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Abstract

A base b junction number u has the property that there are at least two
ways to write it as u = v + s(v), where s(v) is the sum of the digits in the
expansion of the number v in base b. For the base 10 case, Kaprekar in the
1950’s and 1960’s studied the problem of finding K(n), the smallest u such
that the equation u = v + s(v) has exactly n solutions. He gave the values
K(2) = 101, K(3) = 1013 + 1, and conjectured that K(4) = 1024 + 102. In
1966 Narasinga Rao gave the upper bound 101111111111124 + 102 for K(5), as
well as upper bounds for K(6), K(7), K(8), and K(16). In the present work,
we derive a set of recurrences which determine K(n) for any base b and in
particular imply that these conjectured values of K(n) are correct. The key
to our approach is an apparently new recurrence for F (u), the number of
solutions to u = v + s(v). We illustrate our method by computing the values
of K(n) for n ≤ 16 and bases b ≤ 10, and show that for each base K(n) grows
as a tower of height proportional to log2(n). Rather surprisingly, the values
of K(n) for the base 5 problem are determined by the classical Thue–Morse
sequence, which leads us to define generalized Thue–Morse sequences for other
bases.
Keywords: Junction numbers, self-numbers, Colombian numbers, Kaprekar,
Thue–Morse sequence.
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1 Introduction

For a fixed base b ≥ 2, let s(v) denote the sum of the digits in the base
b expansion of v ∈ N = {0, 1, 2, . . .}, and let f(v) := v + s(v). Sequences

1Corresponding author.
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that arise by iterating f have a long history [1, 15] (the latter reference has
an extensive bibliography). In the 1950’s and 1960’s, Dattaraya Ramchandra
Kaprekar in a series of self-published booklets [5, 7, 8, 9, 10] studied the inverse
mapping to f in the base 10 case. Let Gen(u) := {v ∈ N | f(v) = u} and
F (u) := |Gen(u)|. Kaprekar called the elements of Gen(u) the generators of
u, and in 1956 [6] defined a self-number to be any number u with F (u) = 0.
The first few self-numbers (in base 10) are

1, 3, 5, 7, 9, 20, 31, 42, 53, 64, 75, 86, 97, 108, 110, 121, 132, 143, 154, 165, 176, . . .
(1)

(A003052).2 Self-numbers are also known as Colombian numbers, after a prob-
lem proposed by Recamán in 1973 [13].

Kaprekar called numbers with at least two generators junction numbers.
The smallest junction number (again in base 10) is 101, which has generators
91 and 100, and the first few junction numbers are

101, 103, 105, 107, 109, 111, 113, 115, 117, 202, 204, 206, 208, 210, 212, 214, . . .

(A230094).
Kaprekar was particularly interested in finding what we will call K(n), the

smallest number with n generators, which is the subject of the present paper.
We will show that the sequence (K(n))n≥1 begins

0, 101, 1013 + 1, 1024 + 102, 101111111111124 + 102, 102222222222224 + 1013 + 2,

10(10
24+1013+115)/9 + 1013 + 2, 10(2·10

24+214)/9 + 1024 + 103,

10(10
1111111111124+1024+214)/9 + 1024 + 103, . . . (2)

(A006064).3 It is easy to check by hand that K(2) = 101, and with today’s
computers it is easy to verify K(3) = 1013+1 by direct search. As to what was
known by Kaprekar and his colleagues more than fifty years ago, the various
accounts given by Kaprekar [8], Narasinga Rao [11], and Gardner [3] do not
quite agree, but it seems that Kaprekar believed that he had proved that
K(3) = 1013 + 1, that the putative value 1024 + 102 for K(4) was discovered
independently by Kaprekar and Professor Gunjikar in 1961, and that Kaprekar
was convinced that it was the true value of K(4) and not just an upper bound.
Gardner [3] reports in 1975 that Kaprekar told him that he had also found
what he conjectured to be the values of K(5) and K(6). Kaprekar’s work on
this problem is also discussed by Schorn [14].

However, Narasinga Rao, writing in 1963 [11] (although not published until
1966), states things slightly differently. He gives a recipe for finding junction
numbers with a specified number of generators, improving on an earlier recipe

2Throughout this article, six-digit numbers prefixed by A refer to entries in the OEIS
[12].

3The reader may detect a pattern in these numbers, but should be warned that it breaks
down after a while. See Tables 2 and 11.
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of Kaprekar’s, and gives Kaprekar’s value of K(3) = 1013 + 1. He then con-
jectures that K(4) = 1024 + 102, and gives as a candidate for K(5) the value
101111111111124 + 102, remarking that no much smaller value is likely to exist.
(Narasinga Rao’s recipe does not necessarily produce the smallest junction
number with a given number of generators.) He also gives upper bounds for
K(6), K(7), K(8), and K(16). Remarkably enough, all of Narasinga Rao’s
upper bounds turn out to be the true values for these K(n). We return to the
base 10 case in Section 9.

The principal goal of this paper is to present a set of recurrences which
generate the sequence (K(n))n≥1 for any base b (see Section 6, and in particular
Theorems 18 and 20). These recurrences depend upon an apparently new
recurrence for F (u), discussed in Section 3.

Because the values of K(n) for small b and n are both easy to determine
and somewhat exceptional, we start by discussing the cases n ≤ 3 in Section 4
and bases b = 2 and b = 3 in Section 5. Bases 2 and 3 are also exceptional
since for them the recurrences for K(n) are quite simple and can be obtained
without the machinery developed in Section 6. Tables 1 and 2 in Section 3
collect the numerical values of K(n) for n ≤ 7 and bases b ≤ 10.

Section 6 gives the recurrences for a general base b. Sections 8 and 9 apply
the results of Section 6 to bases b ∈ {4, 5, 7, 10}. In general, the calculation of
K(n) involves a subsidiary sequence (τ(n))n≥1 of integers in the range [0, b−2]

when b is even, or [0, b−3
2
] when b is odd. For b = 5, it turns out that (τ(n))n≥1 is

essentially the classical Thue–Morse sequence4 A010060, and so, for any base,
we refer to (τ(n))n≥1 as a “generalized Thue–Morse sequence”. For example,
for both bases b = 4 and b = 7 we obtain the ternary sequence shown in (81),
and for base b = 10 the sequence (84).

Section 10 (and in particular Conjecture 28) discusses the rate of growth of
K(n) as a function of n. We begin by applying the recurrence for F (u) from
Section 3 to establish some general bounds on K(n). Then we consider the
representation of K(n) as a tower of exponentials. For bases b ̸= 3, it appears
that K(n) is a tower

K(n) = bb
··
·b
ω(n)

, (3)

with 0 < ω(n) ≤ 1, of height5 ⌈log2(n)⌉ + λ, where λ = 3 if b = 2, λ = 2 if
b ≥ 4 is even, and λ = 1 if b ≥ 5 is odd (base b = 3 is slightly exceptional).

Notation. We will always work in a fixed base b ≥ 2. If the base b expansion
of v ∈ N := {0, 1, 2, . . .} is

v =
k−1∑
i=0

vib
i (4)

4This provides yet another illustration of the ubiquity of this sequence [2].
5The height of a tower is defined in (87) in Section 10.
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(where 0 ≤ vi < b, k = ⌈logb(v + 1)⌉, and vk−1 ̸= 0 unless v = 0), we refer to
the vi as “digits”, even if b ̸= 10, and say that v has “length” k. We will also
write v as

v = [vk−1, vk−2, . . . , v1, v0]b , (5)

where we omit the commas between the digits if there is no possibility of
confusion. In this notation, s(v) =

∑k−1
i=0 vi and f(v) =

∑k−1
i=0 vi(b

i + 1).
As already mentioned, for u ∈ N, we let Gen(u) := {v ∈ N | f(v) = u},

F (u) := |Gen(u)}|, and for u < 0 we set Gen(u) := ∅ (the empty set) and
F (u) := 0. For n ≥ 1, K(n) is defined to be the smallest u ∈ N such that
F (u) = n. For n ≥ 2, it will turn out that the leading base-b digit of K(n) is
1 (see Theorem 8), and we define E(n) for n ≥ 2 by K(n) = bE(n)+ terms of
smaller order (in other words, E(n) + 1 is the length of K(n) in base b). In
Tables 1 and 2 we write Eb(n) to indicate the value of b. For use in Section 6,
in Section 4 we also define Ki(n) to be the smallest u ∈ N such that F (u) = n
and u ≡ i (mod b−1). Of course, the functions s, f , F , Gen, K, Ki all depend
on the value of b, but to indicate this with subscripts would have made the
equations unnecessarily complicated, so we hope the value of b will always be
clear from the context.

In summary, the principal symbols are

b : base,≥ 2,
s(v) : sum of base-b digits of v,
f(v) : v + s(v),
Gen(u) : set of v such that f(v) = u,
F (u) : number of v such that f(v) = u,
K(n) : smallest u such that F (u) = n,
Ki(n) : smallest u such that F (u) = n and u ≡ i (mod b− 1),
E(n) : forn ≥ 2, K(n) = bE(n) + terms of smaller order,
I : subset of the residue classes modulo b− 1 defined by (18),
J(n) : subset of I defined by (70),

where b, u, v, n ∈ N.

2 Preliminary results

We begin with some elementary lemmas.

Lemma 1. (i) If b is odd, then f(v) is even for any v ∈ N, and so F (u) = 0
if u is odd.

(ii) If b is even, then F (u) = 0 if u is odd and u < b.

Proof. (i) If b is odd and v is given by (4) then f(v) =
∑

i vi(b
i + 1) is even.

(ii) Numbers below b have at most one generator, v (say), for which f(v) =
2v is even.
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The next lemma says that if u = f(v), then v is smaller than u, but not
too much smaller. This is useful when making computer searches.

Lemma 2. If u ≥ 2, v ∈ N satisfy v + s(v) = u, then

u− (b− 1) ⌈logb(u)⌉ ≤ v ≤ u− 1 . (6)

Proof. Since u ≥ 2, v ≥ 1, s(v) ≥ 1, and so v ≤ u − 1. Since the length of v
is k = ⌈logb(v + 1)⌉ ≤ ⌈logb(u)⌉, we have s(v) ≤ (b− 1) ⌈logb(u)⌉.

The third lemma is a generalization of the observation that the Hamming
weight of 2m − 1− v is equal to m−Hamming weight(v). We omit the proof.

Lemma 3. If m ≥ 0, 1 ≤ c ≤ b− 1, and 0 ≤ v ≤ cbm − 1, then

s(cbm − 1− v) = (b− 1)m+ c− 1− s(v) . (7)

For example, in base 10, s(281) = s(3 · 102 − 1− 18) = 9 · 2 + 2− 9 = 11.

Lemma 4. Let n ≥ 2 be an integer.

(i) If (a(i))i≥1 is a sequence of nonnegative real numbers such that a(m+1) ≥
2a(m) for all m = 1, 2, . . . , n− 2, then

min
1≤i≤n−1

a(i) + a(n− i) = a
(⌈

n
2

⌉)
+ a

(⌊
n
2

⌋)
for n ≥ 2 . (8)

Moreover, if a(2) > 0 then i ∈
{⌊

n
2

⌋
,
⌈
n
2

⌉}
are the only values of i that

attain the minimum in (8).

(ii) If (a1(i))i≥1 and (a2(i))i≥1 are a pair of sequences of nonnegative real
numbers such that

a1(m+ 1) ≥ a1(m) + a2(m) and a2(m+ 1) ≥ a1(m) + a2(m) (9)

for all m = 1, 2, . . . , n− 2, then

min
1≤i≤n−1

a1(i) + a2(n− i)

= min
{
a1

(⌈
n
2

⌉)
+ a2

(⌊
n
2

⌋)
, a1

(⌊
n
2

⌋)
+ a2

(⌈
n
2

⌉)}
. (10)

Moreover, if a1(2) > 0 and a2(2) > 0 then i =
⌊
n
2

⌋
and i =

⌈
n
2

⌉
are the

only values of i that attain the minimum in the left-hand side of (10).

Proof. (i) Suppose n = 2t. Then 2a(t) ≤ a(t−1)+2a(t) ≤ a(t−1)+a(t+1) ≤
2a(t+1) ≤ a(t+2) ≤ a(t− 2)+ a(t+2) ≤ · · · ≤ a(1)+ a(n− 1). If n = 2t+1
is odd, then a(t)+ a(t+1) ≤ 2a(t+1) ≤ a(t+2) ≤ a(t− 1)+ a(t+2) ≤ · · · ≤
a(1) + a(n − 1). If a(2) > 0, then every second inequality in the inequality
chains above is strict, implying that the minimum of a(i)+a(n− i) is attained
only at i = t when n = 2t, and only at i = t or i = t+ 1 when n = 2t+ 1.

Part (ii) is proved similarly.
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We call a sequence (a(i))i≥1 satisfying (8) for all n ≥ 2 a sequence of expo-
nential type, and we say that sequences (a1(i))i≥1 and (a2(i))i≥1 satisfying (10)
for all n ≥ 2 form a pair of sequences of exponential type.

The following lemma introduces a representation of integers that plays a
central role in our study.

Lemma 5. Let b ≥ 2 be a fixed integer.

