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THE GOLDBACH PROBLEM (H) (Continuation) 

by Aldo Peretti

211. We now pass to calculate Jl (3(x)}. From [79] we obtain:

F(n) A2
[81] ^ 2 {S(x)} = ------------ + —  n29+H<-E +

s2 ( l-e -s)2 s2

+
[Vn] q-1 n2(q) 2AF(n) n9+l/,+E------  + ----------------------  +
q=l h=l cp(q) s2 (s+27tih/q)2 s2 ( l - e “s)

+
t̂ 1 2F(n) M.(q) [V n] q-1 2 A n H +E p(q)

+ Z  £  ------------------------- +
q=l h=1 s2 ( 1- e  s) (s+27ii1i/q) cp(q) 9=1 h=l (p(q) s2 (s+27iih/q)

[Vn] q-1 [V n] q-1
+

[v nj q -i  | \  rz z z z n(qi) n(qj)

q,= l h, q2=l li2=l <p(qi) <p(q2) S (s+2nillj/qi) (s+27till2/q2) 
qi'q- Iii'li'

12. Accordingly to [61], we must evaluate either:

[82]

or, alternatively: 

[83]

^  { ( 1- e  s)2 A 1 ( 9(x)}

A2'  1 { (9(x))}

We apply [82] to the terms of [81] that contain 1-e s in the denominator. To the remainder ones 
we apply [83].

Thus [81] turns out to be:
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v(t+o) + v(t-o) 2
[84] v*(t) = ------------------  = F(n) A ~ l (1/s2) + A2̂  n2̂ ^ " 8 A -1 (1/s2) +

+ a2> £  £
H2(q)

q h cp2 (q) Is2 (s+27cili/q)2 .
► + 2AF(n) nd+'A+s A  -1

1-e

l s2

2F(n) |i(q) J 1-e"
+ £ Z  — — A - '

q h cp(q) s2(s+27iih/q),

2A n3+'/'+£
+ E  E --------------- A2) ^ - 1

q h <p(q) s2(s+27iih/q)

„  ^  ^  M(qi) n(qi)
+ A2) £  E  E  E  --------------- 4 ~ '

qi hi q2 1̂2 cp(qi) cp(q2) l s2 (s+27iilii/qi) (s+27tih2/q2)

the limits in the sums being the same than before.

13. For the inverse transforms we have the following elementary evaluations (A=27tih/q).

a) F,(t) = (1/s2) = t

b) F2(t) =
[ s2 (s+A)2 J 0

= 1 (t-u) ue -At _

t 2e-At 2
(l+e-At) + ----- -------------

A2 A3 A3

c) F3(t) I
r f 1 if t > 1

s2 J l t if t < 1

d) F4(t) = 4 -1
f 1-e"

sz (s+A),

t t-1
" = 1 (t-u) e-Au -  J (t-u-1) e_Au du
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1
— + 
A

e-At

A2
(l-e A)

e) m ) =
i s 2 (s+A)

t * —At <t t e l
J (t-u) e“Au du = —  + ------  -  —
0 0 A A2 A2

0 F6(t) = JL - 1 <
1 1 1 i -A,t1-e 1 1

s (s+Ai) (s+A2) J (A2-A i) [Ai
( t ------------ ) ------ (t -

Ai A2

i -A2t 1-e 2

A2

From here can be deduced the following results:

g) a2> F](t) = o

t 2
h) A2) F2(t) = A2> —  e”At + —

A2 A3

1
i) A2) F5(t) = —  A2) e~At

A2

j) A2) F6(t) =
1

(a 2- a o

a2) e"Alt 

Ai

2) _-A2tA e

A2

Hence, formula [84] can be written as:

v(t+o) + v(t-o) 
[85] ------------------

2

2
F(n) t + E

q

|i (q) 2
( ------ ) Z  A2) F2(t) + 2AF(n) n^+,A+E +

9 (q) h

+ 2F(n)
(i (q)

E  ------- £  F4(t) + 2A n9+'A+£
q (p (q) h

£
q

1
------- £  A2> F5(t)
<p (q) h
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+ 2
Q2 S

m (qi) n(q2) 

<p(qi) <p(q2>
A2> F6(t) =

[86] 2 V'= F(n) t + 2  
q

+ ( q ) N
2 t 2

2 A2) —  e~At + —  A2) e~At
v<p(q) j h [ A 2 A3 )

+ 2AF(n) us+l/*+6 + 2F(n)
q <p(q)

