for $t \leq i \leq q-1$. Since M_{q-1}/nM_{t-1} is an integer, (10) implies that

$$
(12) \qquad \qquad 1 = \frac{\alpha}{n} + r \frac{M_{q-1}}{n M_{t-1}}
$$

where α/n is an integer, and this implies that $(\alpha/n, r) = 1$. Now, by Case 1, $v > q$ may be chosen so that

(13)
$$
1 = a_q d'_q \frac{M_{q-1}}{M_{q-1}} + a_{q+1} d'_{q+1} \frac{M_q}{M_{q-1}} + \cdots + a_v d'_v \frac{M_{v-1}}{M_{q-1}}
$$

with $a_i \in A_i$ and $(d'_i, m_i) = 1$ for $q \leq i \leq v$. Since $(\alpha/n, r) = 1$, if follows from Dirichlet's theorem that there exists an integer *u* such that $r + (\alpha/n)u$ is a prime not dividing M_v/M_{q-1} . Thus, from (13), we have that

(14)
$$
r + \frac{\alpha}{n}u = a_q d_q \frac{M_{q-1}}{M_{q-1}} + a_{q+1} d_{q+1} \frac{M_q}{M_{q-1}} + \cdots + a_v d_v \frac{M_{v-1}}{M_{q-1}}
$$

where $d_i = [r + (\alpha/n)u]d'_i$ so that $(d_i,m_i) = 1$ for $q \le i \le v$. Moreover, by (12)

(15)
$$
\frac{\alpha}{n} \left(1 - \frac{u M_{q-1}}{n M_{s-1}} \right) + \frac{M_{q-1}}{n M_{s-1}} \left(r + \frac{\alpha u}{n} \right) = \frac{\alpha}{n} + \frac{r M_{q-1}}{n M_{s-1}} = 1
$$

and hence,

(16)
$$
n = \alpha \left(1 - \frac{u M_{q-1}}{n M_{q-1}} \right) + \frac{M_{q-1}}{M_{q-1}} \left(r + \frac{\alpha u}{n} \right).
$$

Now since $m_i | M_{q-1}/nM_{s-1}$ for $s \leq i \leq q$, it follows that

(17)
$$
1 = (1 - \frac{uM_{q-1}}{nM_{s-1}}, m_i)
$$

for each i . Thus, from (11) , (14) , and (16) we have that

$$
n = a_{\alpha,t} \left(1 - \frac{uM_{q-1}}{nM_{s-1}} \right) \frac{M_{t-1}}{M_{s-1}} + a_{\alpha,t+1} \left(1 - \frac{uM_{q-1}}{nM_{s-1}} \right) \frac{M_t}{M_{s-1}} + \cdots
$$

+
$$
a_{\alpha,q-1} \left(1 - \frac{uM_{q-1}}{nM_{s-1}} \right) \frac{M_{q-2}}{M_{s-1}} + \frac{M_{q-1}}{M_{s-1}} \left[a_q d_q \frac{M_{q-1}}{M_{q-1}} + a_{q+1} d_{q+1} \frac{M_q}{M_{q-1}} + \cdots + a_v d_v \frac{M_{v-1}}{M_{q-1}} \right]
$$

$$
= a_{\alpha,t} \left(1 - \frac{uM_{q-1}}{nM_{s-1}} \right) \frac{M_{t-1}}{M_{s-1}} + a_{\alpha,t+1} \left(1 - \frac{uM_{q-1}}{nM_{s-1}} \right) \frac{M_t}{M_{s-1}} + \cdots
$$

+
$$
a_{\alpha,q-1} \left(1 - \frac{uM_{q-1}}{nM_{s-1}} \right) \frac{M_{q-2}}{M_{s-1}} + a_q d_q \frac{M_{q-1}}{M_{s-1}} + a_{q+1} d_{q+1} \frac{M_q}{M_{s-1}}
$$

+
$$
\cdots + a_v d_v \frac{M_{v-1}}{M_{s-1}}
$$

=
$$
a_t d_t \frac{M_{t-1}}{M_{s-1}} + a_{t+1} d_{t+1} \frac{M_t}{M_{s-1}} + \cdots + a_v d_v \frac{M_{v-1}}{M_{s-1}}
$$

where $a_i = a_{\alpha,i}$ and $d_i = (1 - uM_{q-1}/nM_{s-1})$ for $s \le i \le q-1$. Of course, for $s \leq i \leq q-1$,

 $\bm{M_{s-1}}$

$$
(d_i,m_i)=\left(1-\frac{uM_{q-1}}{nM_{s-1}},m_i\right)=1
$$

by (17), and so $(d_i, m_i) = 1$ for $s \le i \le v$ as required. This completes the proof.

We now prove the main result.

THEOREM. Let $\mathcal{O} = \{A_i\}_{i\geq 1}$ where A_i is a set of m_i distinct integers with $m_i \geq 2$ and $0 \in A_i$ for all $i \geq 1$, and let $\{M_i\}_{i \geq 0}$ be as in definition 1. Then \mathcal{X} has a simple α -base if and only if A_i is a complete residue system modulo m_i for each *i* and the elements of $\bigcup_{i=h}^{\infty} A_i$ are relatively prime for every positive integer *h*.

