NECESSARY AND SUFFICIENT CONDITIONS FOR SIMPLE \mathcal{O} -bases

Calvin Long, Washington State University

and

Carl Swenson, Seattle University

Let $\mathcal{A} = \{A_i\}_{i \geq 1}$ where A_i is a set of m_i distinct integers with $m_i \geq 2$ and $0 \in A_i$ for each *i*. It is shown that \mathcal{A} possesses a simple \mathcal{A} -base if and only if A_i is a complete residue system modulo m_i for each *i* and the elements of $\bigcup_{i=h}^{\infty} A_i$ are relatively prime for every positive integer *h*.

The notions of simple and non-simple α -bases are due to Long and Woo [3] and generalize those of simple and non-simple A-bases due to de Bruijn [1].

DEFINITION 1. Let $\mathcal{A} = \{A_i\}_{i\geq 1}$ where each A_i is a set of m_i distinct integers with $m_i \geq 2$ and $0 \in A_i$ for each *i*. The integer sequence $B = \{b_i\}_{i\geq 1}$ is called an \mathcal{A} -base for the set of integers provided every integer *n* can be written uniquely in the form

$$n = \sum_{i=1}^{r(n)} a_i b_i$$
, $a_i \in A_i$ \forall_i .

If, with possible rearrangement, B can be written in the form $B = \{d_i M_{i-1}\}_{i \ge 1}$ where the d_i are integers and where $M_0 = 1$ and $M_i = \prod_{j=1}^i m_j$ for $i \ge 1$, then it is called a simple \mathcal{A} -base. DEFINITION 2. Let A be a set of m distinct integers with $m \ge 2$ and $0 \in A$. If $A_i = A$ for all i, the integer sequences of Definition 1 are called A-bases and simple A-bases respectively.

Properties of A- and \mathcal{A} -bases were studied by de Bruijn and by Long and Woo but, until recently, necessary and sufficient for the existence of bases were not known. In [5] we gave necessary and sufficient conditions for the existence of simple A-bases. In the present paper we give necessary and sufficient conditions for the existence of simple \mathcal{A} -bases. Necessary and sufficient conditions for the existence of non-simple A- and \mathcal{A} -bases are not known, but finding meaningful conditions seems unlikely since Swenson [4] has shown that any two sets C and D such that $c - c' \neq d - d'$ for all $c, c' \in C$ and $d, d' \in D$ can be extended to form a non-simple A-base.

In [3], Long and Woo point out that the sequence $\{d_iM_{i-1}\}_{i\geq 1}$ forms an \mathcal{A} -base only if A_i is a complete residue system modulo m_i and $(d_i, m_i) = 1$ for each i. They also observe that it is necessary that the elements of the set $\bigcup_{i=1}^{\infty} A_i$ be relatively prime and that $\{d_iM_{i-1}\}_{i\geq 1}$ is an \mathcal{A} -base if and only if $\{d_{i+1}M_i/M_s\}_{i\geq s}$ is an \mathcal{A} -base where $\mathcal{A}'_{=} \{A_{i+1}\}_{i\geq s}$ for all $s \geq 0$. Of course, this further implies that it is necessary that the elements of $\bigcup_{i=h}^{\infty} A_i$ be relatively prime for all $h \geq 1$. In the present paper we show that these conditions on \mathcal{A} are both necessary and sufficient.

We first prove two lemmas.

LEMMA 1. Let $\mathcal{A} = \{A_i\}_{i\geq 1}$ where A_i is a complete residue system modulo m_i

and $m_i \ge 2$ for each *i*. Let $\{M_i\}_{i\ge 0}$ be as above. If the elements of $\bigcup_{i=h}^{\infty} A_i$ are relatively prime for each $h \ge 1$ then, for each $s \ge 1$, there exists an integer q > s and elements $a_i \in A_i$ for $s \le i \le q$ such that

(1)
$$\left(a_{s}\frac{M_{s-1}}{M_{s-1}}, a_{s+1}\frac{M_{s}}{M_{s-1}}, \cdots, a_{q}\frac{M_{q-1}}{M_{s-1}}\right) = 1.$$