I
h

( l-e A) >

+ 2M S+' / ^  £  £  a2) e~—
q <p(q) A2

+ 2  2  2  E
qi ht cj2 h2

F(qi) n(q2) 2̂
---------------  a2) F6(t)
<p(qi) <p(q2)

14. At this stage of the reasoning, we must make the same remark that was stated in paragraph 5 
we have treated the variable t as if it were continuous. But this is not the case as t is always a 
natural number. Hence, the inverse transforms that appear in paragraph 13 should be written as 
the average at the right and left of t .

For instance, in change of formula 13 a) we should write:

, , (t+o) + (t-o)
Fi(t) = A _1 (1/s ) = ---------------

2

and so on with all the subsequent formulas.

We can then equate all the terms in (t + o) and (t -  o) that should appear at both sides of [86] 
in order to obtain:

[87] v (t) = F(n) t + 2
q

F(q)

v<p(qV
2  A2) F2(t) + 2AF(n)n&+,A
hv<p(qV
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+ 2F(n) E
q

S
(p(q) h

F4(t) + 2A n9+,A+£ Z  ——  Z  A2) F5(t) +
q <p(q) h

+ Z  Z  E  E
qi m qa tb

^(qi) " (q2) A2* F6(t)
<p(qi) <p(q2)

It is clear now the order that we must follow in order to evaluate v (t):

- In first place we must calculate A2̂  e At and A2-* te At (we shall see that the second case can 
be reduced to the first).

- In second place we must evaluate the sums that run along h.

- In third place we must evaluate the sums that run along q.

- F(n) and the sum in the last line will be evaluated apart.

15. Calculation of A2̂  e At

For An̂  e~At we can make use of the formula (6).

[88] A"> Sm (Bt) = 
cos

(  \2  
0 . B 2 sin —2 , sm

cos
Bt + n

(B+ti)

with n = 2. As

e At = coslAlt -  i sin IA11 (A = 27tih/q)

then

[89] A2̂  e-At = A2̂  coslAlt -  i A2̂  sin IA11

. U l2 sm —  
2

V
|c o s ( |A |t  + I A| + 7i) -  i sin (I A lt + IAI + n) •
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r
-  I 2 sin

IA | -A(t+1)

However in [106] we shall find a more suitable result.

16. Calculation of A2̂  te At.

The n - th differences of a function can be expressed in terms of its derivatives by means of the 
formula (6).

,n . n) An+1 ,n+l n) nn+2 ,n+2d u  A ' 0 d u  A ' 0 d u
[90] An) u = ------  + ---------------------+ -------------------------- + ...

dtn (u+1) ! dtn+1 (n+2)! dtn+2

where

f  n |̂ f  n |̂ f  n']
[91] An) 0m = um -  l l J ( n - l ) B + \ l )  (n-2)m -  U J (n -3 )m + ...

But according to N. Nielsen (7) we have that

[92] A") o'"
f  m"j

n! Vn J  Cn+i

where Crn+i are the Stirling numbers of the second kind, that can be expressed through the 
Stirling polynomials (x) by means of the formula

(~l)rfl (n+r)!
[93] Crn+1 = ------------------  T r- i ( - n - l )

(n-l)l

Hence

[94] An) 0m
(m!)2

(_l)m n ------------------  T 'm -n-l (-n-1)
(m-n)! (n-1)!

The generating function of the Stirling polynomials is:
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a
[95] i -a /V 1-e /

\x+l
oo

= 1 + (x+1) 2  xF r (x )a rfl ( | a |  < 2 n) 
} r-o

Replacing the value of [92] in [90] we get:

dn n(n+l)
[96] An̂  u = —  u + ---------  T ^ - n - l )

dn+1 n(n+l)(n+2) ,n+2d u

dtn 1! dt1n+1 2 ! ^ l( - n - l )
dtn+2

+

This fonnula seems to be new.
Comparing [96] with [95] we deduce that development [96] is valid if

[97]
n̂-t-r̂

V r ;

dn+ru

dtn+r
< ( 2 n f cF(l)

(c: absolute constant) 

(F(t): arbitrary function)

In our case we are concerned with second differences, hence n=2 and [96] takes the particular 
form:

,2 ,3d u d u
[98] A2 u = —- + 2 .3 ^ 0(-3) —

dt2 dt3

d4u
3.4. y i O ^ )  — -  

dt4
+

The series at right converges if

[99]
d'+2u

(r+1) (i+2) —
dl'+2

< (Zw)"20 <p(t)

for every r sufficiently large.

