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6. Other questions

Many other questions could be asked (what about higher-dimensional analogues, for ex-
ample?). We conclude with a theorem that identifies which lattices can be embedded in the

hexagonal lattice.

a bf2

Theorem 5. Let I' have Gram matriz (b/z ; ), where a,b,c € Z. (a) The heragonal lattice

A contains a scaled copy of I if and only if
4ac —b* =3m?, mec7Z. (13)
(b) A contains a copy of I' if and only if (13) holds and a is of the form (12).

Proof. (a) The question is equivalent to asking if A and I' are rationally equivalent, and the
result is immediate (cf. [7], Chap. 15, Th. 3; [14], Th. 78). (b) The conditions are clearly

necessary, and sufficiency follows from the formula
4 a b2\ [ 2a 0 1 0 2a b
o2 ¢ )7\ b1 0 3m2 )\ 0 1)°
which shows that 4al’ (and hence I') is contained in A. [ |
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Figure 3: Minimal energy configuration for N = 25.

Table 3: Minimal energy configurations P and corresponding energy M. The lattices are the
same as in Table 2, except for N = 21 (use (21 0)) and N = 24 (use (24 0)).

9 1 10 1

N M P N M P

1 0 1 17 40 34313
2 5 2 18 46.28 34434
31 12 19 48 31543
4 2 27 20 56 35453
5 34 23 21 60.71 34554
6 4.83 222 22 67.04 45544
76 232 23 75.09 55545
8 8.62 332 24 79 45654
9 11 333 25 86 255553
10 13.5 343 26 94.27 454553
11 17.82 344 27 99 456543
12 19 3432 28 108 356653
13 23 3442 29 121.28 3455453
14 26.5 3443 30 123.5 456654
15 32 24342 31 132 2565652/
16 35 14443 32 142.78 3565553



Figure 2: For N = 21 the minimal energy configuration (the points on the boundary of and
inside any one of these regions) is achieved in a lattice which is not ideal.

indicates successive rows of w, z, y,... points in A, where each row begins just to the left or
right of the previous row according as the letter does or does not have a bar on it. A double
bar indicates an extra left shift. The prime in the symbol for N = 31 indicates an extra right
shift. For example the configuration for N = 21 shown in Fig. 2 is described by 45543. The
notation unfortunately conceals the often curious shapes of these configurations. For example
the symbol 255553 represents the configuration shown in Fig. 3.

For N =1,...,10, 12, 13, 14, 16, 19, 21, 27, 31, the optimal configurations here coincide
with the minimal energy configurations found in [12] (where the points were not constrained
to form a fundamental region for a sublattice of A). For the other values of N < 32 the two
problems have different solutions, and in these cases the values of M in Table 3 are worse than

the corresponding entries in Table 1 of [12].



Q2 but not Q3 is at N = 20, when the SNR for <250 (1)) is greater than that for (260 (1))7 even

though they both have minimal norm 16. In the range of Table 2 the best lattice for Q3 is also

unique, but we do not know if this will be true in general.

Table 2: The lattice with basis matrix (‘2 3) is both the densest sublattice of index N in

the hexagonal lattice and has the highest SNR of any such sublattice. p denotes the minimal
norm.

N a ¢ d pu SNR N a ¢ d u SNR
111 1 1 671 17 17 4 1 13 25.065
2 2 1 1 1 4931 18 18 4 1 13 25.423
3 3 2 1 3 10.214 19 19 8 1 19 26.247
4 2 2 2 4 12.713 20 20 5 1 16 26.541
5 5 2 1 3 13.747 21 21 5 1 21 27.116
6 6 3 1 4 15.687 22 22 5 1 19 27.428
77T 3 1 7 17.574 23 23 5 1 19 27.721
8 8 3 1 7 18.579 24 24 5 1 21 28.122
9 3 3 3 9 19.756 25 5 5 5 25 28.630