Proof. Choose an arbitrary element $a_s \in A_s$. If $a_s = \pm 1$, the desired result is clearly true for any q. If $a_s \neq \pm 1$, divide the distinct prime divisors of a_s into two classes:

$$B_1 = \{p: p \mid a_s \text{ and } p \mid m_i \text{ for some } i \geq s\}$$

 $B_2 = \{p: p \mid a_s \text{ and } p \nmid m_i \text{ for any } i \geq s\}$

If $p \in B_1$, there is a least $i = i(p) \ge i$ such that $p \mid m_i$. Since $A_{i(p)}$ is a complete residue system modulo $m_{i(p)}$, there exists a specific element $a_{i(p)} \in A_{i(p)}$ such that $a_{i(p)} \equiv 1 \pmod{m_{i(p)}}$. Hence, we can choose $a_{i(p)}$ such that $p \nmid a_{i(p)}$ and $p \mid m_{i(p)}$. Of course, we can do this for each of the primes in B_1 and we note that it may be the case that i(p) = i(p') for $p \neq p'$. But then $pp' \nmid a_{i(p)}$ and $pp' \mid m_{i(p)}$. Indeed, if π is the product of all the primes $q \in B_1$ such that i(q) = i(p), then $\pi \nmid a_{i(p)}$ and $\pi \mid m_{i(p)}$. Let $t = \max_{p \in B_1}\{i(p)\}$ and let

$$d = \left(a_s \frac{M_{s-1}}{M_{s-1}}, a_{s+1} \frac{M_s}{M_{s-1}}, \cdots, a_t \frac{M_{t-1}}{M_{s-1}}\right)$$

where the $a_i = a_{i(p)}$ for $p \in B_1$ and a_i is an arbitrary but fixed element of A_i for all other $i, s \leq i \leq t$. Since $p \nmid a_{i(p)}M_{i(p)-1}$ for $p \in B_1$, it follows that $p \mid d$ for any such p. Now consider the primes in B_2 . Since, by hypothesis, the elements of $\bigcup_{i=t+1}^{\infty} A_i$ are relatively prime, we may choose specific elements $a_i \in A_i$ for $t+1 \leq i \leq t+u$ such that $(a_{t+1}, a_{t+2}, \dots, a_{t+u}) = 1$. But then

$$\left(a_s\frac{M_{s-1}}{M_{s-1}}, a_{s+1}\frac{M_s}{M_{s-1}}, \cdots, a_{t+u}\frac{M_{t+u-1}}{M_{s-1}}\right) = 1$$

since $p \in B_1$ implies

$$p \not\models \left(a_s \frac{M_{s-1}}{M_{s-1}}, a_{s+1} \frac{M_s}{M_{s-1}}, \cdots, a_t \frac{M_{t-1}}{M_{s-1}}\right)$$

and $p \in B_2$ implies that

$$p \neq \left(a_{t+1}\frac{M_t}{M_{s-1}}, a_{t+2}\frac{M_{t+1}}{M_{s-1}}, \cdots, a_{t+u}\frac{M_{t+u-1}}{M_{s-1}}\right).$$

Therefore, setting t + u = q, we have

$$\left(a_s\frac{M_{s-1}}{M_{s-1}}, a_{s+1}\frac{M_s}{M_{s-1}}, \cdots, a_q\frac{M_{q-1}}{M_{s-1}}\right) = 1$$

as claimed.

Note that if q satisfies Lemma 1 for a given s, then any larger value of q does also.

LEMMA 2. Let $\mathcal{A} = \{A_i\}_{i \ge 1}$ and $\{M_i\}_{i \ge 0}$ be as in Lemma 1 and let $0 \in A_i$ for each *i*. Then, for any $s \ge 1$, every integer *n* can be represented in the form

(2)
$$n = a_s d_s \frac{M_{s-1}}{M_{s-1}} + a_{s+1} d_{s+1} \frac{M_s}{M_{s-1}} + \dots + a_q d_q \frac{M_{q-1}}{M_{s-1}}$$

where q > s and d_s, d_{s+1}, \dots, d_q are integers with $(d_i, m_i) = 1$ and $a_i \in A_i$ for each *i*.