Proof. The necessity follows from [3] as indicated in the introduction.

Suppose that $\overline{\mathcal{O}}$ satisfies the conditions of the theorem. We must show that there

exists an integer sequence $\{d_i\}_{i\geq 1}$ with $(d_i,m_i) = 1$ for all *i* such that every integer *n* is uniquely representable in the form

(18)
$$
n = \sum_{i=1}^{r(n)} a_{n,i} d_i M_{i-1} , a_{n,i} \in A_i \quad \forall i.
$$

Of course, 0 is trivially representable in the desired form. Also, by Lemma 2, 1 can be represented in the desired form and will, in fact, appear in the sum

$$
S_1 = d_1 M_0 A_1 \oplus d_2 M_1 A_2 \oplus \cdots \oplus d_{s_1} M_{s_1-1} A_{s_1}
$$

for suitably chosen integers d_1, d_2, \dots, d_{s_1} with $s_1 > 1$ and $(d_i, m_i) = 1$ for $1 \leq i \leq s_1$. S_1 is easily seen to be a complete residue system modulo M_{s_1} since A_i is a complete residue system modulo m_i and $(d_i, m_i) = 1$ for $1 \le i \le s_1$. Of course, all elements of S_1 are represented in the desired form. Let r_1 be the integer of least absolute value such that $r_1 \notin S_1$. If there are two such values, r and $-r$, we set $r_1 = r$. Since S_1 is a complete residue system modulo M_{s_1} , there exists $\sigma \in S_1$ such that $r_1 \equiv \sigma \pmod{M_{s_1}}$. Thus, $r_1 = \sigma + w M_{s_1}$ for some integer *w* and, by Lemma 2, there exists an integer $s_2 > 1$ and integers d_{s_1+i} with $(d_{s_1+i}, m_{s_1+i}) = 1$ for $1 \leq i \leq s_2$ such that

$$
(19) \qquad w = a_{w,s_1+1}d_{s_1+1}\frac{M_{s_1}}{M_{s_1}} + a_{w,s_1+2}d_{s_1+2}\frac{M_{s_1+1}}{M_{s_1}} + \cdots + a_{w,s_1+s_2}d_{s_1+s_2}\frac{M_{s_1+s_2-1}}{M_{s_1}}
$$

with $a_{w,s_1+i} \in A_{s_1+i}$ for each i. Also, since $\sigma \in S_1$,

$$
(20) \qquad \sigma = a_{\sigma,1}d_1M_0 + a_{\sigma,2}d_2M_1 + \cdots + a_{\sigma,s_1}d_{s_1}M_{s_1-1}
$$

with $a_{\sigma,i} \in A_i$ and $(d_i,m_i) = 1$ for $1 \leq i \leq s_1$. But then, combining (19) and (20),

$$
r_1 = \sigma + wM_{s_1}
$$

\n
$$
= a_{\sigma,1}d_1M_0 + a_{\sigma,2}d_2M_1 + \cdots + a_{\sigma,s_1}d_{s_1}M_{s_1-1}
$$

\n
$$
+ M_{s_1} \left(a_{w,s_1+1}d_{s_1+1} \frac{M_{s_1}}{M_{s_1}} + a_{w,s_1+2}d_{s_1+2} \frac{M_{s_1+1}}{M_s} + \cdots + a_{w,s_1+s_2}d_{s_1+s_2} \frac{M_{s_1+s_2-1}}{M_{s_1}} \right)
$$

\n
$$
= a_{\sigma,1}d_1M_0 + \cdots + a_{\sigma,s_1}d_{s_1}M_{s_1-1} + a_{w,s_1+1}d_{s_1+1}M_{s_1} + \cdots + a_{w,s_1+s_2}d_{s_1+s_2}M_{s_1+s_2-1}
$$

which is a representation of r_1 in the desired form. Now form the set

$$
S_2=d_1M_0A_1\oplus d_2M_1A_2\oplus\cdots\oplus d_{s_1+s_2}A_{s_1+s_2}M_{s_1+s_2-1}.
$$

Note that $S_1 \subset S_2$ since $0 \in A_i$ for all *i* and also note that all elements of S_2 are represented in the desired form. We now iterate with r_2 the integer of least absolute value not in S_2 , and so on. In this way we build our \mathcal{O} -base step by step and it is clear that any particular *n* will be properly represented after at most $2 | n |$ steps. Since it is clear that such representations are unique, the proof is complete.

39 \sim

REFERENCES

- 1 . N. G. de Bruijn, On bases for the set of integers, *Publ. Math.* (Debrecen), 1 (1950), 232-242.
- 2. N. G. de Bruijn, Some direct decompositions of the set of integers, *Math. Comp., 18* (1964), 537-546.
- 3. C. T. Long and N. Woo, On bases for the set of integers, *Duke Math. J., 88* (1971), 583-590.
- 4. C. Swenson, Direct sum decompositions of *Z*, *Pacific J. Math.*, 53 (1974), 629-633.
- 5. C. Swenson and C. T. Long, Necessary and sufficient conditions for simple A-bases, *Pacific J. M ath., 126* (1987), 379-384.