It can be checked easily by induction that dl+2u / dtl+2 in the case in which u = u(t) = te At is a 

sum of r+2 terms, in which the dominant one is A1+2 te~At , and as | A | < 2 n , condition [97] 
is fulfilled and development [98] is convergent.
But the formula so obtained is excessively complicated, so that we choose an alternative way in 
paragraph 18.
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17. Spite its failure in the evaluation of A2̂  te At, formula [98] is useful in order to calculate

A2) t2+p, that appeared before in paragraph 5.
There we had:

[100] A2) t2+p = t2+P A2) tiY {1+0 (1/t)}

Hence we are led to evaluate A2̂ t1Y . But:

i2 2d y ly
—  tiY = -------tiY -  -
dt2 t2 f

while in the higher derivatives the dominant term is 0 (yr / tr). 
According to [98] is:

[101] a2) tiY = y-  tiY {140(1)} 
t

as far as | y | < 2 n t.
From [101] follows finally:

[102] A2) t2+p = -  y2 tP tiY {1+0 (1)}

[103] I . 2) .2+p I  ̂ 2IA ' t K | < ci y t ( I y I < 2 7i t )

In the same fashion can be proved that:

[104] A2) tpi+p2_1 = ci (yi + y2)2 tPl+P2_I ti(ri+1,2)

i.e.:
A2) tPl+P2_11 < C2 { yi +y2)1 t29_1
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if | yi + y21 < C3 t , as stated in paragraph 7.

18. We return now to the alternative evaluation of A2̂  te At 
We have:

[105] A2) te At = te At -  2(t-l) e-A(t-1) + (t-2) e 'A(t~2) =

= t {e~At -  2e-A(t-1) + e_A(t_2)} {1+0 (1/t)} =

= t A2) e-At {1+0 (1/t)}

Leaving aside the exact expression given by [96] for A2̂  te At we employ it now with 

u = u(t) = e At, and obtain the new formula.

[106] A2) e At -  A2 e~At + 2.3 'Fo A3 e“At -  3.4 i(—3) A4 e-At + ...

= A2 e-At {1+2.3 ^ o  A - 3 .4 vF i (-3) A2 + ... } = A2 e~At M

Tire right hand series converges because | A | < 2 k . Denote by M its sum. Then, by [105] and
[106] we have:

[107] A2) e“At = t A2 e"At M {1+0 (1/t)}

Obviously, M < M0 = absolute constant.

We are now in position to evaluate A2'* F2(t); A2̂  F4(t); A2̂  F5(t) and A2̂  F6(t).

19. Before performing the effective calculus of these A , we introduce here a new arithmetic 
function that will make our formulas more compact and simple.
Ramanujan sums Cq(n) are defined for n = integer number by:
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[108] Cq(n) = 2  e2™lin2q = 2) cos 27clin/q 
4 h h

where h runs through all the values relatively prime with q , and less than q , h=o being 
included when q=o , but not otherwise (PN III, p. 26).
We can define then Cq(n) as the sum of the (p(q) primitive roots of unity of order q, risen (each 
one) to the n-th power.
We have, obviously, that:

Cq( n) ~ Cq(n)

Ramanujan considered only the case where n is an integer. 
Let us now define as "Ramanujan function" to the same sum:

[109] Cq(t) = 2  e“2raht/q

that only differs from [108] in the fact that t is a continuous variable. 
This function is intimately tied to our problem, because

[ 110]
h=o s+2-7rili/q 

(h,q)=l

From here follows, by [75]

v  1[111] JL {S(x)} = 2  —  logp e Ps =
P s

i H  n(q)
( c q(t)} +

Rn

s q=l <p(q) s

where Rn is the error performed when we make the Farey dissection of order N.