(i) Every integer u > b has a unique representation in the form

u = c(bm + 1) + k , (11)

where m ≥ 1, 1 ≤ c ≤ b− 1, and{
0 ≤ k ≤ bm, if c < b− 1;

0 ≤ k ≤ bm − b+ 1, if c = b− 1.
(12)

(ii) Let u = c(bm + 1) + k and u′ = c′(bm
′
+ 1) + k′ be positive integers

represented as in (11). Suppose that u ≤ u′. Then m ≤ m′. Furthermore,
if m = m′, then c ≤ c′. Finally, if m = m′ and c = c′, then k ≤ k′.6

Proof. It is not hard to see that the representation (11) uniquely defines m =
⌊logb(u− 1)⌋, c =

⌊
u

bm+1

⌋
, and k = u − c(bm + 1). The value of m is a non-

decreasing function of u, and so is c when m is fixed, and so is k when m and
c are fixed.

The following examples illustrate how numbers are represented in the form
(11):

• for b+ 1 ≤ u ≤ b2, we have m = 1, c =
⌊

u
b+1

⌋
, and k = u− (b+ 1)c ;

• for u = br with r ≥ 2, we have m = r−1, c = b−1, and k = br−1− b+1.

We will also need the following technical lemma.

Lemma 6. For any integers b ≥ 2 and m ≥ 2,

(b− 1)m− 2 ≤ bm − b+ 1

and

bm ≥ 1

2
bm + 2(b− 1) ≥ bm−1 + 2(b− 1) .

We omit the elementary proof.

6In other words, if u ≤ u′, the triple (m, c, k) is lexicographically smaller than the triple
(m′, c′, k′).
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3 The recurrence for F (u)

The following result, in particular the recurrence (14), is the key to the whole
paper.

Theorem 7. We have Gen(u) = ∅ and F (u) = 0 when u < 0 or u = 1,
and Gen(0) = {0}, F (0) = 1. For u ≥ 2, consider its representation u =
c(bm + 1) + k defined in Lemma 5. Then7

Gen(u) = {cbm+v | v ∈ Gen(k)} ∪ {cbm−1−v | v ∈ Gen((b−1)m−k−2)}
(13)

and
F (u) = F (k) + F ((b− 1)m− k − 2) . (14)

Proof. The first assertion is clear (there is no v ∈ N such that f(v) = 1), and
(14) follows at once from (13). To prove (13), let u = c(bm + 1) + k as in
Lemma 5. We will show that (i) any element of the right-hand side of (13) is
a generator of u, and (ii) every generator of u is an element of the right-hand
side of (13).

(i) Suppose v ∈ Gen(k). Since k ≤ bm, v < bm − 1 (by (6)), we have
s(cbm+ v) = c+ s(v), and f(cbm+v) = cbm+ v+ c+ s(v) = c(bm+1)+k = u.
On the other hand, suppose v ∈ Gen((b− 1)m− k− 2). Let w = cbm − 1− v.
By Lemma 3, s(w) = (b−1)m+ c−1−s(v) (the condition v ≤ cbm−2 follows
from v < (b− 1)m−k− 2). Then f(w) = w+ s(w) = cbm−1− v+(b− 1)m+
c− 1− s(v) = c(bm + 1) + k = u.

(ii) Suppose w is a generator for u = c(bm +1)+ k. Clearly, u ≤ bm+1, and
u = bm+1 only when c = b − 1 and k = bm − b + 1. Trivially, either w ≥ cbm

or w < cbm.
First, suppose w ≥ cbm and write it as w = cbm + v. If v < bm then

s(w) = c + s(v), and w + s(w) = u implies v + s(v) = k and v ∈ Gen(k). If
v ≥ bm then if c = b − 1, w ≥ bm+1 ≥ u, contradicting (6). So c ≤ b − 2 and
w = (c + 1)bm + µ, where µ = v − bm ≥ 0, which implies u ≥ (c + 1)bm, that
is, u = (c + 1)bm + λ, where λ = c + k − bm ≤ c. But w + s(w) = u implies
µ+ s(µ) + c+ 1 = λ, a contradiction. So v ≥ bm cannot happen.

Second, suppose w < cbm, that is, w = cbm − 1− v with 0 ≤ v ≤ cbm − 2.
By Lemma 3, s(w) = (b − 1)m + c − 1 − s(v), and w + s(w) = u implies
v + s(v) = (b− 1)m− k − 2 and v ∈ Gen((b− 1)m− k − 2).

For example, in base 10, if u = 1013 + 1, we have c = 1, m = 13, k = 0,
so F (1013 + 1) = F (0) + F (115). Now 115 = 102 + 1 + 14, so F (115) =
F (14) + F (2) = 1 + 1, and therefore F (1013 + 1) = 3. In Section 4 we will
confirm Kaprekar’s result that there is no smaller number with three inverses.

Theorem 7 can be used for computing the values of K(n) for small n.
In Appendix A, we provide a PARI/GP program that implements the formula

7We remark that the identity (14) does not mention c and holds even when the argument
(b− 1)m− k − 2 is negative.
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(13). We used it to compute the entries below 1010 in Tables 1 and 2, which
show the values of K(n) for n ≤ 7 and bases 2 ≤ b ≤ 10. The values of K(2)
and K(3) for any base b will be derived in the next section, and the values of
K(n) for any n and bases 2 and 3 in Section 5. The values of K(n) in Tables 1
and 2 for n ≥ 4 and bases b ≥ 4 are included here for convenience, but they
will not be officially established until we have the recurrences of Section 6.8

b 2 3 4 5 6
K(1) 0 0 0 0 0
K(2) 22 + 1 3 + 1 42 + 1 5 + 1 62 + 1
K(3) 27 + 1 33 + 1 47 + 1 52 + 1 69 + 1
K(4) 212 + 6 35 + 5 412 + 18 54 + 7 616 + 38

K(5) 2136 + 6 317 + 5 45468 + 18 59 + 9 6(6
9+44)/5 + 38

K(6) 2260 + 130 329 + 29 410924 + 47 + 2 515 + 27 6(2·6
9+8)/5 + 69 + 2

K(7) 24233 + 130 3139 + 29 4E4(7) + 47 + 21, 5165 + 27 6E6(7) + 69 + 2,
E4(7)=(412+47+40)/3 E6(7)=(616+69+43)/5

Table 1: Values ofK(1), . . . ,K(7) for bases b = 2, . . . , 6 (the columns are A230303, A230640,
A230638, A230867, A238840).

b 7 8 9 10
K(1) 0 0 0 0
K(2) 7 + 1 82 + 1 9 + 1 102 + 1
K(3) 72 + 1 811 + 1 92 + 1 1013 + 1
K(4) 73 + 9 820 + 66 93 + 11 1024 + 102
K(5) 710 + 9 8E8(5) + 66, 912 + 11 10E10(5) + 102,

E8(5)=(811+76)/7 E10(5)=(1013+116)/9

K(6) 717 + 51 8E8(6) + 811 + 2, 921 + 83 10E10(6) + 1013 + 2,
E8(6)=(2·811+12)/7 E10(6)=2(1013+8)/9

K(7) 767 + 51 8E8(7) + 811 + 2, 9103 + 83 10E10(7) + 1013 + 2,
E8(8)=(820+811+75)/7 E10(7)=(1024+1013+115)/9

Table 2: Values of K(1), . . . ,K(7) for bases b = 7, . . . , 10 (the columns are A238841,
A238842, A238843, A006064).

8The values of K(2) and K(3) could also be obtained from the recurrences of Section 6,
but it seems more informative to calculate them directly.
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4 Properties of K(n)

When u = K(n), the smallest number with n generators in base b, Theorem 7
allows us to make a stronger assertion than (11). (Note that K(1) = 0 for any
base.)

Theorem 8. Let b ≥ 2 and n ≥ 2.

(i) K(n) has the following representation in the form (11):

K(n) = bE(n) + 1 + k , (15)

where the exponent E(n) is at least 1 and 9 0 ≤ k ≤ (b− 1)E(n)− 2.

(ii) If b is odd, then both K(n) and k are even.

Proof. Let n ≥ 2. We notice that no integer from 1 to b can have more than
one generator, and hence K(n) > b.

(i) Let u := K(n), and write u = c(bm + 1) + k as in Lemma 5. If c > 1,
then we let u′ := bk + 1 + k and notice that, by (14), F (u′) = F (u) = n while
u′ < u, a contradiction. Hence c = 1.

If k > (b − 1)m − 2, we apply (14) and obtain n = F (u) = F (k) +
F ((b− 1)m− k− 2). Since the argument of the last term is negative, we have
F (u) = F (k) while k < u, a contradiction. Hence k ≤ (b− 1)m− 2.

(ii) If b is odd, K(n) is even by Lemma 1, and therefore k is even.

In Theorems 9 and 10 we compute the values of K(2) and K(3) and the
corresponding values of E(2) and E(3).

Theorem 9. For any b ≥ 2, we have

K(2) =

{
b2 + 1, if b is even;

b+ 1, if b is odd;
E(2) =

{
2, if b is even;

1, if b is odd.
(16)

Proof. Suppose b is even. The number b2 + 1 = [101]b has the two generators
b2 = [100]b and b2 − b + 1 = [b − 1, 1]b, so K(2) ≤ b2 + 1. However, it is easy
to check by hand that the values of f(v) for 0 ≤ v ≤ b2 are all distinct, so
K(2) = b2 + 1. The case when b is odd is even easier to verify, and we omit
the details.

Theorem 10. For any b ≥ 2, we have

K(3) =


129, if b = 2;

28, if b = 3;

bb+3 + 1, if b ≥ 4 is even;

b2 + 1, if b ≥ 5 is odd;

E(3) =


7, if b = 2;

3, if b = 3;

b+ 3, if b ≥ 4 is even;

2, if b ≥ 5 is odd.

(17)
9By Lemma 6, the upper bound for k here is better than (12) when E(n) ≥ 2, which

holds for n ≥ 3 (as we will show below).
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Proof. For b ∈ {2, 3, 4}, we refer to Table 1. Suppose first that b ≥ 6 is
even. Certainly bb+3 + 1 has three generators, namely bb+3 − 1− [1, 0, b− 3]b,
bb+3 − 1− [b− 1, b− 2]b, and bb+3 (this is easily checked using Lemma 3). So
K(3) ≤ bb+3 + 1. If u := K(3) < bb+3 + 1, then by Theorem 8 we would
have u = bm + 1 + k with m ≤ b + 2 and 0 ≤ k ≤ (b − 1)m − 2. By (14)
we have 3 = F (u) = F (k) + F ((b − 1)m − k − 2). So either F (k) = 1 and
F ((b − 1)m − k − 2) = 2, or F (k) = 2 and F ((b − 1)m − k − 2) = 1. We
discuss only the first possibility, the second being similar. From k ≥ K(1) = 0
and (b− 1)m− k − 2 ≥ K(2) = b2 + 1, we find that m must equal b+ 2, and
0 ≤ k ≤ b − 5. By Lemma 1, k is even. Let λ := b − 5 − k, which is odd,
and 0 ≤ λ ≤ b − 5. But now F (b2 + λ + 1) = 2 = F (λ) + F (λ − 4) implies
(again by Lemma 1) that λ is even, a contradiction. This completes the proof
of K(3) = bb+3 + 1 for even b ≥ 6.

Now, suppose that b ≥ 5 is odd. Certainly b2 + 1 has three generators,
b2 − 1− [1, (b− 5)/2]b, b

2 − 1− [b− 2]b, and b2, and we can easily check that
at most two of the values f(v) for 0 ≤ v ≤ b2 can coincide.

Theorem 10 confirms Kaprekar’s result that K(3) = 1013 + 1 in base 10.
When we come to study the case of a general base b in Section 6, we will

need to know the values of a refined version of K(n). We define Ki(n) to be
the smallest number v ≡ i (mod b−1) for which F (v) = n, where i is a residue
class modulo b− 1. If b is odd, by Lemma 1 we need only consider even values
of i, so we can say more precisely that i ∈ I, where I is a subset of the residue
classes modulo b− 1 given by

I :=

{
{0, 1, 2, 3, . . . , b− 2}, if b is even,

{0, 2, 4, 6, . . . , b− 3}, if b is odd.
(18)

Then we have:
K(n) = min

i∈I
Ki(n) . (19)

There is an analog of Theorem 8 for Ki(n).

Theorem 11. For any b ≥ 2, i ∈ I, and n ≥ 2, Ki(n) has the following
representation in the form (11):

Ki(n) = c(bE(n) + 1) + k , (20)

where E(n) is as in (15),10 for some integers c and k satisfying 1 ≤ c ≤ b− 1
and 0 ≤ k ≤ (b− 1)E(n)− 2. Furthermore, if b is odd then c ≤ b−1

2
.

Proof. Theorem 8 states that K(n) = bE(n) + 1 + k′ for some k′, and so we
have F (bE(n) + 1 + k′) = n. Theorem 7 (applied twice) implies that for any c′

and the same k′,

F (c′(bE(n)+1)+k′) = F (k′)+F ((b−1)E(n)−k′−2) = F (bE(n)+1+k′) = n .

10However, the k in (20) is not the same as the k in (15).
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Let us show that there exists a value c′ := ci such that ci(b
E(n) + 1) + k′ ≡ i

(mod b−1). Since ci(b
E(n)+1)+k′ ≡ k′+2ci (mod b−1), we want k′+2ci ≡ i

(mod b−1). For even b, this congruence is trivially solvable for ci in the interval
1 ≤ ci ≤ b − 1. For odd b, i ∈ I is even and so is k′ (by Theorem 8), so the
congruence reduces to k′

2
+ ci ≡ i

2
(mod b−1

2
), which is solvable for ci in the

interval 1 ≤ ci ≤ b−1
2
.