Proof. Of course, 0 is trivially representable in the desired form. For $n \neq 0$, we distinguish two cases.

Case 1. n = 1.

Since A_s is a complete residue system modulo m_s , there exists $a \in A_s$ such that $a \equiv 1 \pmod{m_s}$. By Lemma 1, there exists an integer q > s and elements $a_i \in A_i$ for

- 31 -

 $s \leq i \leq q$ such that

$$\left(a_s\frac{M_{s-1}}{M_{s-1}},a_{s+1}\frac{M_s}{M_{s-1}},\cdots,a_q\frac{M_{q-1}}{M_{s-1}}\right)=1.$$

Thus, the diophantine equation

(3)
$$1 = a_s \frac{M_{s-1}}{M_{s-1}} x_s + a_{s+1} \frac{M_s}{M_{s-1}} x_{s+1} + \dots + a_q \frac{M_{q-1}}{M_{s-1}} x_q$$

has a solution $(d'_s, d'_{s+1}, \cdots, d'_q)$. This implies that

$$a_s d'_s \equiv 1 \equiv a \pmod{m_s}$$

and hence that $(d'_s, m_s) = 1$. We now set $d_s = d'_s$ and proceed by a limited induction to determine $d_{s+1}, d_{s+2}, \dots, d_q$ satisfying (2) and such that $(d_i, m_i) = 1$ for $s \le i \le q$. Since we have found d_s , we assume that we have determined d_i for $s \le i < k$ where k is fixed and $k \le q$. Thus, we have

(4)
$$1 = a_s d_s \frac{M_{s-1}}{M_{s-1}} + \dots + a_{k-1} d_{k-1} \frac{M_{k-2}}{M_{s-1}} + a_k d'_k \frac{M_{k-1}}{M_{s-1}} + \dots + a_q d'_q \frac{M_{q-1}}{M_{s-1}}$$

with $(d_i, m_i) = 1$, for $s \leq i < k$. If $(d'_k, m_k) = 1$, we set $d_k = d'_k$. If $(d'_k, m_k) \neq 1$, set

(5)
$$e_{k} = \left(d'_{k}, \ a_{s}d_{s}\frac{M_{s-1}}{M_{s-1}} + a_{s+1}d_{s+1}\frac{M_{s}}{M_{s-1}} + \dots + a_{k-1}d_{k-1}\frac{M_{k-2}}{M_{s-1}}\right)$$

so that

$$\left(\frac{d'_{k}}{e_{k}}, \frac{1}{e_{k}}\left(a_{s}d_{s}\frac{M_{s-1}}{M_{s-1}}+a_{s+1}d_{s+1}\frac{M_{s}}{M_{s-1}}+\cdots+a_{k-1}d_{k-1}\frac{M_{k-2}}{M_{s-1}}\right)\right)=1.$$

Then, by Dirichlet's theorem, there exists r_k such that

$$\frac{d'_{k}}{e_{k}} - \frac{r_{k}}{e_{k}} \left(a_{s} d_{s} \frac{M_{s-1}}{M_{s-1}} + a_{s+1} d_{s+1} \frac{M_{s}}{M_{s-1}} + \dots + a_{k-1} d_{k-1} \frac{M_{k-2}}{M_{s-1}} \right) = p_{k}$$

where p_k is a prime and $p_k + (M_q/M_{s-1})$. Also set

(6)
$$d_{k} = d'_{k} - r_{k} \left(a_{s} d_{s} \frac{M_{s-1}}{M_{s-1}} + a_{s+1} d_{s+1} \frac{M_{s}}{M_{s-1}} + \dots + a_{k-1} d_{k-1} \frac{M_{k-2}}{M_{s-1}} \right) \\ = p_{k} e_{k}.$$