20. Once calculated A2'1 e At and A2'* te At tlrrough [107] and [105], the next thing we must 
compute in [87] are the sums extended along h, i.e.:



[112]

[1 1 3 ]and

q-l A2) e At n_i a2) -At qz,1 A ' e

S i a 2
(hq)=l

q-l A2) te At

S i a 3
(MM

h=l A2 
(MM

From [106] follows:

q-1 A2) e At 
[114] Z  —

h=l A'
(h.q)=i

q-l
= Z  e~2,tih/c1 {1 + 2.3 vr„  (2rah/q) + 3.4 lF 1 (-3) 4n2 h2/q2 + ...}  

h=l 
(h,q)=l

Tti 2V vF 1 (-3)
Z  e“27cih/cl + 2 .3 ----- -—  Z  h e_27lih/4 -  3.4 ------------------ Z  h2 e-27lih/cl

q h li

2^p jjj
[115] = Cq(t) + 2.3 — -----  C'q(t)-3.4

2 V 'F 1 (-3)
C”q(t) +

Tlie convergence of this development follows from the fact that [115] is merely the sum of a finite 
number of series of the type [103], that were known to be convergent because | 27tih/q | < 2 n.
In order to evaluate Cm̂q (t) we have not at present anything better than theorem 328 of ref. (5):

[116]
h=l

(h.q)=l

2rciht/q < C0qm+8 8 > 0 m > 1

Hence,
Cm)(t) = 0 (qm+s)

It follows, replacing this bound in [115], that
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[117]
q-1 e 
£  a2> -

-At

h=l
(h,q>=l

= 0 (q8) + Cq(t)

21. We analyze now the case of

-At

£  a2>

Then [114] changes to:

q-l e At Qz1 q
[118] E  A2 )— 5-  =  E  --------  e-2 n ih t/q  { 1 +  2 .3  (2 jiili/q ) +  3 .4  (-3 ) 4 j i2 h 2/q 2 }

h=l A J h=l 2n:ih 
(h,q)=l (h,q)=l

= F7(t) + 2 .3 'To Cq(t) + 3 .4^1 (-3 ) C#q(t) -  4.5 (-3) C”q(t)

with

[119]
q e

F7(t) = ------  £

-27iiht/q

2?ii h h

so that

q-1
[ 120] I F7(t) | < q/2jc 2 1/h = 0 (q log q) = 0 (q1+8)

Finally we obtain:

[121]
q-1 e 
2  a2>

-At
1+8

h=l
0 (q‘ °) + 3Cq(t) + 0 (q )

2  a2) 
h A

22. We now deal with the case of
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According to [105] we have:

Hence

A 2) -At A ' te = t A 2) -At A ' e { l + 0 ( l /t ) }

Z  A
h

2) te -At

= t Z  a2>
-At

{ 1 + 0 (l/t) }

We make now use of [114] in order to obtain:

q-1 te~At
[122] S  A2> —  = t { Cq(t) + 0 (q8) } { 1 + 0 ( 1/t) } 

h=l A2
(hq)=l

The approximation

q-1 te"At
[123] Z  A2) — -  = t { C q(t) + 0 (qs) }

h=l A 2 
(hq)=l

will suffice for our purposes.

23. We continue with the evaluation of the other sums along h, that appear in [87]. The following

[124] F4(t)
3-1 “At

l/A + -----  ( l -e A)
h=l A2

In this case, it is sufficient with some raw approximation. 
We have

q-i q-1
[125] | F4(t) | < q E  1 / 27th + q2 Z  2 / 47t2h2 = O(qlogq) + 0 (q )

{~  h=l h=l
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24. Next, we deal with the case of

[V n] q,—1
[126] F8(t) + £  2

qi hi

[Vn] q^-l
2  2  
q2 h2

n(qO n(q2>
---------------  A2 F6(t)
«p(qi) <p(q2)

with

1 2) -At .2) -Aott ' e A ' e z
F«(t)

A2 -  Aj I Ai a 2

The minimum value of A2 -  Ai is 27ti ( hi/qi -  h2/q2 ), where both fractions are contiguous 
Farey fractions.
It is known from ref. (3) that

so that

hi h2 r i--------= 0 T
qi Q2 vq

1

A2- A i
< «(q2)

Besides,

A2) e A‘‘ = 0 (  | e A]t | ) = 0(1)

and hence

a2) e-A‘* A2) e-Al‘
<

1 1 1
4-

1

Ai a 2 Ai A2 27iihi/qi 27tih2/q2

1 J  qi
= —  <------  +

271 l hi
< 0 ( q/h )