By the definition of Ki(n), we have

bE(n) + 1 + k′ = K(n) ≤ Ki(n) ≤ ci(b
E(n) + 1) + k′. (21)

By Theorem 7, Ki(n) = c(bm + 1) + k for some integers c, k, 1 ≤ c ≤ b − 1,
0 ≤ k ≤ bm. From the inequality (21) and Lemma 5, we conclude that
m = E(n) and c ≤ ci, and thus c ≤ b−1

2
if b is odd. We further apply (14)

to obtain n = F (c(bE(n) + 1) + k) = F (k) + F ((b − 1)E(n) − k − 2). If
k > (b−1)E(n)−2, then F (k) = n and thus k ≥ K(n) = bE(n)+1+k′, which
contradicts k ≤ bE(n). Hence k ≤ (b− 1)E(n)− 2.

For bases b = 2 and 3, we have I = {0}, so there is only one Ki(n), which
is K0(n) = K(n). For bases b ≥ 4 and n ≤ 3, we can give Ki(n) explicitly.
In the following three theorems, the subscripts i in Ki(n) are elements of I,
and in particular are to be read modulo b− 1. We omit the proofs, which are
similar to those of Theorems 9 and 10. Table 3 illustrates these theorems.

Theorem 12. For even b ≥ 2,

K2λ(1) = 2λ for 0 ≤ λ ≤ b− 2

2
,

K2λ+1(1) = b+ 2λ for 0 ≤ λ ≤ b− 4

2
; (22)

for odd b ≥ 3,

K2λ(1) = 2λ for 0 ≤ λ ≤ b− 3

2
. (23)

Theorem 13. For even b ≥ 2,

K2+2λ(2) = b2 + 1 + 2λ for 0 ≤ λ ≤ b− 2 ; (24)

for odd b ≥ 3,

K2+2λ(2) = b+ 1 + 2λ for 0 ≤ λ ≤ b− 3

2
. (25)

Theorem 14. For even b ≥ 4,

K0(3) = bb+3 + b2 + 2b− 4 , (26)

K2+2λ(3) = bb+3 + 1 + 2λ for 0 ≤ λ ≤ b− 3 ; (27)

for odd b ≥ 5,
K0(3) = b2 + 2b− 3 , (28)

K2+2λ(3) = b2 + 1 + 2λ for 0 ≤ λ ≤ b− 5

2
. (29)
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b = 6 b = 9
i \ n 1 2 3 i \ n 1 2 3
0 0 45 69 + 44 0 0 16 96
1 6 41 69 + 5 2 2 10 82
2 2 37 69 + 1 4 4 12 84
3 8 43 69 + 7 6 6 14 86
4 4 39 69 + 3

Table 3: Values of Ki(n) (n ≤ 3) for bases b = 6 (left) and b = 9 (right), illustrating
Theorems 12-14.

For b ≥ 4, the minimal values of Ki(2) and Ki(3) occur when λ = 0, that
is, when i = 2, and confirm (via (19)) the values of K(2) and K(3) given in
Theorems 9 and 10.

The following bounds on Ki(n) will be used in the proof of Theorem 18.

Theorem 15. For any b ≥ 2, i ∈ I, and n ≥ 2, we have 11

bE(n) < K(n) ≤ Ki(n) < β bE(n)+1 ,

where β := 1 if b is even, and β := 1
2
if b is odd.

Proof. The lower bound for any b and the upper bound for an even b follow
directly from Theorem 11. Let us prove that for odd b, Ki(n) ≤ 1

2
bE(n)+1.

For n = 2, the bound can be verified directly using Table 1 (for b = 3)
and Theorem 13 (for odd b ≥ 5). Suppose n ≥ 3. By Theorem 11, we have
Ki(n) = c(bm+1)+k, where m = E(n), 1 ≤ c ≤ b−1

2
and 0 ≤ k ≤ (b−1)m−2.

Furthermore, for b = 3 we have m ≥ 3 (see Table 1); while for odd b ≥ 5, we
have m ≥ 2 by Theorem 14. Hence

Ki(n) = c(bm + 1) + k ≤ b− 1

2
(bm + 1) + (b− 1)m− 2 <

b− 1

2
(bm + 2m+ 1) .

It is easy to check that for b = 3, m ≥ 3 and b ≥ 5, m ≥ 2, we have
2m+ 1 ≤ 1

b−1
bm, implying that

Ki(n) <
b− 1

2

(
bm +

1

b− 1
bm

)
=

1

2
bm+1

as required.

5 K(n) for bases 2 and 3

We first discuss the base 2 case for general n. The initial values of f(u) and
F (u) are shown in Table 4. We see that the smallest numbers with 1 and

11From Theorem 8 it follows that K(n) ≤ 2bE(n), which is a stronger upper bound for
K(n) when b ≥ 4.
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u 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
f(u) 0 2 3 5 5 7 8 10 9 11 12 14 14 16 17 19 17 19 20
F (u) 1 0 1 1 0 2 0 1 1 1 1 1 1 0 2 0 1 2 0

Table 4: Values of f(u) and F (u) in base 2 (A092391, A228085)

2 generators are K(1) = 0 and K(2) = 5, respectively. Direct search by
computer gives K(3) = 129 and K(4) = 4102, as we have already seen in
Table 1 (although K(5) = 2136 + 6 is out of reach). The general solution is
given by the following pair of recurrences.

Theorem 16. For b = 2 and any n ≥ 2, we have

E(n) = K
(⌈

n
2

⌉)
+K

(⌊
n
2

⌋)
+ 2 (30)

and
K(n) = 2E(n) + 1 +K

(⌊
n
2

⌋)
. (31)

Also
K(n) > 2K(n− 1) . (32)

Proof. The proof is by induction on n. The results are true for n ≤ 3, so we
assume n ≥ 4. As in Theorem 8, let u := K(n) = 2m+1+k, where m := E(n)
and 0 ≤ k ≤ m−2. By (14), n = F (u) = F (k)+F (m−k−2). Let x := F (k),
y := F (m− k− 2) so that x+ y = n. Then k ≥ K(x), m− k− 2 ≥ K(y), and
thus

m ≥ K(x) +K(y) + 2 . (33)

We know from (32) that the sequence (K(n))n≥1 is of exponential type, so by

Lemma 4 the right-hand side of (33) is minimized only when either x =
⌈
n
2

⌉
,

y =
⌊
n
2

⌋
or x =

⌊
n
2

⌋
, y =

⌈
n
2

⌉
(there is no difference if n is even). From

Lemma 5(ii), it follows that the value of E(n) is given by (30), and that k
equals the smaller of K(

⌈
n
2

⌉
) and K(

⌊
n
2

⌋
), which is K(

⌊
n
2

⌋
) by induction and

(32). This proves (31). The proof of (32) is now a routine calculation; we omit
the details.

Remark. The proof of Theorem 16 also shows that

Gen(K(n)) =

{2E(n) + v | v ∈ Gen
(
K

(⌊
n
2

⌋))
} ∪ {2E(n) − 1− v | v ∈ Gen

(
K

(⌈
n
2

⌉))
} .

(34)

Table 5 extends the b = 2 column of Table 1 to n = 16. (The first 100
terms of E(n) and K(n) are given in the entries A230302 and A230303 in [12]).

There is a similar pair of recurrences in the base 3 case.
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n E(n) K(n)
8 8206 28206 + 4103
9 2136 + 4110 2E(9) + 4103
10 2137 + 14 2E(10) + 2136 + 7
11 2260 + 2136 + 138 2E(11) + 2136 + 7
12 2261 + 262 2E(12) + 2260 + 131
13 24233 + 2260 + 262 2E(13) + 2260 + 131
14 24234 + 262 2E(14) + 24233 + 131
15 28206 + 24233 + 4235 2E(15) + 24233 + 131
16 28207 + 8208 2E(16) + 28206 + 4104

Table 5: Base 2: E(n) and K(n) for n = 8, . . . , 16, extending Table 1.

Theorem 17. For b = 3 and any n ≥ 2, we have

E(n) =
K

(⌈
n
2

⌉)
+K

(⌊
n
2

⌋)
+ 2

2
(35)

and
K(n) = 3E(n) + 1 +K

(⌊
n
2

⌋)
. (36)

Also
K(n) > 3K(n− 1) . (37)

Proof. The proof is similar to that of Theorem 16, except at one step. Again
we use induction on n ≥ 4 and let u := K(n) = 3m + 1 + k, where m := E(n)
and 0 ≤ k ≤ 2m − 2. Then n = F (u) = F (k) + F (2m − k − 2) = x + y, say,
with x+ y = n. Then k ≥ K(x), 2m− k − 2 ≥ K(y), so

2m ≥ K(x) +K(y) + 2 . (38)

The difference from (33) in the base 2 case lies in the presence of the factor of
2 (in general it will be b − 1) on the left-hand side of this inequality. So now
we must minimize the sum K(x)+K(y) subject to the additional requirement
that the sum is even. Here that does not cause any difficulty, because all values
of K are even (by Lemma 1). We complete the proof as in the base 2 case, by
taking x =

⌊
n
2

⌋
, y =

⌈
n
2

⌉
.

The first seven terms of E(n) and K(n) for base 3 are shown in Table 1;
the first 100 terms may be found in A230639 and A230640.

6 K(n) for a general base b

In this section we give a set of recurrences that determine K(n) for a general
base b ≥ 2. The divisibility requirement that we encountered in (38) for
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the base 3 case makes the recurrences in the general case considerably more
complicated.

We know from Theorem 8 that K(n) has the form

K(n) = bE(n) + 1 + k , (39)

where 0 ≤ k ≤ (b− 1)E(n)− 2. Then by (14),

n = F (K(n)) = F (k) + F ((b− 1)E(n)− k − 2) = x+ y ,

where x := F (k) and y := F ((b − 1)E(n) − k − 2). Since both k and (b −
1)E(n)− k− 2 are smaller than K(n) and thus cannot have n generators, the
values of x, y must be in the range from 1 to n− 1.

The definitions of x, y imply k ≥ K(x), (b − 1)E(n) − k − 2 ≥ K(y), and
therefore

(b− 1)E(n) ≥ K(x) +K(y) + 2 . (40)

Since in generalK(x)+K(y)+2 will not be a multiple of b−1, the implied lower
bound on E(b) cannot always be attained. We therefore refine the inequality
(40) using the functions Ki(n) introduced in Section 4, and replace (40) with
an inequality where the implied lower bound on E(n) can be attained. If k ≡ i
(mod b− 1) for i ∈ I, then (b− 1)E(n)− k − 2 ≡ −i− 2 (mod b− 1) and so
k ≥ Ki(x), (b− 1)E(n)− k − 2 ≥ K−i−2(y), and

(b− 1)E(n) ≥ Ki(x) +K−i−2(y) + 2 . (41)

Now, in contrast to (40), the right-hand side is divisible by b − 1, and so we
obtain an integer-valued lower bound on E(n) (for some i and x + y = n).
Namely, (41) implies

E(n) ≥ mini∈I min1≤x≤n−1 Ki(x) +K−i−2(n− x) + 2

b− 1
. (42)

We will show by induction that for any i ∈ I, the sequences (Ki(n))n≥1

and (K−i−2(n))n≥1 form a pair of sequences of exponential type. Then by
Lemma 4, we will be able to replace the inner minimum in (42) with

K ′
i(n) := min

{
Ki

(⌈
n
2

⌉)
+K−i−2

(⌊
n
2

⌋)
, Ki

(⌊
n
2

⌋)
+K−i−2

(⌈
n
2

⌉)}
. (43)

In fact, we will prove that equality holds in (42), i.e., E(n) = Ê(n), where

Ê(n) :=
mini∈I K

′
i(n) + 2

b− 1
=

mini∈I Ki

(⌈
n
2

⌉)
+K−i−2

(⌊
n
2

⌋)
+ 2

b− 1
, (44)

where the latter expression follows from the symmetry between i and −i− 2.
For n ≥ 2 and i ∈ I, we define

ci,n := smallest integer c ≥ 1 such that K ′
i−2c(n) = min

j∈I
K ′

j(n) (45)
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and

hi,n :=
⌈n
2

⌉
if Ki−2ci,n

(⌈
n
2

⌉)
+K2ci,n−i−2

(⌊
n
2

⌋)
<Ki−2ci,n

(⌊
n
2

⌋)
+K2ci,n−i−2

(⌈
n
2

⌉)
;

hi,n :=
⌊n
2

⌋
otherwise . (46)

These definitions allow us to express Ê(n) as

Ê(n) =
K ′

i−2ci,n
(n) + 2

b− 1
=

Ki−2ci,n(hi,n) +K2ci,n−i−2(n− hi,n) + 2

b− 1
, (47)

which holds for any i ∈ I.

Theorem 18. For all n ≥ 2,

min
1≤j≤n−1

Ki(j) +K−i−2(n− j) = K ′
i(n) for all i ∈ I , (48)

and
E(n) = Ê(n) . (49)

Furthermore, for all n ≥ 3,12

E(n) ≥

{
E(n− 1) + 1, if b is odd and n ∈ {3, 4} ;
E(n− 1) + 2, otherwise .

(50)

Proof. We will prove all three statements (48), (49), and (50) together by
induction on n. We write (48)j, (49)j, (50)j, to refer to the statements (48),
(49), (50) for n = j. We divide the proof into the following four parts:

(I) (48)2, (49)2, (49)3, (50)3 are true.

(II) For n ≥ 3, (48)n follows from (50)j for 3 ≤ j < n.

(III) For n ≥ 4, (49)n follows from (48)n and (50)j for 3 ≤ j < n.

(IV) For n ≥ 4, (50)n follows from (49)n, (49)n−1, (50)j for 3 ≤ j < n.