Now assume that $(d_k, m_k) \neq 1$. Then there exists a prime p such that $p \mid d_k$ and $p \mid m_k$ and hence $p = p_k$ or $p \mid e_k$. But $p \neq p_k$, since $p_k \nmid (M_q/M_{s-1})$ and $p \mid (M_q/M_{s-1})$. Therefore, $p \mid e_k$ and hence, by (5), $p \mid d'_k$ and

(7)
$$p \mid \left(a_s d_s \frac{M_{s-1}}{M_{s-1}} + a_{s+1} d_{s+1} \frac{M_s}{M_{s-1}} + \dots + a_{k-1} d_{k-1} \frac{M_{k-2}}{M_{s-1}}\right).$$

But then, by (4) and (7), $p \mid 1$ since $p \mid d'_k$ and $p \mid m_k$. But this is a clear contradiction and it follows that $(d_k, m_k) = 1$. Moreover, using (4) and (6), we have that

$$1 = a_{s}d_{s}\frac{M_{s-1}}{M_{s-1}}\left(1 + a_{k}r_{k}\frac{M_{k-1}}{M_{s-1}}\right) + a_{s+1}d_{s+1}\frac{M_{s}}{M_{s-1}}\left(1 + a_{k}r_{k}\frac{M_{k-1}}{M_{s-1}}\right)$$

$$+ \dots + a_{k-1}d_{k-1}\frac{M_{k-2}}{M_{s-1}}\left(1 + a_{k}r_{k}\frac{M_{k-1}}{M_{s-1}}\right)$$

$$+ a_{k}\frac{M_{k-1}}{M_{s-1}}\left[d'_{k} - r_{k}\left(a_{s}d_{s}\frac{M_{s-1}}{M_{s-1}} + a_{s+1}d_{s+1}\frac{M_{s}}{M_{s-1}} + \dots + a_{k-1}d_{k-1}\frac{M_{k-2}}{M_{s-1}}\right)\right]$$

$$+ a_{k+1}d'_{k+1}\frac{M_{k}}{M_{s-1}} + \dots + a_{q}d'_{q}\frac{M_{q-1}}{M_{s-1}}$$

$$= a_{s}d_{s}\frac{M_{s-1}}{M_{s-1}} + a_{s+1}d_{s+1}\frac{M_{s}}{M_{s-1}} + \dots + a_{k}d_{k}\frac{M_{k-1}}{M_{s-1}} + a_{k+1}d'_{k+1}\frac{M_{k}}{M_{s-1}} + \dots + a_{q}d'_{q}\frac{M_{q-1}}{M_{s-1}}$$

This completes the induction and the proof for Case 1.

Case 2. $n \neq 1$.

It suffices to consider n such that all prime factors of n divide infinitely many of the m_i . For suppose $n = n_1 n_2$ where every prime factor of n_1 divides only finitely many of the m_i . Then the q of Lemma 1 and t may be chosen sufficiently large that $(n_1, M_q/M_{t-1}) = 1$. Now suppose that n_2 can be represented in the desired form

(8)
$$n_2 = a_t d'_t \frac{M_{t-1}}{M_{s-1}} + a_{t+1} d'_{t+1} \frac{M_t}{M_{s-1}} + \dots + a_q d'_q \frac{M_{q-1}}{M_{s-1}}$$

with $(d'_i, m_i) = 1$ and $a_i \in A_i$ for $t \leq i \leq q$. Then

$$n = n_1 n_2$$

$$= a_t (n_1 d'_t) \frac{M_{t-1}}{M_{s-1}} + a_{t+1} (n_1 d'_{t+1}) \frac{M_t}{M_{s-1}} + \cdots + a_q (n_1 d'_q) \frac{M_{q-1}}{M_{s-1}}$$

$$= a_s d_s \frac{M_{s-1}}{M_{s-1}} + a_{s+1} d_{s+1} \frac{M_s}{M_{s-1}} + \cdots + a_t d_t \frac{M_{t-1}}{M_{s-1}} + \cdots + a_q d_q \frac{M_{q-1}}{M_{s-1}}$$

where $a_i = 0$ and $d_i = 1$ for $s \le i \le t - 1$ and $d_i = n_1 d'_i$ for $t \le i \le q$. Then, since $(n_1, M_q/M_{t-1}) = 1$ and $(d'_i, m_i) = 1$ for $t \le i \le q$, it follows that $(d_i, m_i) = 1$ for $s \le i \le q$ and n is represented in the desired form.