Consequently:
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I F«(t) | < 0 (q2) 0
V h )

= 0
r q3 3

U ;

But:

and

q c.1 n(q2)Y
q2-l

< £  o
q23 "i i

h2- l <p(q2) h2

[V n] q2- l [V n]
E E  < E

92“ 1 h'2=l q2=1

tiling is true for the s

V h.,
<

cp(q2> (p(q2>
0 ( q2 log q2)

3/2= 0 (n log n log log n)

Hence

[127] I F*(t) I < 0 ( n3 log2 n (log log n)2 )

25. Having finished with the evaluation of the sums along h, we continue with the sums along q
( 1 < q < [V n ] ).
We begin by examining the term:

[1 2 8 ] T i  =  £
H(q) 32

v<p(q) J
a2) F2(t) = £  

q

M-(q)32

vq>(q)7
£
h

,2)
te-At

A
+ 2 A2)

-At "1e

The value between brackets is, according to [121] and [123]:

[129] t Cq(t) + t 0 (qE) + 3 Cq(t) + 0 (q1+e) 

or

[130] tC q(t) + tRq(t) + 3 Cq(t) + 0 (q 1+E)

with



q q

2ni (2ni)2
[131] R^t) = 2.3 4>0 ------  C'q(t) + 3 .4 ^ !  (-3) ——*r— C"q(t) +

Hence

[132] Ti
Vn]

q=l vq>(q) J
c q(t) + t Z

' m  *

v<p(q) /
O (q8) + 3 Z

'n(q) V

v<p(q) /
Cq(t)

tin ] ( |i(q)
+ z

q=l vcp(q)
0 ( q 1+8)

[ V n ]  

= t L
q=l

V q )  A2

vip(q) J
Cq(t) + t E

M-(q) ^

v<p(q)
Rq(t) + 3 E

t l nl f  n(q) v

q=1 V<p(q)
Cn(t)

+ E
q

^ ( q ) V

V<p(q) J
0 (q‘+8)

But

t^n] r n(q) V
2-j -------
q=l Vcp(q) ^

^ q ( t)

is nothing but the singular series S2 of Hardy-Littlewood truncated at q = [V n] 

Hence we denote it by S2 [V n ] , so that

[133] S2 (V n)
q=l

n(q)

W (q )

V
c , ( t )

Hien Ti can be written as:

[134] T, = tS 2(Vn) + t E
q

n(q) \2

vcp(q>
Rq(t) + 3 S2 (V n) + E

q

n(q) \2

V<p(q) J 0 (q’+e)
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26. We now deal with the term

[135] T2 = E

27. The next case is

[136] T3 = £

n(q)
Z  :

<p(q) h

[Vn] i‘(q)

q=i <p(q)

[Vn] r
=  £ 0q=i

l
E

<p(q) h

{0 (q Z) }

[V n]
o (q 2) < Z  

q=i

[V"] 1
I  ------
q=l <p(q)

(by [125])

0 (q log log q) = 0 (n log log n)

{ Cq(t) + 0 (qs) }

by [115].
For Cq(t) , from [109], we obtain the majoration:

q
[137] | Cq(t) | < £  1 = <p(q)

h=l
(hq)=i

so that

[Vn]

[138] | X3 | < £  1 + £  0 (q8 *) < 0(>/n)
q=l q=l

28. The last tiling we must evaluate in [87] is:

F(n) =
i^r>] n (q )

q=l cp(q)
[139]
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[140]
H(q)

v(q)

is multiplicative. Hence, if a, o m = pi 1 p2 ... pkak , then holds:

„  l‘(d) 1 ^ i i 1 1
[141] Z 1 1 1

d|m cp(d) l  (p(poJ V <P(P2)J <p(PkV

From [141] it is evident then that holds:

[142]
[V n] |t(q)£  -------
q=l tp(q)

n  i
P.

1 'i

where the pi denotes the different primes that are factors of the numbers that appear in the 
sequence 1, 2, 3, ... [Vn],
As (p ( pi ) = pi — 1 , [138] turns out to be:

[143]
[Vn] n(q)£  -------
q=1 tp(q)

f 1 1
n i
pi ^ P i-17

The right-hand side product decreases as the quantity of factors increases. Hence the upper 
bound:

[V n] p(q)
[144] Z  ------- < Sn < 1

q=! cp(q)

where -> 0 as n —► oo .