Proof of (I). This is easily verified using the values of K(n) and Ki(n) from
Theorems 9, 10, 12, 13, and noticing that ci,2 = 1 and hi,2 = 1 for all i ∈ I.

Proof of (II). Let n ≥ 3 and i ∈ I. To establish (48)n, we will first show that

Ki(m+ 1) > Ki(m) +K−i−2(m) (51)

holds for all m = 1, 2, . . . , n − 2, and then apply Lemma 4(ii). The inequal-
ity (51) can be verified directly for m = 1 using Theorems 12 and 13. If m ≥ 2,
we consider two cases depending on the parity of b, and use Theorem 15 to

12Note that E(1) is not defined, which is why we start (50) at n = 3.

16



bound the terms in (51). For even b, we have Ki(m+ 1) > bE(m+1) ≥ bE(m)+2

by (50)m+1, while the right-hand side of (51) is at most 2bE(m)+1 ≤ bE(m)+2

(since b ≥ 2). For odd b, we have Ki(m+ 1) > bE(m+1) ≥ bE(m)+1 by (50)m+1,

while the right-hand side of (51) is at most bE(m)+1. This proves (51), which
by Lemma 4(ii) (taking a(m) = Ki(m), b(m) = K−i−2(m)) implies (48)n.

Proof of (III). Let n ≥ 4. We fix an arbitrary i ∈ I. To prove (49)n, we first
use Theorem 11 to write Ki(n) = c(bE(n) + 1) + k for some integers c and k
satisfying 1 ≤ c ≤ b − 1 and 0 ≤ k ≤ (b − 1)E(n) − 2. Then (14) implies
n = F (Ki(n)) = F (k) + F ((b− 1)E(n)− k − 2).

SinceKi(n) ≡ i (mod b−1), we have k ≡ i−2c (mod b−1). Let x := F (k).
Then k ≥ Ki−2c(x) and (b− 1)E(n)− k − 2 ≥ K2c−i−2(n− x), thus

E(n)
(i)

≥ Ki−2c(x) +K2c−i−2(n− x) + 2

b− 1

(ii)

≥
K ′

i−2c(n) + 2

b− 1

(iii)

≥ Ê(n) , (52)

where inequality (i) is immediate, (ii) follows from (48)n, and (iii) follows from
(44).

Conversely, we now prove that E(n) ≤ Ê(n). First, we notice that (50)j
for 3 ≤ j ≤

⌈
n
2

⌉
and Theorem 9 imply that E

(⌈
n
2

⌉)
≥ E(2) ≥ 1. Together

with (47) and Theorem 15, this further gives

Ê(n) ≥
K

(⌈
n
2

⌉)
+ 2

b− 1
>

bE(⌈
n
2 ⌉) + 2

b− 1
≥ b+ 2

b− 1
> 1 . (53)

Now, let us define L := ci,n(b
Ê(n) +1)+Ki−2ci,n(hi,n), which has the form (11)

since
Ki−2ci,n(hi,n) ≤ (b− 1)Ê(n)− 2 ≤ bÊ(n) − b+ 1

as follows from (47), (53), and Lemma 6. Using (14) and (47), we have

F (L) = F (Ki−2ci,n(hi,n)) + F ((b− 1)Ê(n)−Ki−2ci,n(hi,n)− 2)

= F (Ki−2ci,n(hi,n)) + F (K2ci,n−i−2(n− hi,n))

= hi,n + n− hi,n

= n .

(54)

From (54) and L ≡ 2ci,n+(i−2ci,n) ≡ i (mod b−1), it follows that Ki(n) ≤ L.

Then Lemma 5 implies that E(n) ≤ Ê(n), which together with (52) establishes
(49)n.

Proof of (IV). For n = 4, we use the identity (49)4 and Theorem 13 to obtain

E(4) =



12, if b = 2 ;

5, if b = 3 ;

4, if b = 5 ;

2b+ 4, if b ≥ 4 is even ;

3, if b ≥ 7 is odd .

(55)
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Comparing these values to those of E(3) given in Theorem 10, we conclude
that (50)4 holds.

Let n ≥ 5. To prove (50)n, we consider two cases depending on the parity
of n.

First, suppose that n is even, i.e., n = 2t for some t ≥ 3. The identity (49)n
gives

E(n) =
Ki−2ci,n(t) +K2ci,n−i−2(t) + 2

b− 1
≥ 2K(t) + 2

b− 1
, (56)

while (49)n−1 gives

E(n− 1) =
minj Kj(t) +K−j−2(t− 1) + 2

b− 1
. (57)

We obtain an upper bound on the right-hand side of (57) if we choose any
particular value of j, so let us choose j = ℓ such that Kℓ(t) = K(t). Then

E(n− 1) ≤ K(t) +K−ℓ−2(t− 1) + 2

b− 1
.

The inequality (50)n will follow if we show that

2K(t) + 2

b− 1
≥ K(t) +K−ℓ−2(t− 1) + 2

b− 1
+ 2 ,

or, equivalently,
K(t) ≥ K−ℓ−2(t− 1) + 2(b− 1) . (58)

In fact, (58) holds for any t such that (50)t holds and any ℓ ∈ I. To prove
it, we consider two cases depending on the parity of b and use Lemma 6,
Theorem 15, and (50)t. For even b, the inequality (58) follows from

K(t) > bE(t) ≥ bE(t−1)+2 ≥ bE(t−1)+1 + 2(b− 1) > K−ℓ−2(t− 1) + 2(b− 1) .

For odd b, the inequality (58) follows from

K(t) > bE(t) ≥ bE(t−1)+1 ≥ 1

2
bE(t−1)+1 + 2(b− 1) > K−ℓ−2(t− 1) + 2(b− 1) .

This completes the proof of (58) and thus (50)n for even n.
Second, suppose that n is odd, i.e., n = 2t− 1 for some t ≥ 3. Arguing as

before, we have

E(n) ≥ K(t) +K(t− 1) + 2

b− 1
and E(n− 1) ≤ K(t− 1) +K−ℓ−2(t− 1) + 2

b− 1

for some ℓ ∈ I. We know from the previous paragraph that the inequality (58)
holds, and this again implies (50)n.

This completes the proof of the theorem.

From (48) we immediately have
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Corollary 19. For any i ∈ I, the sequences (Ki(n))n≥1 and (K−i−2(n))n≥1

form a pair of sequences of exponential type.

Theorem 20. For any b ≥ 2, i ∈ I, and n ≥ 2, we have

Ki(n) = ci,n(b
E(n) + 1) +Ki−2ci,n(hi,n) . (59)

Moreover, the representation (59) has the form (20).

Proof. For n = 2 and n = 3, the statement follows from Theorems 9, 10, 12,
13, and 14. It can be verified that ci,2 = ci,3 = 1 and hi,2 = hi,3 = 1 for all
i ∈ I, except for h0,3 = 2 when b ≥ 4.

For n ≥ 4, the proof emerges from the proof of Part (III) of Theorem 18.
We use Theorem 11 to write Ki(n) = c(bE(n) + 1) + k for some integers c and
k satisfying 1 ≤ c ≤ b − 1 and 0 ≤ k ≤ (b − 1)E(n) − 2. Since E(n) = Ê(n)
(by Theorem 18), the chain of inequalities (i), (ii), and (iii) in (52) are all
equalities.

By (44), the equality (iii) is equivalent to K ′
i−2c(n) = mini∈I K

′
i(n), im-

plying that c ≥ ci,n (by the definition of ci,n). Again, we consider L :=

ci,n(b
Ê(n) + 1) + Ki−2ci,n(hi,n), for which we proved that Ki(n) ≤ L. Since

E(n) = Ê(n), Lemma 5 now implies c ≤ ci,n, and thus c = ci,n.
Since c = ci,n, the equality (i) implies k = Ki−2ci,n(x), while the equality (ii)

implies thatKi−2ci,n(x)+K2ci,n−i−2(n−x) equals its minimum valueK ′
i−2ci,n

(n).

Then from Lemma 4 it follows that x =
⌊
n
2

⌋
or x =

⌈
n
2

⌉
. Furthermore,

Ki(n) ≤ L implies that k = Ki−2ci,n(x) ≤ Ki−2ci,n(hi,n) (by Lemma 5) and
thus x ≤ hi,n. When hi,n =

⌊
n
2

⌋
(in particular, when n is even), we must have

x = hi,n. On the other hand, if n is odd and hi,n =
⌈
n
2

⌉
, then x =

⌊
n
2

⌋
̸= hi,n

does not produce the minimum of Ki−2ci,n(x) + K2ci,n−i−2(n − x) as follows
from (46). Hence in all cases we have x = hi,n and thus k = Ki−2ci,n(hi,n). in
which cases x = hi,n by (46). In the case when n is odd and the two sums above
are equals, both x =

⌊
n
2

⌋
= hi,n and x =

⌈
n
2

⌉
= n− hi,n deliver the minimum

of Ki−2ci,n(x) + K2ci,n−i−2(n − x). However, here Ki(n) ≤ L implies that
k = Ki−2ci,n(x) ≤ Ki−2ci,n(hi,n) (by Lemma 5) and thus x = hi,n. Therefore,
in all cases we have k = Ki−2ci,n(hi,n), which completes the proof.

Corollary 21.
K(n) ≥ bE(n) + 1 +K

(⌊
n
2

⌋)
. (60)

Proof. From (19) and Theorem 20 it follows that K(n) = Ki(n) = ci,n(b
E(n)+

1)+Ki−2ci,n(hi,n) for some i ∈ I, for which we also have ci,n = 1 by Theorem 8
and hi,n ≥

⌊
n
2

⌋
by (46). Hence

K(n) = bE(n) + 1 +Ki−2(hi,n) ≥ bE(n) + 1 +K
(⌊

n
2

⌋)
.

Remarks on Theorems 18 and 20.
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(1) Since, by definition, Ki(n) ≡ i (mod b − 1), we have Ki(n) ̸= Kj(n) for
i ̸= j from I. It follows that the choice of i ∈ I in (19) is unique, and so
we may define a “generalized Thue–Morse sequence” (τ(n))n≥1 for base b
by:

K(n) =

{
Kτ(n)(n), if b is even ,

K2τ(n)(n), if b is odd ,
(61)

where 0 ≤ τ(n) ≤ b − 2 if b is even, and 0 ≤ τ(n) ≤ b−3
2

if b is odd.
The name comes from the fact that in base b = 5 this is the classical
Thue–Morse sequence (see Section 8).

From (61) and Theorems 8 and 20 it follows that

cτ(n),n = 1 if b is even, c2τ(n),n = 1 if b is odd . (62)

(2) The K ′
i(n) are not all distinct. It follows at once from (43) that:

(i) if b is even, the distinct K ′
i(n) are

K ′
i(n), for 0 ≤ i ≤ b− 4

2
, and K ′

b−2(n) , (63)

where the remaining values are given by K ′
i(n) = K ′

b−i−3(n);

(ii) if b ≡ −1 (mod 4), the distinct K ′
i(n) are

K ′
2i(n), for 0 ≤ i ≤ b− 7

4
, and K ′

b−3
2

(n) , (64)

where the remaining values are given by K ′
2i(n) = K ′

b−2i−3(n); and

(iii) if b ≡ 1 (mod 4), the distinct K ′
i(n) are

K ′
2i(n), for 0 ≤ i ≤ b− 5

4
, (65)

where the remaining values are given by K ′
2i(n) = K ′

b−2i−3(n).

In fact, the calculations for the case b = 4m−1 are (apart from a relabeling
of the variables) essentially the same as the calculations for the case b =
2m. For m = 1, this can be seen from Theorems 9 and 10, which establish
similar recurrences for K(n) in bases b = 2 and b = 3. We will formally
prove this similarity for general m in Theorem 24 in the next section.

(3) If n is even, no minimization is needed in the formula (43) for K ′
i(n),

since the two terms inside the braces are the same, and also hi,n = n
2
for

all i ∈ I. If n is odd, the two terms inside the braces in (43) may still
coincide, including the case of K ′

i−2ci,n
(n) (which happens always when

b = 2, 3, quite frequently when b ≥ 4 is even, and sometimes when b ≥ 5
is odd). While both

⌊
n
2

⌋
and

⌈
n
2

⌉
in this case may serve as hi,n in (47),

the choice of hi,n =
⌊
n
2

⌋
is dictated by Theorem 20, which expects the

contribution of Ki−2ci,n(hi,n) be as small as possible.
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(4) We initially thought that the minimization in (44) would be determined by
choosing the index i to be either j or −j − 2, where Kj

(⌈
n
2

⌉)
= K

(⌈
n
2

⌉)
.

This would imply that

min
i∈I

K ′
i(n)

?
= K

(⌈
n
2

⌉)
+Kℓ

(⌊
n
2

⌋)
, (66)

for some ℓ ∈ I. To prevent others from falling into this trap, we mention
that (66) is false. There are counter-examples when b = 7 and n = 13,
and when b = 9 and n = 9 (see details in Appendix B).

Computing E(n) and K(n). It may be helpful to summarize the steps
involved in using the recurrences to compute E(n) and K(n):

Step 1: For every i ∈ I, compute K ′
i(n) from (43), omitting the duplicates

mentioned in Remark (2) above.

Step 2: For every i ∈ I, compute ci,n and hi,n using (45) and (46), or using
the equivalent formulas (71) and (72) given below.

Step 3: Compute E(n) with the formula

E(n) =
K ′

i−2ci,n
(n) + 2

b− 1
, (67)

which follows from (47) and (49), and holds for any i ∈ I.

Step 4: For every i ∈ I, compute Ki(n) using Theorem 20.