Therefore, we must show that all values of n such that all prime factors of n divide infinitely many of the m_i can be represented as in (8). If we asume that n has this property, it follows that the q of Lemma 1 and t < q can be chosen sufficiently large that

$$n \mid rac{M_{q-1}}{nM_{t-1}} ext{ and } m_i \mid rac{M_{q-1}}{nM_{t-1}}$$

for $t \leq i \leq q$. Set

$$A' = A_t \frac{M_{t-1}}{M_{s-1}} \oplus A_{t+1} \frac{M_t}{M_{s-1}} \oplus \cdots \oplus A_{q-1} \frac{M_{q-2}}{M_{s-1}}$$

where

$$kA_i = \{b: b = ka, a \in A_i\} \text{ and } A \oplus B = \{c: c = a + b, a \in A, b \in B\}.$$

It is easy to see that A' forms a complete residue system modulo M_{q-1}/M_{t-1} . Thus, there exists $\alpha \in A'$ such that

(9)
$$n \equiv \alpha \left(\mod \frac{M_{q-1}}{M_{t-1}} \right)$$

and there exists as integer r such that

(10)
$$n = \alpha + r \frac{M_{q-1}}{M_{t-1}}.$$

Since $\alpha \in A'$, we have that

(11)
$$\alpha = a_{\alpha,t} \frac{M_{t-1}}{M_{s-1}} + a_{\alpha,t+1} \frac{M_t}{M_{s-1}} + \dots + a_{\alpha,q-1} \frac{M_{q-2}}{M_{s-1}}$$

with $a_{\alpha,i} \in A_i$ for $t \leq i \leq q-1$. Since M_{q-1}/nM_{t-1} is an integer, (10) implies that

(12)
$$1 = \frac{\alpha}{n} + r \frac{M_{q-1}}{nM_{t-1}}$$

where α/n is an integer, and this implies that $(\alpha/n, r) = 1$. Now, by Case 1, v > qmay be chosen so that

(13)
$$1 = a_q d'_q \frac{M_{q-1}}{M_{q-1}} + a_{q+1} d'_{q+1} \frac{M_q}{M_{q-1}} + \dots + a_v d'_v \frac{M_{v-1}}{M_{q-1}}$$

with $a_i \in A_i$ and $(d'_i, m_i) = 1$ for $q \leq i \leq v$. Since $(\alpha/n, r) = 1$, if follows from Dirichlet's theorem that there exists an integer u such that $r + (\alpha/n)u$ is a prime not

dividing M_v/M_{q-1} . Thus, from (13), we have that

(14)
$$r + \frac{\alpha}{n}u = a_q d_q \frac{M_{q-1}}{M_{q-1}} + a_{q+1} d_{q+1} \frac{M_q}{M_{q-1}} + \dots + a_v d_v \frac{M_{v-1}}{M_{q-1}}$$

where $d_i = [r + (\alpha/n)u]d'_i$ so that $(d_i, m_i) = 1$ for $q \leq i \leq v$. Moreover, by (12)

(15)
$$\frac{\alpha}{n}\left(1-\frac{uM_{q-1}}{nM_{s-1}}\right)+\frac{M_{q-1}}{nM_{s-1}}\left(r+\frac{\alpha u}{n}\right)=\frac{\alpha}{n}+\frac{rM_{q-1}}{nM_{s-1}}=1$$

and hence,

(16)
$$n = \alpha \left(1 - \frac{uM_{q-1}}{nM_{s-1}}\right) + \frac{M_{q-1}}{M_{s-1}}\left(r + \frac{\alpha u}{n}\right).$$