10 10 3 1 7 20.267 26 26 5 1 21 28.839

1 11 3 1 7 20.802 27 9 6 3 27 29.299

12 6 4 2 12 22.255 28 14 6 2 28 29.615

13 13 4 1 13 22951 29 29 5 1 21 29.577

14 14 4 1 12 23.473 30 30 9 1 27 30.147

15 15 4 1 13 24.017 31 31 6 1 31 30.500

16 4 4 4 16 24.754 32 32 6 1 28 30.704

5. Q4: Minimal energy sublattices

To answer Q4 we must choose both a sublattice I' of index N and a fundamental region
for I such that the set P of N lattice points in that region has minimal energy M. For any
given N this is a finite problem, which we have solved for N < 32, and the results are given
in Table 3. Unfortunately we have not been able to discover any general results. For N = 21
the best P does not arise from the ideal sublattice, so there is no analogue of Theorems 3
and 4. In fact for N = 21 the best lattice has basis matrix (g g), and the best configuration

P is shown in Fig. 2, which also displays the corresponding tiling of A by copies of P. This

21 0

- 1) of course has p = 21, by

lattice has minimal norm g = 19, whereas the ideal sublattice (
Theorem 3 (see also Table 2).

The configurations P are described in Table 3 in a condensed notation. A symbol wzy. ..



Proof. This follows easily from the facts that the hexagonal lattice is the unique densest
lattice packing in dimension 2, and that any endomorphism of this lattice corresponds to

multiplication by an Eisenstein integer (cf. [7]).

Theorem 4. The interference o(T') for a sublattice T of index N satisfies a(T') > o(A)/N?,

with equality if and only if I' is an ideal sublattice.

Proof. This follows immediately from Rankin’s theorem [15] that the hexagonal lattice mini-
mizes the value of the Epstein zeta-function of a lattice for all s > 1.035. [ |

In fact it follows from the work of Rankin [15], Cassels [5], Ennola [9] and Diananda [8] that
the analogue of Theorem 4 holds when the exponent 4 in (2), (3) is replaced by any number
greater than 2.

The interference for the hexagonal lattice itself is easily calculated from the formula ([15])

1
——— = s)L(s 1
GXbe:Z (02 _ ab _I_ b2)5 GC(Q) (q)) s> ’
(a,b)#(0,0)

where ((s) is the Riemann zeta function and L(s) is the Dirichlet series

Setting s = 2 we obtain
9
c="7.711145..., SNR = 10log,, — = .6712...
o
for A itself, and then Theorem 4 implies that if I' is a sublattice of index IV,
SNR < .6712...4 20logyy N , (11)

with equality if and only if I' is an ideal sublattice.
Theorems 3 and 4 give the answers to Q2 and Q3 when an ideal sublattice of index N
exists, that is when N is of the form
N=3"T] o TI ™. (12)
pi=1(3) q;=—1(3)
where k, [;, m; are integers and p;, ¢; are primes (cf. [3, §4.4]). For other values of N there
does not seem to be any general rule to identify which sublattices are best. Table 2 shows the
answers to Q2 and Q3 for N < 32. In this range the best lattice for Q3 is also a best lattice

for Q2, and we conjecture that this is always true. The first time there is a lattice which solves



Proof. An arbitrary sublattice I of index N in A can be written in a unique way as I' = mI”,

where T is a primitive sublattice (of index N/m? in A).

The values of fi(N)and f(N)for N < 100 are given in Table 1. (Altshuler [1] gave a table

for N < 24. His value for f(16) is incorrect.)

Table 1: Numbers of primitive sublattices (fi(/N)) and all sublattices (f(
hexagonal lattice.