Step 5: Finally, compute K(n) from (19).

Below we illustrate the computations for even b ≥ 4, while in the next two
sections we provide further information about bases 4, 5, 7, and 10. Additional
illustrations of the computation flow are given in Appendix B.

Examples. We illustrate the computations using Theorems 18 and 20 in the
case when b ≥ 4 is even and n = 2, 3, 4.

For n = 2, we find that E(2) = (2b− 2)/(b− 1) = 2, and K ′
i(2) = 2b− 4,

ci,2 = 1 and hi,2 = 1 for all i. From this we obtain the values of Ki(2) that we
saw in Theorem 13.

For n = 3, we find that E(3) = (b2+2b−3)/(b−1) = b+3,K ′
i(3) = b2+2b−5

and ci,3 = 1 for all i, and h0,3 = 2, h1,3 = h2,3 = h3,3 = · · · = 1. From this we
obtain the values of Ki(3) that we saw in Theorem 14.

For n = 4, we find that K ′
0(4) = 2b2+2b−8, K ′

i(4) = 2b2+2b−6 for i ≥ 1,
E(4) = (2b2 + 2b− 4)/(b− 1) = 2b+ 4, c0,4 = 2, c1,4 = 1, c2,4 = 3, ci,4 = 1 for
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3 ≤ i ≤ b− 2, and all hi,4 = 2. Then

K0(4) = 2b2b+4 + b2 + 2b− 5 ,

K1(4) = b2b+4 + b2 + b− 2 ,

K2(4) = 3b2b+4 + b2 + 2b− 4 , (68)

K3(4) = b2b+4 + b2 + b ,

K4(4) = b2b+4 + b2 + 2 ,

and thus
K(4) = K4(4) = b2b+4 + b2 + 2 . (69)

This confirms Kaprekar’s conjecture of 1024 + 102 in base 10.
Table 6 summarizes the results from the recurrence for n ≤ 7 and even

bases b ≥ 4 and odd bases b ≥ 7. (For smaller values of b, see Tables 1, 2, 5.)

even b ≥ 4 odd b ≥ 7
n E(n) K(n) E(n) K(n)
1 − 0 − 0
2 2 b2 + 1 1 b+ 1
3 b+ 3 bb+3 + 1 2 b2 + 1
4 2b+ 4 b2b+4 + b2 + 2 3 b3 + b+ 2

5 bb+3+b2+2b−4
b−1

bE(5) + b2 + 2 b+ 3 bb+3 + b+ 2

6 2bb+3+2b−4
b−1

bE(6) + bb+3 + 2 2b+ 3 b2b+3 + b2 + 2

7 b2b+4+bb+3+b2+2b−5
b−1

bE(7) + bb+3 + 2 b2 + 2b+ 4 bE(7) + b2 + 2

Table 6: Values of E(n) and K(n) for n ≤ 7 and even bases b ≥ 4, odd bases b ≥ 7. See
also Fig. 3 and Figs. 5–9 in Appendix B.

Let us define the set

J(n) := {j ∈ I | min
ℓ∈I

Kℓ

(⌈
n
2

⌉)
+K−ℓ−2

(⌊
n
2

⌋)
is attained at ℓ = j}. (70)

Then ci,n and hi,n can be equivalently expressed as

ci,n = smallest integer c ≥ 1 such that i− 2c ∈ J(n) or 2c− i− 2 ∈ J(n)
(71)

and

hi,n =

{⌈
n
2

⌉
, if 2ci,n − i− 2 /∈ J(n);⌊

n
2

⌋
, otherwise .

(72)

In bases b = 2 and b = 3, we trivially have J(n) = I = {0} for all n ≥ 2. In
bases b = 4 and b ≥ 6, from Theorems 12, 13, and 10 it can be verified that

J(2) = I,
J(3) = I \ {0},

J(4) = J(5) = J(6) = I \ {0, b− 3}.
(73)

In particular, this implies that in bases b = 4 and b ≥ 6,
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• ci,2 = ci,3 = 1 and hi,2 = hi,3 = 1 for all i ∈ I, with the exception of
h0,3 = 2 (as was already noted in the proof of Theorem 20);

• ci,4 = ci,5 = ci,6 = 1, hi,4 = hi,5 = 2 and hi,6 = 3 for all i ∈ I, with the
exception of c0,4 = c0,5 = c0,6 = 2 and c2,4 = c2,5 = c2,6 = 3.

For base b = 5, we have J(2) = J(4) = J(6) = {0, 2} = I and J(3) =
J(5) = {2},13 implying that ci,2 = ci,3 = ci,4 = ci,5 = ci,6 = 1, hi,2 = hi,3 = 1,
hi,4 = hi,3 = 2, and hi,6 = 3 for all i ∈ I, with the exception of h0,3 = 2 and
h0,5 = 3. More details can be found in Section 8.

7 Quasi-positional representation for K(n)

Theorem 20 suggests that Ki(n) can be expressed as a linear combination of
terms

B(m) := bE(m) + 1 (74)

and a single term Kβ(1) for some β ∈ I. In this section we investigate proper-
ties of this representation and show that it resembles a conventional positional
numeral system.

Theorem 22. For any n ≥ 1 and i ∈ I, Ki(n) is uniquely represented as

Ki(n) = α1B(n1) + α2B(n2) + · · ·+ αtB(nt) +Kβ(1) (75)

for some t ≥ 0, where

• α1, α2, . . . , αt are integers from the interval [1, b− 1] if b is even, or the
interval [1, b−1

2
] if b is odd;

• β ∈ I; and

• if t > 0, then n1 > n2 > · · · > nt with nj ∈
{⌊nj−1

2

⌋
,
⌈nj−1

2

⌉}
for

j = 2, 3, . . . , t, and nt ∈ {2, 3}.

Proof. If n = 1, we set t := 0 and β := i. If n ≥ 2, we set n1 := n. From
Theorem 20 it follows that Ki(n1) = α1B(n1) +Ki−2α1(n2), where α1 := ci,n1

and n2 := hi,n1 ∈
{⌊

n1

2

⌋
,
⌈
n1

2

⌉}
. If n2 > 1, we represent Ki−2α1(n2) in a

similar way, and continue the process until we get a representation (75), where
nj := hi−2(α1+α2+···+αj−2),nj−1

and αj := ci−2(α1+α2+···+αj−1),nj
for j ≥ 2, and

β := i− 2(α1 + α2 + · · ·+ αt). The properties of αj and nj easily follow from
this construction.

We prove that the representation (75) is unique by induction on t. For
t = 0, the statement follows from Theorem 12 as all Kβ(1) for β ∈ I are
distinct. For t ≥ 1, we let k := Ki(n)−α1B(n1) and show that α1(b

E(n1)+1)+k
has the form (11). Indeed, if t = 1, then

13The apparent pattern does not continue here as J(7) = {0}.
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• when b is even, k = Kβ(1) ≤ 2b−4 (by Theorem 12) and E(n1) ≥ E(2) =
2 (by Theorem 9), implying that k ≤ 2b− 4 ≤ b2 − b+1 ≤ bE(n1) − b+1
satisfying (12);

• when b is odd, k = Kβ(1) ≤ b−3 (by Theorem 12), α1 ≤ b−1
2

< b−1, and
E(n1) ≥ E(2) = 1 (by Theorem 9), implying that k ≤ b− 3 ≤ b ≤ bE(n1)

satisfying (12).

Finally, if t ≥ 2, then n1 ≥ 4 and n1 − n2 ≥ 2, implying by (50) that E(n1) ≥
E(n2) + 2. Then by induction k = α2(b

E(n2) + 1) + · · · has the form (11) and
since α2 ≤ b− 1, we get

k ≤ α2(b
E(n2) + 1) + bE(n2) ≤ bE(n2)+1 + b− 1 ≤ bE(n1) − b+ 1,

satisfying (12). That is, we have proved that α1(b
E(n1)+1)+k has the form (11),

and then the uniqueness of the representation (75) follows from that of (11).

Our proof suggests that the representation (75) can be viewed as the result
of iterative application of Lemma 5, which enables positional comparison of
such representations. In particular, for bounding purposes we will find it
convenient to introduce a generic notation OB(n1) for the right-hand side of
(75) (when t ≥ 1).

We will need the following lemma.

Lemma 23. Let n ≥ 3. Then for any x, y ∈ {1, 2, . . . , n−1} and any i, j ∈ I,

Ki(x) +Kj(y) < B(n).

Proof. From Theorems 12 and 10, it follows that for any i ∈ I

Ki(1) ≤ 2b− 4 <
b2 + 1

2
≤ 1

2
B(3) ≤ 1

2
B(n).

For x > 1 and any i ∈ I, from Theorems 15 and 18, it follows that for odd
b

Ki(x) <
1

2
bE(x)+1 <

1

2
bE(n−1)+1 ≤ 1

2
bE(n) <

1

2
B(n),

while for even b

Ki(x) < bE(x)+1 < bE(n−1)+1 ≤ 1

2
bE(n−1)+2 ≤ 1

2
bE(n) <

1

2
B(n).

Hence in all cases,

Ki(x) +Kj(y) <
1

2
B(n) + 1

2
B(n) = B(n).
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The following theorem shows that the quasi-positional representations for
K(n) in bases b1 = 2m and b2 = 4m − 1 are essentially the same. We use
superscripts (b1) and (b2) to distinguish between the bases.

Theorem 24. For an integer m ≥ 1, let b1 := 2m and b2 := 4m − 1. We
identify the additive groups I(b1) (consisting of the residues modulo 2m − 1)
and I(b2) (consisting of the even residues modulo 2(2m− 1)).14 Then for any

n ≥ 1 and any i ∈ I = I(b1) ∼= I(b2), K
(b1)
i (n) has a representation in the

form (75)

K
(b1)
i (n) = α1B(b1)(n1) + α2B(b1)(n2) + · · ·+ αtB(b1)(nt) +K

(b1)
β (1)

if and only if K
(b2)
i (n) has a representation:

K
(b2)
i (n) = α1B(b2)(n1) + α2B(b2)(n2) + · · ·+ αtB(b2)(nt) +K

(b2)
β (1).

Proof. The proof is by induction on n. For n = 1, the statement follows from
Theorem 12, which gives K

(b1)
β (1) = K

(b2)
β (1) for all β ∈ I.

Let n ≥ 2. For any i ∈ I, Theorem 20 gives

K
(b1)
i (n) = c

(b1)
i,n B(b1)(n) +K

(b1)

i−2c
(b1)
i,n

(h
(b1)
i,n )

and
K

(b2)
i (n) = c

(b2)
i,n B(b2)(n) +K

(b2)

i−2c
(b2)
i,n

(h
(b2)
i,n ).

The statement will follow by induction if we show that c
(b1)
i,n = c

(b2)
i,n and h

(b1)
i,n =

h
(b2)
i,n . In each base, the values of ci,n and hi,n are entirely determined by the

set of indices J(n) ⊂ I defined in (70). It is therefore sufficient to show that
J (b1)(n) = J (b2)(n). This equality holds for n ≤ 6 as established by (73) (notice
that b1− 3 = b2− 3 as residues in I). For the rest of the proof we assume that
n ≥ 7.

The set J(n) consists of the indices j producing the minimum ofKj

(⌈
n
2

⌉)
+

K−j−2

(⌊
n
2

⌋)
. Hence we need to show that comparing two such sums gives the

same result (“<”, “=”, or “>”) in the two bases. More generally, we will prove
the following statement:

(⋆) For any positive integers u, v, u′, v′ less than n and any i, j, i′, j′ ∈ I, the
result of comparing X(b) := K

(b)
i (u) + K

(b)
j (v) and Y (b) := K

(b)
i′ (u′) +

K
(b)
j′ (v

′) is the same in bases b = b1 and b = b2.

Without loss of generality we assume that max{u, v, u′, v′} = u, and prove the
statement by induction on u. For u = 1, 2, (⋆) follows from Theorems 12 and
13. Suppose now that 2 < u < n.

14More formally, we may define an isomorphism of additive groups π : I(4m−1) → I(2m)

by π([i mod 2(2m− 1)]) = [i mod (2m− 1)].
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Let (x, k) ∈ {(u, i), (v, j), (u′, i′), (v′, j′)}. If x = u, we have x < n, and

by induction on n, c
(b1)
k,x = c

(b2)
k,x =: αk,x and h

(b1)
k,x = h

(b2)
k,x =: wk,x. Then by

Theorem 20,

K
(b)
k (x) = αk,xB(b)(u) +K

(b)
k−2αk,x

(wk,x), b ∈ {b1, b2}. (76)

If x < u, we obtain the same representations (76) by setting αk,x := 0 and
wk,x := x. Notice that in all cases, we have wk,x < u.

Using the representations (76), we get

X(b) = (αi,u + αj,v)B(b)(u) +K
(b)
i−2αi,u

(wi,u) +K
(b)
j−2αj,v

(wj,v)

and

Y (b) = (αi′,u′ + αj′,v′)B(b)(u) +K
(b)
i′−2αi′,u′

(wi′,u′) +K
(b)
j′−2αj′,v′

(wj′,v′).

By Lemma 23, the sum of two K’s in X(b) is smaller than B(b)(u), and so
is the sum of two K’s in Y (b). Hence, if αi,u + αj,v and αi′,u′ + αj′,v′ are not
equal, then their comparison completely determines the result of comparison
of X(b) and Y (b) in each base b.