29. We have now all the elements in order to evaluate v (t) in formula [87], by using [127], [134], 
[138] and [144], We get:



+ 2.8n T2 + 2A 11 T3 + Fs(t)[145] v (t) = 5„2t + T) + 2A ,8„n
0+H+-8

= S„2t + (t+3) S2(V n) t E
(+ (  q )V  

v<p(q) J
Rq(t) + 0(n )

+ 2A 5„n9+HfS + 2.8„.0(n log log n) + 2A n8+HfE^ ; + o(n3+E)

= Sn t̂ + (t+3) S2(V ll) + t X)
^ ( q ) V

vq>(q) )
Rq(t) + 0(n3+e)

30. We show now that the convergence of the singular series (using the majorations given in PN 
III), cannot be established (Hardy and Littlewood state that is convergent, but it is an evident 
mistake, whose origin is explained in the ’’Appendix” at the end of this paper).
We start with the facts (stated in PN III) that:

[146]
if p / 1 

if p / 1
Cq(t) < q

and

Hence the series

is majorized by

1 log log q
-----  < e' ------------
<p(q) q

«  n2(q)

q=l <p2(q)
Cq(t) 2 A, 

q=i

00 q
e2r 2  — — (log log q)2 

q=l q

whose divergence is obvious.
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Hence, in order to evaluate the singular series when extended to q = oo , we must perform a by­
pass.
For any multiplicative function An we have, in general, that:

co Afl
£  —  

, s n=l n
n
P

1 +
Ap

s
p

Ap2
+

but, in our case, due to the presence of p(n) in An , this reduces to:

£
n=l

An f Ap
—  = n  { 1 + ------  ■

s sn p i  p J
(p: primes)

For s = o the left hand side series presumably diverges, but the right hand side product 
converges, because:

(! +  A p) = n (1 + Ap)
P\t

[ i i r
n  u  + !■

p - i  J
n l i -

p\t l p ^ t l

p * t

1 + 1
p ~ i ( i

n  ------------  n  I i -
p\t i

i - ( p - i ) v
(p - i )‘

oo
2 n u

p=3 l
n

p - i

(p -l)  J p\t p-2
p^2

is plainly convergent.

31. In formula [145] we can now choose n as low as [ logr t ] ,  where logr t means the r - th 
iterated logarithm of t, in order to obtain the unconditional result.
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[148]
V n

v(t) = (t+3) S2 ([Vlogr t]) + t Z
q=l

n(q) v

v<p(q) J
Rq(t) + 0 (logr3+E t)

with Rq(t) defined by [131],
At present, we can prove only that the second term is slightly higher than the first. If we could 
improve the majoration [116] in order to transform the exponent + s in -  8 , then we could 
prove easily conjecture A, that

[149] V (t) ~ t S2 (co)

where, in the case that S2 (00) be divergent, we could replace it by the infinite product [147],1/  p
that is its analytic continuation (in the original work of H-L, the error was 11 4 in change of n ).

32. However, we dispose still of other alternative.
On the ground of what has been seen before, we can write:

[150] v(t)

2
n(q)

2
<p (q)

-Ate

By [105], we have equally well that

[151] v(t) I
q

2

n(q)

2

<p (q)

Z
h

,2)

In [89] we have stated a result derived from Carr’s book, i.e. that

[89] .2) -At A ' e = 2 sin
IAI -A(t+1)

This formula, however, requires a slight modification in our case, because Carr defines Al) as:
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A1'* f(x) = f ( x + l )  -  f(x)

while we have in change:

A1̂ f(x) = f(x) -  f ( x - l )

Hence, we must replace [89] by:

[152]

Inserting this in [151] follows:

[153] v (t) ~ t 2  
• q 2 h

<p (q)

q 7th ] 1
—  sin —
7th q J

Now, the function of h and q

q 7th
£q,h = —  sin —  

7th q

decreases steadily in the interval 0 < h < q , and we have

0 < 8qh < 1

in the interval.
Hence we can state that holds unconditionally

[154] v(t)
H n]
£

q=I

n2 (q) 