N 81
fi(N) 19
f(N) 23

42
18
18

62
17
17

82
22
22

63
18
21

83
15
15

24
12
15

44
14
17

64
18
27

84
36
44

45
14
16

65
16
16

85
20
20

46
13
13

66
26
26

86
23
23

67
13
13

87
22
22

48
20
28

68
20
24

88
28
35

49
11
12

69
18
18

89
16
16

o

30
14
14

50
16
17

70
26
26

90
38
42

51
14
14

71
13
13

91
22
22

12

32
10
15

52
16
20

72
28
40

92
26
31

14

34
10
10

54
19
22

74
20
20

94
25
25

(@)

35
10
10

55
14
14

75
22
24

95
22
22

/

p

(@

36
14
20

56
20
25

76
22
27

96
36
51

)) of index N in

57
16
16

7
18
18

97
18
18

58
16
16

78
30
30

98
29
30

ot

39
12
12

59
11
11

79
15
15

99
26
29

20

10

40
16
20

60
28
34

80
28
38

100
32
41

4. Q2, Q3: Greatest minimal norm and maximal signal-to-

noise ratio

We can identify A with the ring of Eisenstein integers Z[w], a principal ideal domain. An

ideal of Z[w] has the form zA for some z = a + bw, where a, b are rational integers. This ideal

corresponds to a sublattice of index N = 27 = a® — ab + b? which is geometrically similar to

A. We call these the ideal sublattices of A. The term is particularly appropriate in view of the

next two theorems, which show that when they exist such sublattices answer both Q2 and Q3.

Theorem 3. The minimal norm p of any sublattice I' of index N satisfies p < N, with equality

if and only if I is an ideal sublattice.



Any sublattice I' of index N in A is obtained by defining a homomorphism ¢ from A onto
Zn = ZJ/NZ and taking T' = ker ¢. We specify ¢ by its values at the lattice points 1,w and ;
of course we must have ¢(1) + ¢p(w) + ¢(@) = 0. Clearly multiplication of ¢ by a unit of Zy
does not affect I'.

Suppose I' has rotational symmetry. After multiplication by a unit we may assume ¢(1) = 1,
d(w) =k, p(@) = k?, where

Eik+1=0 (mod N) .

It is easily seen that the number of solutions to this congruence is vy, as given in (6) (see
Eq. (4) of [10], where however the formula is marred by an unfortunate misprint). This is the
number of lattices with rotational symmetry, and should have been divided by 2 (the number
of reflections) rather than 6 — hence the correction term (14 — 1/6)vy = v4 /3 in (5).

Suppose I' has only reflectional symmetry. After multiplication by a unit we have one of

the following (necessarily distinct) cases:

(1) =-k—-1, ¢(w)=1, ¢@)=k, (9)
1) =k, ¢w)=—-k-1, @) =1,

where k? = 1 (mod N). Again an easy counting argument show that the number of solutions
to this congruence is 2"71+*2 where v is given by (7) (compare Eq. (5) of [10], which gives
a formula, again with an omission — the product should only involve odd primes — for the
number of solutions to £ + 1 = 0 (mod N)). Therefore the number of distinct sublattices of
A with reflectional symmetry is 3.27"717¥2. This number should have been divided by 3 (the

number of rotations) rather by 6, which accounts for the correction term

<1 _ 1) 3‘2n—1—|—u2 — 2n—2+u2
3 6

in (5). [

Theorem 2. The number of inequivalent sublattices of A of index N is

=3 i (=) - (10)

m2|N



Question Q4 asks for the minimal-energy arrangements of pennies that are fundamental
regions of sublattices of A of index N. In other words, find those arrangements of N pennies
which have minimal energy subject to admitting a lattice tiling. Rather surprisingly, the
lattices that yield the best answers to Q4 are not always the best from the point of view of Q2

or Q3.

3. Q1: The number of sublattices

Let I' be a sublattice of A of index N, with basis vectors vy = a + bw, v9 = ¢ + dw, where
a,b,c,d are integers with ad — be = N. We call ('i S) a basis matriz for T'.
Since A has rank 2, the quotient group @ = A/T is either a cyclic group C, in which case

we say I' is primitive, or a direct product Cn/p, X Cyy, of a pair of cyclic groups with m dividing

N/m, so m?|N.

n
Theorem 1. Let N = [] pfi. The number of inequivalent primitive sublattices of A of index
=1

N, fi(N), is

1 - 1 " —24
—N 14+ — 4 9om V2 5
6 H( +p¢) T3t ’ (5)
where
0 if 2IN or 9|N ,
"= [1 (1+ (%)) otherwise , (6)
1:1‘:>13
and
2 if N=0(mod8),
v =< 1 if N=1,3,4,5 or 7 (mod 8), (7)
0 if N=2 or 6 (mod 8).