On the other hand, if αi,u+αj,v = αi′,u′+αj′,v′ , then the result of comparison

of X(b) and Y (b) is determined by comparison of K
(b)
i−2αi,u

(wi,u)+K
(b)
j−2αj,v

(wj,v)

andK
(b)
i′−2αi′,u′

(wi′,u′)+K
(b)
j′−2αj′,v′

(wj′,v′), which is the same for b = b1 and b = b2

by induction (since all w’s are smaller than u). This completes the proof of
statement (⋆), which further implies that J(n) is the same for b = b1 and
b = b2, and thus proves the theorem by induction for all n ≥ 1.

Theorem 24 explains why the flow-charts in Appendix B for b = 2 and
b = 3 (Figs. 1 and 2) are the same apart from the labels, as are the flow-charts
for b = 4 and b = 7 (Figs. 3 and 6).

8 K(n) for bases 4, 5, and 7

We discuss base 5 first, since this turns out to be simpler than bases 4 or 7.
For b = 5, the index set is I = {0, 2}. From (63), there is only one K ′

i(n)
to consider, namely

K ′
0(n) = min

{
K0

(⌈
n
2

⌉)
+K2

(⌊
n
2

⌋)
, K0

(⌊
n
2

⌋)
+K2

(⌈
n
2

⌉)}
. (77)

Then E(n) = (K ′
0(n) + 2)/4, c0,n = c2,n = 1 for all n,

h0,n =

{⌈
n
2

⌉
, if K0

(⌊
n
2

⌋)
+K2

(⌈
n
2

⌉)
< K0

(⌈
n
2

⌉)
+K2

(⌊
n
2

⌋)
,⌊

n
2

⌋
, otherwise ,

(78)

and h2,n = n− h0,n. Also

K0(n) = 5E(n) +K2(h0,n) + 1, K2(n) = 5E(n) +K0(h2,n) + 1 , (79)
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n K ′
0(n) E(n) h0,n h2,n K0(n) K2(n)

1 − − − − 0 ↘ 2
2 2 1 1 1 5 + 3 ↘ 5+ 1
3 6 2 2 1 52 + 7 ↙ 52 + 1
4 14 4 2 2 54 + 7 ↘ 54 + 9
5 34 9 3 2 59 + 27 ↙ 59 + 9
6 58 15 3 3 515 + 27 ↙ 515 + 33
7 658 165 3 4 5165 + 27 ↘ 5165 + 633
8 1266 317 4 4 5317 + 635 ↘ 5317 + 633
9 59 + 54 + 16 488442 5 4 5E(9) + 59 + 10 ↙ 5E(9)+54 + 8
10 2 · 59 + 36 976572 5 5 5E(10)+59 + 10 ↙ 5E(10) + 59 + 28

Table 7: Base 5: K(n) (shown in bold font) is the smaller of the entries in the last two
columns. The meaning of the arrows is explained in the text. See also Fig. 4 in Appendix B.

and K(n) = min{K0(n), K2(n)}. The initial values of these variables are
shown in Table 7. The value of K(n) is shown in bold font (the first 100
values of E(n) and K(n) can be found in A230868 and A230867). The symbol
in the penultimate column of the table indicates the choice made in (77) when
calculating K ′

0(n) for odd n. An arrow ↘ in row i indicates that K ′
0(2i+1) =

K0(i) +K2(i+ 1), while an arrow ↙ indicates that K ′
0(2i+ 1) = K0(i+ 1) +

K2(i).
15

The values of the generalized Thue–Morse sequence τ(n) (see (61)) are
shown in Table 8.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
τ(n) 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

Table 8: Initial values of τ(n) (this is essentially the Thue–Morse sequence A010060).

In this case τ(n) actually is the classical Thue–Morse sequence, except
shifted by one step.16 We prove this in the next theorem.

Theorem 25. For n ≥ 1,

τ(n) =

{
τ(
⌈
n
2

⌉
), if n is odd ;

1− τ(n
2
), if n is even .

Proof. (Sketch.) The basis for the inductive proof are the following observa-
tions.

15The arrows are intended to suggest, for the four elements K0(i),K2(i),K0(i+1),K2(i+
1), whether it is better to pair up the North West and South East entries, or the North East
and South West entries.

16The classical sequence is τ(n− 1).
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(i) If n is even, then (79) implies thatK0(n) < K2(n) if and only ifK2

(
n
2

)
<

K0

(
n
2

)
, and hence τ(n) = 1− τ(n

2
).

(ii) Suppose on the other hand that n = 2i + 1 is odd. There are two
possibilities. If

K0(i) +K2(i+ 1) < K0(i+ 1) +K2(i) (80)

(the↘ case in Table 7), thenK2(i+1) < K0(i+1), τ(i+1) = 2, K(n) = K2(n),
and hence τ(n) = 1 = τ(

⌈
n
2

⌉
). If the inequality in (80) is reversed, we similarly

find that τ(n) = 2 = τ(
⌈
n
2

⌉
).

For the induction to work, we need to also show that the values of E(n),
K0(n), andK2(n) are considerably larger than the values of E(n−1),K2(n−1),
and K0(n − 1), respectively, but this follows from Theorem 15 and (50). We
omit the details of the proof.

The situation is more complicated in base 4. Here the index set is I =
{0, 1, 2} (modulo 3), K(n) is the minimum of the three terms K0(n), K1(n),
K2(n), and so is specified by a ternary sequence τ(n) ∈ I. The first 100 values
of E(n) and K(n) can be found in A230637 and A230638, and the first 100
terms of τ(n) are:

0, 2, 2, 1, 1, 1, 2, 0, 2, 0, 2, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 2, 0, 2, 0, 2, 0, 2,

0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, . . . (81)

(A239110). If we write (2, 0)13 to denote a run of 13 copies of 2, 0, etc., then
the first 1000 terms of this sequence are

0, 22, 13, (2, 0)3, 0, 113, (2, 0)13, 0, 153, (2, 0)53, 0, 1213, (0, 2)213, 0, 1≥147 , (82)

which suggests that after the initial three terms, there is a repeating pattern

1δj , (2, 0)δj , 0 ,

where δj =
10·4j−1

3
(see A072197). The next theorem shows that this pattern

continues for ever.

Theorem 26. Let b = 4 and let d ≥ 0 be an integer. For an integer n,

(i) if 10·4d+2
3

≤ n < 20·4d+1
3

, then

K0(n) = 2B(n) + B(
⌊
n
2

⌋
) +OB(

⌊
n
4

⌋
) ,

K1(n) = B(n) + B(
⌊
n
2

⌋
) +OB(

⌊
n
4

⌋
) ,

K2(n) = 3B(n) + B(
⌊
n
2

⌋
) +OB(

⌊
n
4

⌋
) ,

and thus τ(n) = 1;
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(ii) if 20·4d+2
3

≤ n < 10·4d+1−1
3

, then

K0(n) = B(n) + B(
⌈
n
2

⌉
) +OB(

⌈
n
4

⌉
) ,

K1(n) = 2B(n) + (2− (n mod 2))B(
⌊
n
2

⌋
) +OB(

⌊
n
4

⌋
) ,

K2(n) = B(n) + (2− (n mod 2))B(
⌊
n
2

⌋
) +OB(

⌊
n
4

⌋
) ,

and thus τ(n) = 2 when n is odd, and τ(n) = 0 when n is even;

(iii) if n = 10·4d+1−1
3

, then

K0(n) = B(n) + B(
⌊
n
2

⌋
) +OB(

⌈
n
4

⌉
) ,

K1(n) = 2B(n) + B(
⌈
n
2

⌉
) +OB(

⌊
n
4

⌋
) ,

K2(n) = B(n) + B(
⌈
n
2

⌉
) +OB(

⌊
n
4

⌋
) ,

and thus τ(n) = 0.

Proof. We prove the statement by induction on d. For d = 0 (i.e., 4 ≤ n ≤ 13),
the statement can be verified directly (e.g., see Fig. 3). Let d > 0.

(i) Let n belong to the interval 10·4d+2
3

≤ n < 20·4d+1
3

. Then both m =⌈
n
2

⌉
and n − m =

⌊
n
2

⌋
are in the interval (ii). If n is even, the values of

Kj(m) +K−2−j(m) are

K0(m) +K1(m) = 3B(m) +OB(
⌈
m
2

⌉
) ,

K2(m) +K2(m) = 2B(m) +OB(
⌈
m
2

⌉
) ,

implying that J(n) = {2}. If n is odd, the values of Kj(m) +K−2−j(m − 1)
are

K0(m) +K1(m− 1) = B(m) + 2B(m− 1) +OB(
⌈
m
2

⌉
) ,

K1(m) +K0(m− 1) = 2B(m) + B(m− 1) +OB(
⌈
m
2

⌉
) ,

K2(m) +K2(m− 1) = B(m) + B(m− 1) +OB(
⌈
m
2

⌉
) ,

also implying that J(n) = {2}. From (71) and (72), it follows that c0,n = 2,
c1,n = 1, c2,n = 3 and h0,n = h1,n = h2,n =

⌊
n
2

⌋
. Statement (i) now follows by

induction from formula (59).
Statements (ii) and (iii) are proved similarly. We omit the details.

Theorem 24 implies that essentially the same sequence (τ(n))n≥1 arises in
base 7, with the only difference being that 1s and 2s are interchanged.

9 K(n) for base 10

In base b = 10, the case studied by Kaprekar and others, the index set is
I = {0, 1, 2, . . . , 8} (modulo 9), and, from (63), there are five distinct K ′

i(n),
namely K ′

0(n) = K ′
7(n), K

′
1(n) = K ′

6(n), K
′
2(n) = K ′

5(n), K
′
3(n) = K ′

4(n), and
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K ′
8(n). There are nine variables ci,n, hi,n, and Ki(n), with 0 ≤ i ≤ 8. The

values of Ki(n) for n ≤ 7 are shown in Table 9. Then

K(n) = min
0≤i≤8

Ki(n) = 10E(n) + terms of smaller order . (83)

We have already seen E(n) and K(n) for n ≤ 7 in Table 1. Tables 10 and 11
extend these values to n = 16, going far enough that we can see – and confirm!
– the values for K(4), . . . , K(8), and K(16) found by Kaprekar and Narasinga
Rao more than fifty years ago (see the discussion in the Introduction). The
first 100 terms of these two sequences can be seen in entries A230857 and
A006064 in [12].

i = 0 i = 1 i = 2 i = 3 i = 4
Ki(1) 0 10 2 12 4
Ki(2) 117 109 101 111 103
Ki(3) 1013 + 116 1013 + 9 1013 + 1 1013 + 11 1013 + 3
Ki(4) 2 · 1024 + 115 1024 + 108 3 · 1024 + 116 1024 + 110 1024 + 102
Ki(5) 2 · 10E(5) + 115 10E(5) + 108 3 · 10E(5) + 116 10E(5) + 108 10E(5) + 102

i = 5 i = 6 i = 7 i = 8
Ki(1) 14 6 16 8
Ki(2) 113 105 115 107
Ki(3) 1013 + 13 1013 + 5 1013 + 15 1013 + 7
Ki(4) 1024 + 112 1024 + 104 1024 + 114 1024 + 106
Ki(5) 10E(5) + 112 10E(5) + 104 10E(5) + 114 10E(5) + 106

Table 9: Base 10: Ki(n) for n ≤ 5; the value of K(n) (A006064) is shown in bold font.
In the Ki(5) rows, E(5) = (1013 + 116)/9 = 1111111111124 as in Table 1. See also Fig. 9
in Appendix B.

n E(n)
8 (2 · 1024 + 214)/9

9 (10(10
13+116)/9 + 1024 + 214)/9

10 (2 · 10(1013+116)/9 + 214)/9

11 (10(2·10
13+16)/9 + 10(10

13+116)/9 + 1013 + 114)/9

12 (2 · 10(2·1013+16)/9 + 2 · 1013 + 14)/9

13 (10E(7) + 10(2·10
13+16)/9 + 2 · 1013 + 14)/9

14 (2 · 10E(7) + 2 · 1013 + 14)/9
15 (10E(8) + 10E(7) + E(7)− 2)/9
16 (2 · 10E(8) + E(8)− 2)/9

Table 10: Base 10: E(n) for 8 ≤ n ≤ 16, extending Table 1; E(7) = (1024 + 1013 + 115)/9.
See also Fig. 9 in Appendix B.
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n K(n)

8 10E(8) + 1024 + 103
9 10E(9) + 1024 + 103

10 10E(10) + 10(10
13+116)/9 + 103

11 10E(11) + 10(10
13+116)/9 + 103

12 10E(12) + 10(2·10
13+16)/9 + 1013 + 3

13 10E(13) + 10(2·10
13+16)/9 + 1013 + 3

14 10E(14) + 10(10
24+1013+115)/9 + 1013 + 3

15 10E(15) + 10(10
24+1013+115)/9 + 1013 + 3

16 10E(16) + 10(2·10
24+214)/9 + 1024 + 104

Table 11: Base 10: K(n) for 8 ≤ n ≤ 16, extending Table 1. See also Fig. 9 in Appendix B.

The first 100 terms of the base 10 generalized Thue–Morse sequence τ(n)
are as follows:

0, 2, 2, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 6, 6, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 3, 8, 3, 8, 3,

8, 3, 8, 3, 8, 3, 8, 3, 8, 3, 8, 3, 8, 3, 8, 3, 8, 3, 8, 3, 8, 3, 8, 3, 8, 3, 8, 3, 8, 3, 8, 3, . . .

(84)

(A239896). This can be rewritten as 0, 22, 44, 68, 816, 131, (8, 3)≥19, but now,
unlike the base 4 case, there is no obvious pattern.