<p2 (q)

q - l

£
h=o

£q,h
-27uht/qe

^-27tiht/q

This looks very similar to conjecture A, that



00

[155] v(t) t 2  
q=l

^2 (q) v ' e-2raht/q

<P2 (q) h=°

only that as the function h is not multiplicative, the series in [ 154] cannot be transformed into 
a product.
On the other hand, perhaps, the series in [154] have more chance to be convergent as n -» oo 

than the series in [155], because their terms in the sum along h have smaller modulus than the 
terms in the inner sum of [155],

33. After all the long calculation performed above, we conclude that the circle method is a 
particular way of finding the inverse transform in the fundamental formula [61].
In fact, given the function

f(x) = 2  logp. x p

the circle method consists in approximating f  (x) in the vicinity of their singularities on the 
unitary circle by means of a Farey dissection of order [V n] ; to square the resulting expression, 
and to integrate along a continuous contour, formed by the Farey arcs.
When performing the substitution x = e s in our method of the Laplace transform, we use the 
function

1
Jt { § (x)} = —  £  log p. e ps 

s p

that has an infinitude of singularities on the line s = a  = o . Once we have written the pertinent 
Farey dissection, we square it. Now, if we should follow the circle method, we should integrate

along a Bromwich contour formed by the Farey arcs, changed by the change of variable x = e s .

This is nothing but the complex inversion formula for JL A, when applied to that special contour. 
But the former calculations indicate that it is not mandatory to follow such procedure: the value
of Jl 1 can be obtained more easily through the use of tables of elementary transforms.
As regards the calculus of the second differences, we have seen that do not appear any serious 
difficulty.
We deduce then that the method of the Laplace transform is, at least in this case, much more 
general and powerful than the circle method, and that, furthermore, allows us to make a complete
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discussion of tlie remainder terms. On the other hand, we do not need to make any hypothesis 
concerning the position of the zeros of the L - series or of the zeta function.

34. We examine now the question if for the effective evaluation of the function v (t) is

indispensable the knowledge of the infinite singularities of the function Z  lop p. e~ps, the 
corresponding Farey dissection, etc.
The answer is absolutely negative. As Hardy and Littlewood point out in PN III, the function v (t) 
has the same asymptotic value than the function S (t) of paragraph 1 of this paper. But this last 
can be expressed in exact and asymptotic form through the zeros of the zeta function, according 
to formula [28], without the use of singular series.
It is then entirely false the ill-disposed comment of Prof. Vaughan in “Mathematical Reviews” 
according to which the majority of the formulas in my paper ref. (8) are false because it has been 
ignored the existence of the singularities on a  = o .

APPENDIX

In p. 26 § 3.16 of PN III, Hardy and Littlewood state: ”In order to complete the proof of 
Theorem A, we have merely to show that the finite series in (3.156) may be replaced by the 
infinite series Si.
Now

n(q) j
[156] nr_1 2

q>N v <p(q)/

and

C„(-n) B nr 1 2  q1 r (log q)B < B nr/2 (log n)B 
q>N

r/2 < r-1 + 0 -3 /4 ”

Let us decompose this calculation, step by step. Here they use the following bounds:

1 (log q)B
—  < B ---------I)

<p(q) q
(Lemma 10, p.21)
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(though they could have been used the better bound that appears two lines below:

1
------  <
<p(q)

11) Cq(-n)

111) 1 n‘(q) 1

log log q
Ye' -----------

q

< q -l < q 

< 1

)

On these grounds, we have the following majoration for r = 2

(log q)2B (log n)2B
< S B2 ---------  q < B2 E -------2q>N q q>N q

whose divergence is obvious.
Hence the finite series cannot be replaced by the infinite series, and Lemma 12 in p.27 is proved 
only for r>3.
This has as a consequence that their transformation of the singular series into a product in p.28, 
formula (3.226) has only a formal character and is not a proof.
Hie mistake of II-L in [156] was to put

B n1 1 £  q1 1 (log q)B < B nl/2 (log n)B
q>r

f B(q) 1

^  j C ,,(-n )
q>N V(p(q) 7

fhe term n1 1 cannot be introduced into the sum, as it represents the order of magnitude of 
v (n). 1 lence, the correct calculation is:

N 2-r

B nr-1 £
q>N

q1 r (logq)B < Bj n r 1 (log N)1 if r * 2
2-r

and, as N < V n , this is

< B2 111 1 nl 1/2 (log n)B -  B2 nl/2 (log n)B except when i-2
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