Now since $m_i \mid M_{q-1}/nM_{s-1}$ for $s \leq i \leq q$, it follows that

(17)
$$1 = (1 - \frac{uM_{q-1}}{nM_{s-1}}, m_i)$$

for each i. Thus, from (11), (14), and (16) we have that

$$n = a_{\alpha,t} \left(1 - \frac{uM_{q-1}}{nM_{s-1}} \right) \frac{M_{t-1}}{M_{s-1}} + a_{\alpha,t+1} \left(1 - \frac{uM_{q-1}}{nM_{s-1}} \right) \frac{M_t}{M_{s-1}} + \cdots$$

$$+ a_{\alpha,q-1} \left(1 - \frac{uM_{q-1}}{nM_{s-1}} \right) \frac{M_{q-2}}{M_{s-1}} + \frac{M_{q-1}}{M_{s-1}} \left[a_q d_q \frac{M_{q-1}}{M_{q-1}} + a_{q+1} d_{q+1} \frac{M_q}{M_{q-1}} \right]$$

$$+ \cdots + a_v d_v \frac{M_{v-1}}{M_{q-1}} \right]$$

$$= a_{\alpha,t} \left(1 - \frac{uM_{q-1}}{nM_{s-1}} \right) \frac{M_{t-1}}{M_{s-1}} + a_{\alpha,t+1} \left(1 - \frac{uM_{q-1}}{nM_{s-1}} \right) \frac{M_t}{M_{s-1}} + \cdots + a_{\alpha,q-1} \left(1 - \frac{uM_{q-1}}{nM_{s-1}} \right) \frac{M_{q-2}}{M_{s-1}} + a_q d_q \frac{M_{q-1}}{M_{s-1}} + a_{q+1} d_{q+1} \frac{M_q}{M_{s-1}} + \cdots + a_v d_v \frac{M_{v-1}}{M_{s-1}} + \cdots + a_v d_v \frac{M_{v-1}}{M_{s-1}} + \cdots + a_v d_v \frac{M_{v-1}}{M_{s-1}}$$

where $a_i = a_{\alpha,i}$ and $d_i = (1 - uM_{q-1}/nM_{s-1})$ for $s \leq i \leq q-1$. Of course, for $s \leq i \leq q-1$,

$$(d_i,m_i)=\left(1-rac{uM_{q-1}}{nM_{s-1}},m_i
ight)=1$$

by (17), and so $(d_i, m_i) = 1$ for $s \leq i \leq v$ as required. This completes the proof.

We now prove the main result.

THEOREM. Let $\mathcal{A} = \{A_i\}_{i\geq 1}$ where A_i is a set of m_i distinct integers with $m_i \geq 2$ and $0 \in A_i$ for all $i \geq 1$, and let $\{M_i\}_{i\geq 0}$ be as in definition 1. Then \mathcal{A} has a simple \mathcal{A} -base if and only if A_i is a complete residue system modulo m_i for each i and the elements of $\bigcup_{i=h}^{\infty} A_i$ are relatively prime for every positive integer h.

Proof. The necessity follows from [3] as indicated in the introduction.

Suppose that $\mathcal A$ satisfies the conditions of the theorem. We must show that there

exists an integer sequence $\{d_i\}_{i\geq 1}$ with $(d_i, m_i) = 1$ for all *i* such that every integer *n* is uniquely representable in the form

(18)
$$n = \sum_{i=1}^{r(n)} a_{n,i} d_i M_{i-1} , a_{n,i} \in A_i \quad \forall_i.$$