10 Growth of K(n)

In this section we discuss the rate of growth of K(n) for a fixed b.
The following theorem generalizes the inequalities (32) and (37). It implies

that, for any base b, {K(n), n ≥ 1} is a sequence of exponential type (cf.
Lemma 4).

Theorem 27. For b ≥ 2 and n ≥ 1,

K(n+ 1) > bK(n) , (85)

except that for odd b ≥ 5, we only have

K(3) > (b− 1)K(2) . (86)

Proof. For n = 1 and 2, the statement can be verified directly from Theorems 9
and 10.

For n = 3 and b = 3 or 5, the statement follows from Table 1. For
n = 3 and odd b ≥ 7, Corollary 21, Theorem 9, and (55) imply that K(4) ≥
bE(4) + 1 +K(2) = b3 + b+ 2. Since K(3) = b2 + 1 (by Theorem 10), we have
K(4) ≥ bK(3).
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For n ≥ 4 and any b, as well as for n = 3 and even b, the inequality (50)
and Theorem 15 imply K(n+ 1) ≥ bE(n+1) ≥ bE(n)+2 ≥ bK(n).

Since K(n) grows rapidly, it is appropriate to describe its value by a tower
of exponentials. For b ≥ 2, any number u ≥ 1 can be written in a unique way
as a “tower”

u = bb
··
·b
ω

, (87)

with 0 < ω ≤ 1. If this tower contains h− 1 b’s and one ω, we call h the base
b height of u, denoted by ht(u). Then ht(u) is one more than the number of
times one has to take logarithms to the base b of u until reaching a number ω
≤ 1.

Examination of the data in Tables 1, 2, 5, 7, 11 (and in the more extended
tables in [12]) suggests the following conjecture.

Conjecture 28. It appears that:
(i) If b = 2 and n ≥ 2, then ht(n) = ⌈log2(n)⌉+ 3;
(i) If b = 3 and n ≥ 3, then ht(n) = ⌈log2(n/5)⌉+ 4;
(iii) If b ≥ 4 is even and n ≥ 2, then ht(n) = ⌈log2(n)⌉+ 2;
(iii) If b ≥ 5 is odd and n ≥ 2, then ht(n) = ⌈log2(n)⌉+ 1.

For example, in base b = 10,

K(3) = 1013 + 1 = 1010
100.04686...

, (88)

which has height 4. The heights of K(2) through K(16) in base 10 (see (2) and
Tables 1, 11) are 3, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, respectively, in agreement
with the conjecture.

There are two reasons for believing the conjecture. First, it is true in every
case that we have checked. Second, from Section 6, K(n) is very roughly equal
to

b(K(⌈n
2 ⌉)+K(⌊n

2 ⌋))/(b−1) , (89)

which suggests that the height of the tower for K(n) is one greater than the
height of the tower for K(

⌈
n
2

⌉
), which would leads to the formulas in the

conjecture. However, two difficulties arise when trying to make this argument
rigorous. One is the fact that if u in (87) has height h, and ω(u) is very close
to 1, bu can have height h+2 instead of h+1. This seems not to happen with
K(n), but we cannot rule out that possibility, even for base 2. The second
difficulty is that (89) ignores the choices that must be made (for b ≥ 4) among
the Ki(n) when determining K(n).

The following example shows the first of these difficulties in a simpler
setting. Consider the sequence defined by the recurrence

a(1) = 0, a(n) = 2a(⌈
n
2 ⌉)+a(⌊n

2 ⌋) for n ≥ 2 . (90)
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This is similar to the recurrence for K(n) in base 2 given in (31) and (30),
except that the additive terms on the right-hand sides of those equations are
missing. The initial values of a(n) for n = 1, 2, 3, . . . are

0, 1, 2, 4, 8, 16, 64, 28, 212, 216, 224, 232, 280, 2128, 2320, 2512, 24352, . . . ,

(A230863). The heights of a(n) for n = 2, ..., 10 are 1, 1, 2, 3, 4, 4, 5, 5, 5, 5. For
11 ≤ n ≤ 40, if 9 · 2i−1 < n ≤ 9 · 2i then ht(a(n)) = i+5, although here we do
not know if this will hold for all n.17

For small values of n, of course, there is no difficulty in computing the
height of K(n). From Theorems 9 and 10, for example, we have ht(K(2)) = 4
if b = 2, or 3 if b ≥ 3, and

ht(K(3)) =


5 if b = 2,

4, if b = 3,

4, if b ≥ 4 is even,

3, if b ≥ 5 is odd.

(91)
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Appendix A Practical Computations

The most difficult task in programming the algorithm in Section 6 is in han-
dling the very large numbers that appear. As we saw in Section 10, to compute
K(100) in base 10, for example, we have to work with numbers that are of
the order of a tower of 10’s of height 9. This problem was solved using C++
by defining a special type of object (we called it the “sparse radix representa-
tion”), which represents an integer in the algebraic form:

1

γ

(
α1b

d1 + α2b
d2 + · · ·+ αkb

dk
)
, (92)

where γ and the αi are integers, with γ ≥ 1 (typically we have γ = 1 or
γ = b − 1) and 1 ≤ αi < b, and di are objects of the same type, satisfying
d1 > d2 > · · · > dk. These objects support the operations of comparison
and addition, as well as multiplication by positive rational numbers (so these
objects form a semi-vector space [4] over the semi-field of positive rationals
Q+).
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Comparison of two objects with γ = 1 is done recursively, starting by
comparing the highest-order terms, and if these are tied, comparing the next-
to-highest terms, and so on. Similarly, addition of two objects with γ = 1 is
done by first combining powers of b with equal exponents, and then reducing
the coefficients into the required range (e.g., βbd with β ≥ b is replaced with
(β mod b) bd+⌊β/b⌋, where the addition in the exponents is performed recur-
sively). If the denominator γ of either of the two numbers is not 1, the objects
(i.e., the coefficients αi) are first multiplied by L, the least common multiple
of their γ’s, the coefficients are then reduced into the required range, and the
resulting objects are compared or added as above (in the case of addition we
set γ for the sum equal to L). We remark that although the representation
of an integer in the form (92) is not unique (e.g., 1

b−1
(b1 + (b− 2)b0) and 2b0

represent the same integer 2), any two such representations can be efficiently
compared and tested for equality.

We also made extensive use of the following PARI/GP program for com-
puting Gen(u) and F (u). The procedure Gen(u,b) uses the recurrence in (13)
to compute Gen(u) in base b for u ∈ N. For example, Gen(10^13+1,10) would
return the three generators 9999999999892, 9999999999901, 10000000000000
of 1013 + 1 in base 10. Correspondingly, the number of generators may be
obtained as #Gen(u,b).

/* The PARI/GP procedure Gen(u,b) */

{ Gen(u,b=10) = my(d,m,k);

if(u<0 || u==1, return([]); );

if(u==0, return([0]); );

d = #digits(u,b)-1;

m = u\b^d;

while( sumdigits(m,b) > u - m*b^d,

m--;

if(m==0, m=b-1; d--; );

);

k = u - m*b^d - sumdigits(m,b);

vecsort( concat( apply(x->x+m*b^d,Gen(k,b)),

apply(x->m*b^d-1-x,Gen((b-1)*d-k-2,b)) ) );

}

Appendix B Flow-charts of computations for

bases 2 through 10

To illustrate how the computation of the Ki(n) and E(n) proceeds, and to
show the complexity of their recursive structure, in Figures 1–9 we provide
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b = 2

n = 1

K0  = 0

n = 2

E = 2

K0 = 2^E + 1 + ...

n = 3

E = 7

K0 = 2^E + 1 + ...

n = 4

E = 12

K0 = 2^E + 1 + ...

n = 5

E = 136

K0 = 2^E + 1 + ...

n = 6

E = 260

K0 = 2^E + 1 + ...

n = 7

E = 4233

K0 = 2^E + 1 + ...

n = 8

E = 8206

K0 = 2^E + 1 + ...

n = 9

E = 2^136+4110

K0 = 2^E + 1 + ...

n = 10

E = 2^137+14

K0 = 2^E + 1 + ...

n = 11

E = 2^260+2^136+138

K0 = 2^E + 1 + ...

n = 12

E = 2^261+262

K0 = 2^E + 1 + ...

n = 13

E = 2^4233+2^260+262

K0 = 2^E + 1 + ...

n = 14

E = 2^4234+262

K0 = 2^E + 1 + ...

n = 15

E = 2^8206+2^4233+4235

K0 = 2^E + 1 + ...

n = 16

E = 2^8207+8208

K0 = 2^E + 1 + ...

Figure 1: Flow-chart illustrating the calculation of E(n), Ki(n), and K(n) for n ≤ 16 in
base b = 2. For a description of these flow-charts see Appendix B.

flow-charts of the computation for bases b = 2, 3, . . . , 10.
For each n ≤ 16, there is a stack of boxed nodes containing the values of

E := E(n) and Ki := Ki(n) for i ∈ I. The shaded node denotes the value of
K(n) (having the minimum value among all K-nodes in the stack).

Each arc between K-nodes corresponds to an instance of the formula (59)
and connects the K-nodes corresponding to Ki−2ci,n(hi,n) and Ki(n). So, for
n > 1, each Ki(n) node has exactly one incoming arc. The value of Ki(n) is
given in the form ci,n(b

E + 1) + . . ., where “. . .” stands for the corresponding
value of Ki−2ci,n(hi,n) (located at the starting node of the incoming arc).

Each E-node for n > 1 has two incoming arcs, shown dashed (which may
coincide and be shown in bold when n is even), illustrating the formula

E(n) =
Kj

(⌈
n
2

⌉)
+K−j−2

(⌊
n
2

⌋)
+ 2

b− 1
,

which holds for some j ∈ I as follows from (67). The incoming arcs start at
the K-nodes corresponding to Kj

(⌈
n
2

⌉)
and K−j−2

(⌊
n
2

⌋)
. Since there may be

several equally good choices for j, we assume that j is such that Kj

(⌈
n
2

⌉)
=

K
(⌈

n
2

⌉)
whenever equality holds in (66); otherwise j is taken to be the smallest

of the possible values. So if equality holds in (66), there exists an incoming
arc from the shaded K-node with the value K

(⌈
n
2

⌉)
.

It can be seen that for b = 4 (Fig. 3) and b = 7 (Fig. 6) there are no incom-
ing arcs to the E-node from shaded K-nodes when n ∈ {13, 15, 16}. Similarly,
there no such arcs for b = 9 (Fig. 8) and n ∈ {8, 9, 10, 11, 12, 13, 14, 16}. That
is, for these b and n, the formula (66) does not hold.
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b = 3

n = 1

K0  = 0

n = 2

E = 1

K0 = 3^E + 1 + ...

n = 3

E = 3

K0 = 3^E + 1 + ...

n = 4

E = 5

K0 = 3^E + 1 + ...

n = 5

E = 17

K0 = 3^E + 1 + ...

n = 6

E = 29

K0 = 3^E + 1 + ...

n = 7

E = 139

K0 = 3^E + 1 + ...

n = 8

E = 249

K0 = 3^E + 1 + ...

n = 9

E = 64570209

K0 = 3^E + 1 + ...

n = 10

E = 129140169

K0 = 3^E + 1 + ...

n = 11

E = 34315253252541

K0 = 3^E + 1 + ...

n = 12

E = 68630377364913

K0 = 3^E + 1 + ...

n = 13

E = (3^139+68630377364943)/2

K0 = 3^E + 1 + ...

n = 14

E = 3^139+30

K0 = 3^E + 1 + ...

n = 15

E = (3^249+3^139+280)/2

K0 = 3^E + 1 + ...

n = 16

E = (2*3^249+500)/2

K0 = 3^E + 1 + ...

Figure 2: Flow-chart illustrating the calculation of E(n), Ki(n), and K(n) for n ≤ 16 in
base b = 3. Note that apart from the labels, this is the same flow-chart as in Fig. 1.

b = 4

n = 1

K0  = 0

K1 = 4

K2 = 2

n = 2

E = 2

K0 = 4^E + 1 + ...

K1 = 4^E + 1 + ...

K2 = 4^E + 1 + ...

n = 3

E = 7

K0 = 4^E + 1 + ...

K1 = 4^E + 1 + ...

K2 = 4^E + 1 + ...

n = 4

E = 12

K0 = 2*(4^E + 1) + ...

K1 = 4^E + 1 + ...

K2 = 3*(4^E + 1) + ...

n = 5

E = 5468

K0 = 2*(4^E + 1) + ...

K1 = 4^E + 1 + ...

K2 = 3*(4^E + 1) + ...

n = 6

E = 10924

K0 = 2*(4^E + 1) + ...

K1 = 4^E + 1 + ...

K2 = 3*(4^E + 1) + ...

n = 7

E = 5597880

K0 = 4^E + 1 + ...

K1 = 2*(4^E + 1) + ...

K2 = 4^E + 1 + ...

n = 8

E = 16777229

K0 = 4^E + 1 + ...

K1 = 2*(4^E + 1) + ...

K2 = 4^E + 1 + ...

n = 9

E = (4^5468+33554471)/3

K0 = 4^E + 1 + ...

K1 = 2*(4^E + 1) + ...

K2 = 4^E + 1 + ...

n = 10

E = (3*4^5468+39)/3

K0 = 4^E + 1 + ...

K1 = 2*(4^E + 1) + ...

K2 = 4^E + 1 + ...

n = 11

E = (4^10924+2*4^5468+16407)/3

K0 = 4^E + 1 + ...

K1 = 2*(4^E + 1) + ...

K2 = 4^E + 1 + ...

n = 12

E = (3*4^10924+32775)/3

K0 = 4^E + 1 + ...