Proof. The number of primitive sublattices of index N in a generic two-dimensional lattice
is
- 1
N]] <1 + —) (8)
=1 Di
— see [16, p. 134, Theorem 8]. Because we are only counting sublattices of A up to rotation
and reflection, we should divide (8) by 6, to take the symmetries of A into account. The
additional terms involving vy and v in (5) are needed to compensate for the sublattices of A
which already have rotational or reflectional symmetry: in these cases, we should have divided
only by 2 or by 3 respectively. To determine the numbers of such sublattices we argue as

follows.



a given index. Surprisingly, the solution does not seem to be given in the literature, although
with the help of [18] we were able to locate a paper by Altshuler [1] that treats an equivalent
problem (formulated in terms of counting certain Hamiltonian maps on a torus). Altshuler
does not however find the answer, which we give in Theorem 2 (see also Table 1).

(Q2) As in [7] we define the norm of a vector v to be its squared length v - v = |v|?, and
the minimal norm of a lattice I' to be

i v 1
ué?g;ov v ( )

Question Q2 is equivalent to asking for the sublattices of A of index N and maximal density
(cf. [7], Chap. 1).
(Q3) If the nonzero points of the sublattice I' are regarded as transmitters which interfere

with a transmitter at the origin, a standard measure of the total interference is given by

1
= ¥ (2)
vel w#0
and the signal-to-noise ratio for this sublattice is
R—4
o

where R (= 1/4/3 on our standard scale) is the covering radius of A. Question Q3 asks which
sublattices I' of index N minimize o, or equivalently maximize SNR. In the range N < 32 the
best lattices for Q3 are also the best lattices for Q2, but not conversely (since the answer to
Q2 is in general not unique).

(Q4) It P ={P1,...,Px} is a set of points in R? with |P, — P;| > 1 (i # j), its energy or
second moment is defined to be

k
M=Y|P-PP, (4)

=1

where P = % Ek: P; is its centroid. The interpretation of M as the energy in P is a standard
one in commgllications [4], [11]. Conjecturally minimal values of M for & < 100 (and for
some larger k) were given in [12], and subsequent research [6], [17] has failed to improve these
values. These sets of points may equivalently be described as minimal-energy arrangements
of nonoverlapping circular disks (pennies, for example). For k£ # 4 the putatively optimal

solutions are subsets of the lattice A. (The case k& = 4 is exceptional because there are

infinitely many optimal solutions — see [12], Fig. 2.)
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1. Questions

Let A denote the familiar hexagonal lattice shown in Fig. 1. We shall investigate four
questions arising from digital communications, especially cellular radio:

(Q1) How many sublattices does A have of index N7

(Q2) Which sublattice I' of index N has the greatest minimal norm g (defined in (1))?
(Q3) Which sublattice has the highest signal-to-noise ratio S (defined in (2))?
(Q4)

Q4) Which sublattice has a fundamental region of minimal energy M (defined in (4))?

Applications of these results will be discussed in a separate paper [2].

Uy
L L L L L L

Figure 1: Hexagonal lattice A, showing the standard basis uy = (1,0) = 1, ug = (—1/2,1/3/2) =

w = 6271'2/3‘

2. Comments

We assume throughout that A is the hexagonal lattice defined in Fig. 1, having Gram
matrix (_11/2 _11/2) and determinant 3/;. The index of a sublattice M in a lattice L is the

order of the quotient group L/M.

(Q1) Two sublattices of A are called equivalent if they differ only by a rotation and possibly

a reflection that sends A to itself. We wish to find the number of inequivalent sublattices of
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Abstract
How many sublattices of index N are there in the planar hexagonal lattice? Which of them

are the best from the point of view of packing density, signal-to-noise ratio, or energy? We

answer the first question completely and give partial answers to the other questions.
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