Of course, 0 is trivially representable in the desired form. Also, by Lemma 2, 1 can be represented in the desired form and will, in fact, appear in the sum

$$S_1 = d_1 M_0 A_1 \oplus d_2 M_1 A_2 \oplus \cdots \oplus d_{s_1} M_{s_1-1} A_{s_1}$$

for suitably chosen integers d_1, d_2, \dots, d_{s_1} with $s_1 > 1$ and $(d_i, m_i) = 1$ for $1 \le i \le s_1$. S_1 is easily seen to be a complete residue system modulo M_{s_1} since A_i is a complete residue system modulo m_i and $(d_i, m_i) = 1$ for $1 \le i \le s_1$. Of course, all elements of S_1 are represented in the desired form. Let r_1 be the integer of least absolute value such that $r_1 \not\in S_1$. If there are two such values, r and -r, we set $r_1 = r$. Since S_1 is a complete residue system modulo M_{s_1} , there exists $\sigma \in S_1$ such that $r_1 \equiv \sigma \pmod{M_{s_1}}$. Thus, $r_1 = \sigma + wM_{s_1}$ for some integer w and, by Lemma 2, there exists an integer $s_2 > 1$ and integers d_{s_1+i} with $(d_{s_1+i}, m_{s_1+i}) = 1$ for $1 \le i \le s_2$ such that

(19)
$$w = a_{w,s_1+1}d_{s_1+1}\frac{M_{s_1}}{M_{s_1}} + a_{w,s_1+2}d_{s_1+2}\frac{M_{s_1+1}}{M_{s_1}} + \dots + a_{w,s_1+s_2}d_{s_1+s_2}\frac{M_{s_1+s_2-1}}{M_{s_1}}$$

with $a_{w,s_1+i} \in A_{s_1+i}$ for each *i*. Also, since $\sigma \in S_1$,

(20)
$$\sigma = a_{\sigma,1}d_1M_0 + a_{\sigma,2}d_2M_1 + \cdots + a_{\sigma,s_1}d_{s_1}M_{s_1-1}$$

$$\begin{aligned} r_1 &= \sigma + w M_{s_1} \\ &= a_{\sigma,1} d_1 M_0 + a_{\sigma,2} d_2 M_1 + \dots + a_{\sigma,s_1} d_{s_1} M_{s_1-1} \\ &+ M_{s_1} \left(a_{w,s_1+1} d_{s_1+1} \frac{M_{s_1}}{M_{s_1}} + a_{w,s_1+2} d_{s_1+2} \frac{M_{s_1+1}}{M_s} + \dots + a_{w,s_1+s_2} d_{s_1+s_2} \frac{M_{s_1+s_2-1}}{M_{s_1}} \right) \\ &= a_{\sigma,1} d_1 M_0 + \dots + a_{\sigma,s_1} d_{s_1} M_{s_1-1} + a_{w,s_1+1} d_{s_1+1} M_{s_1} + \dots + a_{w,s_1+s_2} d_{s_1+s_2} M_{s_1+s_2-1} \end{aligned}$$

which is a representation of r_1 in the desired form. Now form the set

$$S_2 = d_1 M_0 A_1 \oplus d_2 M_1 A_2 \oplus \cdots \oplus d_{s_1+s_2} A_{s_1+s_2} M_{s_1+s_2-1}.$$

Note that $S_1 \subset S_2$ since $0 \in A_i$ for all *i* and also note that all elements of S_2 are represented in the desired form. We now iterate with r_2 the integer of least absolute value not in S_2 , and so on. In this way we build our \mathcal{O} -base step by step and it is clear that any particular *n* will be properly represented after at most $2 \mid n \mid$ steps. Since it is clear that such representations are unique, the proof is complete.

39

-

REFERENCES

- 1. N. G. de Bruijn, On bases for the set of integers, Publ. Math. (Debrecen), 1 (1950), 232-242.
- 2. N. G. de Bruijn, Some direct decompositions of the set of integers, Math. Comp., 18 (1964), 537-546.
- 3. C. T. Long and N. Woo, On bases for the set of integers, Duke Math. J., 38 (1971), 583-590.
- 4. C. Swenson, Direct sum decompositions of Z, Pacific J. Math., 53 (1974), 629-633.
- 5. C. Swenson and C. T. Long, Necessary and sufficient conditions for simple A-bases, Pacific J. Math., 126 (1987), 379-384.