K1 = 2*(4^E + 1) + ...

K2 = 4^E + 1 + ...

n = 13

E = (4^5597880+4^10924+16793623)/3

K0 = 4^E + 1 + ...

K1 = 2*(4^E + 1) + ...

K2 = 4^E + 1 + ...

n = 14

E = (2*4^5597880+32812)/3

K0 = 2*(4^E + 1) + ...

K1 = 4^E + 1 + ...

K2 = 3*(4^E + 1) + ...

n = 15

E = (4^16777229+4^5597880+33570859)/3

K0 = 2*(4^E + 1) + ...

K1 = 4^E + 1 + ...

K2 = 3*(4^E + 1) + ...

n = 16

E = (2*4^16777229+16777258)/3

K0 = 2*(4^E + 1) + ...

K1 = 4^E + 1 + ...

K2 = 3*(4^E + 1) + ...

Figure 3: Flow-chart illustrating the calculation of E(n), Ki(n), and K(n) for n ≤ 16 in
base b = 4.
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b = 5

n = 1

K0  = 0

K2 = 2

n = 2

E = 1

K0 = 5^E + 1 + ...

K2 = 5^E + 1 + ...

n = 3

E = 2

K0 = 5^E + 1 + ...

K2 = 5^E + 1 + ...

n = 4

E = 4

K0 = 5^E + 1 + ...

K2 = 5^E + 1 + ...

n = 5

E = 9

K0 = 5^E + 1 + ...

K2 = 5^E + 1 + ...

n = 6

E = 15

K0 = 5^E + 1 + ...

K2 = 5^E + 1 + ...

n = 7

E = 165

K0 = 5^E + 1 + ...

K2 = 5^E + 1 + ...

n = 8

E = 317

K0 = 5^E + 1 + ...

K2 = 5^E + 1 + ...

n = 9

E = 488442

K0 = 5^E + 1 + ...

K2 = 5^E + 1 + ...

n = 10

E = 976572

K0 = 5^E + 1 + ...

K2 = 5^E + 1 + ...

n = 11

E = 7629882822

K0 = 5^E + 1 + ...

K2 = 5^E + 1 + ...

n = 12

E = 15258789078

K0 = 5^E + 1 + ...

K2 = 5^E + 1 + ...

n = 13

E = (5^165+30517578187)/4

K0 = 5^E + 1 + ...

K2 = 5^E + 1 + ...

n = 14

E = (2*5^165+662)/4

K0 = 5^E + 1 + ...

K2 = 5^E + 1 + ...

n = 15

E = (5^317+5^165+662)/4

K0 = 5^E + 1 + ...

K2 = 5^E + 1 + ...

n = 16

E = (5^317+635)/2

K0 = 5^E + 1 + ...

K2 = 5^E + 1 + ...

Figure 4: Flow-chart illustrating the calculation of E(n), Ki(n), and K(n) for n ≤ 16 in
base b = 5.
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b = 6

n = 1

K0  = 0

K1 = 6

K2 = 2

K3 = 8

K4 = 4

n = 2

E = 2

K0 = 6^E + 1 + ...

K1 = 6^E + 1 + ...

K2 = 6^E + 1 + ...

K3 = 6^E + 1 + ...

K4 = 6^E + 1 + ...

n = 3

E = 9

K0 = 6^E + 1 + ...

K1 = 6^E + 1 + ...

K2 = 6^E + 1 + ...

K3 = 6^E + 1 + ...

K4 = 6^E + 1 + ...

n = 4

E = 16

K0 = 2*(6^E + 1) + ...

K1 = 6^E + 1 + ...

K2 = 3*(6^E + 1) + ...

K3 = 6^E + 1 + ...

K4 = 6^E + 1 + ...

n = 5

E = 2015548

K0 = 2*(6^E + 1) + ...

K1 = 6^E + 1 + ...

K2 = 3*(6^E + 1) + ...

K3 = 6^E + 1 + ...

K4 = 6^E + 1 + ...

n = 6

E = 4031080

K0 = 2*(6^E + 1) + ...

K1 = 6^E + 1 + ...

K2 = 3*(6^E + 1) + ...

K3 = 6^E + 1 + ...

K4 = 6^E + 1 + ...

n = 7

E = 564223997039

K0 = 2*(6^E + 1) + ...

K1 = 6^E + 1 + ...

K2 = 3*(6^E + 1) + ...

K3 = 6^E + 1 + ...

K4 = 6^E + 1 + ...

n = 8

E = 1128443962998

K0 = 3*(6^E + 1) + ...

K1 = 6^E + 1 + ...

K2 = 4*(6^E + 1) + ...

K3 = 2*(6^E + 1) + ...

K4 = 5*(6^E + 1) + ...

n = 9

E = (6^2015548+2821109907534)/5

K0 = 3*(6^E + 1) + ...

K1 = 6^E + 1 + ...

K2 = 4*(6^E + 1) + ...

K3 = 2*(6^E + 1) + ...

K4 = 5*(6^E + 1) + ...

n = 10

E = (2*6^2015548+78)/5

K0 = 3*(6^E + 1) + ...

K1 = 6^E + 1 + ...

K2 = 4*(6^E + 1) + ...

K3 = 2*(6^E + 1) + ...

K4 = 5*(6^E + 1) + ...

n = 11

E = (6^4031080+6^2015548+10077738)/5

K0 = 3*(6^E + 1) + ...

K1 = 6^E + 1 + ...

K2 = 4*(6^E + 1) + ...

K3 = 2*(6^E + 1) + ...

K4 = 5*(6^E + 1) + ...

n = 12

E = (2*6^4031080+20155398)/5

K0 = 3*(6^E + 1) + ...

K1 = 6^E + 1 + ...

K2 = 4*(6^E + 1) + ...

K3 = 2*(6^E + 1) + ...

K4 = 5*(6^E + 1) + ...

n = 13

E = (6^564223997039+6^4031080+20155398)/5

K0 = 3*(6^E + 1) + ...

K1 = 6^E + 1 + ...

K2 = 4*(6^E + 1) + ...

K3 = 2*(6^E + 1) + ...

K4 = 5*(6^E + 1) + ...

n = 14

E = (2*6^564223997039+20155398)/5

K0 = 3*(6^E + 1) + ...

K1 = 6^E + 1 + ...

K2 = 4*(6^E + 1) + ...

K3 = 2*(6^E + 1) + ...

K4 = 5*(6^E + 1) + ...

n = 15

E = (6^1128443962998+3*6^564223997039+5642219814996)/5

K0 = 2*(6^E + 1) + ...

K1 = 2*(6^E + 1) + ...

K2 = 3*(6^E + 1) + ...

K3 = 6^E + 1 + ...

K4 = 6^E + 1 + ...

n = 16

E = (5*6^1128443962998+5642219814995)/5

K0 = 6^E + 1 + ...

K1 = 2*(6^E + 1) + ...

K2 = 6^E + 1 + ...

K3 = 6^E + 1 + ...

K4 = 6^E + 1 + ...

Figure 5: Flow-chart illustrating the calculation of E(n), Ki(n), and K(n) for n ≤ 16 in
base b = 6.
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b = 7

n = 1

K0  = 0

K2 = 2

K4 = 4

n = 2

E = 1

K0 = 7^E + 1 + ...

K2 = 7^E + 1 + ...

K4 = 7^E + 1 + ...

n = 3

E = 2

K0 = 7^E + 1 + ...

K2 = 7^E + 1 + ...

K4 = 7^E + 1 + ...

n = 4

E = 3

K0 = 2*(7^E + 1) + ...

K2 = 3*(7^E + 1) + ...

K4 = 7^E + 1 + ...

n = 5

E = 10

K0 = 2*(7^E + 1) + ...

K2 = 3*(7^E + 1) + ...

K4 = 7^E + 1 + ...

n = 6

E = 17

K0 = 2*(7^E + 1) + ...

K2 = 3*(7^E + 1) + ...

K4 = 7^E + 1 + ...

n = 7

E = 69

K0 = 7^E + 1 + ...

K2 = 7^E + 1 + ...

K4 = 2*(7^E + 1) + ...

n = 8

E = 175

K0 = 7^E + 1 + ...

K2 = 7^E + 1 + ...

K4 = 2*(7^E + 1) + ...

n = 9

E = 47079326

K0 = 7^E + 1 + ...

K2 = 7^E + 1 + ...

K4 = 2*(7^E + 1) + ...

n = 10

E = 141237628

K0 = 7^E + 1 + ...

K2 = 7^E + 1 + ...

K4 = 2*(7^E + 1) + ...

n = 11

E = 38771846489628

K0 = 7^E + 1 + ...

K2 = 7^E + 1 + ...

K4 = 2*(7^E + 1) + ...

n = 12

E = 116315256993621

K0 = 7^E + 1 + ...

K2 = 7^E + 1 + ...

K4 = 2*(7^E + 1) + ...

n = 13

E = (7^69+232630513987613)/6

K0 = 7^E + 1 + ...

K2 = 7^E + 1 + ...

K4 = 2*(7^E + 1) + ...

n = 14

E = (2*7^69+124)/6

K0 = 2*(7^E + 1) + ...

K2 = 3*(7^E + 1) + ...

K4 = 7^E + 1 + ...

n = 15

E = (7^175+7^69+760)/6

K0 = 2*(7^E + 1) + ...

K2 = 3*(7^E + 1) + ...

K4 = 7^E + 1 + ...

n = 16

E = (2*7^175+1396)/6

K0 = 2*(7^E + 1) + ...

K2 = 3*(7^E + 1) + ...

K4 = 7^E + 1 + ...

Figure 6: Flow-chart illustrating the calculation of E(n), Ki(n), and K(n) for n ≤ 16 in
base b = 7. Note that apart from the labels, this is the same flow-chart as in Fig. 3.
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b = 8

n = 1

K0  = 0

K1 = 8

K2 = 2

K3 = 10

K4 = 4

K5 = 12

K6 = 6

n = 2

E = 2

K0 = 8^E + 1 + ...

K1 = 8^E + 1 + ...

K2 = 8^E + 1 + ...

K3 = 8^E + 1 + ...

K4 = 8^E + 1 + ...

K5 = 8^E + 1 + ...

K6 = 8^E + 1 + ...

n = 3

E = 11

K0 = 8^E + 1 + ...

K1 = 8^E + 1 + ...

K2 = 8^E + 1 + ...

K3 = 8^E + 1 + ...

K4 = 8^E + 1 + ...

K5 = 8^E + 1 + ...

K6 = 8^E + 1 + ...

n = 4

E = 20

K0 = 2*(8^E + 1) + ...

K1 = 8^E + 1 + ...

K2 = 3*(8^E + 1) + ...

K3 = 8^E + 1 + ...

K4 = 8^E + 1 + ...

K5 = 8^E + 1 + ...

K6 = 8^E + 1 + ...

n = 5

E = 1227133524

K0 = 2*(8^E + 1) + ...

K1 = 8^E + 1 + ...

K2 = 3*(8^E + 1) + ...

K3 = 8^E + 1 + ...

K4 = 8^E + 1 + ...

K5 = 8^E + 1 + ...

K6 = 8^E + 1 + ...

n = 6

E = 2454267028

K0 = 2*(8^E + 1) + ...

K1 = 8^E + 1 + ...

K2 = 3*(8^E + 1) + ...

K3 = 8^E + 1 + ...

K4 = 8^E + 1 + ...

K5 = 8^E + 1 + ...

K6 = 8^E + 1 + ...

n = 7

E = 164703073313825949

K0 = 2*(8^E + 1) + ...

K1 = 8^E + 1 + ...

K2 = 3*(8^E + 1) + ...

K3 = 8^E + 1 + ...

K4 = 8^E + 1 + ...

K5 = 8^E + 1 + ...

K6 = 8^E + 1 + ...

n = 8

E = 329406144173384870

K0 = 3*(8^E + 1) + ...

K1 = 8^E + 1 + ...

K2 = 4*(8^E + 1) + ...

K3 = 8^E + 1 + ...

K4 = 5*(8^E + 1) + ...

K5 = 2*(8^E + 1) + ...

K6 = 8^E + 1 + ...

n = 9

E = (8^1227133524+1152921504606847114)/7

K0 = 3*(8^E + 1) + ...

K1 = 8^E + 1 + ...

K2 = 4*(8^E + 1) + ...

K3 = 8^E + 1 + ...

K4 = 5*(8^E + 1) + ...

K5 = 2*(8^E + 1) + ...

K6 = 8^E + 1 + ...

n = 10

E = (2*8^1227133524+138)/7

K0 = 3*(8^E + 1) + ...

K1 = 8^E + 1 + ...

K2 = 4*(8^E + 1) + ...

K3 = 8^E + 1 + ...

K4 = 5*(8^E + 1) + ...

K5 = 2*(8^E + 1) + ...

K6 = 8^E + 1 + ...

n = 11

E = (8^2454267028+8^1227133524+8589934666)/7

K0 = 3*(8^E + 1) + ...

K1 = 8^E + 1 + ...

K2 = 4*(8^E + 1) + ...

K3 = 8^E + 1 + ...

K4 = 5*(8^E + 1) + ...

K5 = 2*(8^E + 1) + ...

K6 = 8^E + 1 + ...

n = 12

E = (2*8^2454267028+17179869194)/7

K0 = 3*(8^E + 1) + ...

K1 = 8^E + 1 + ...

K2 = 4*(8^E + 1) + ...

K3 = 8^E + 1 + ...

K4 = 5*(8^E + 1) + ...

K5 = 2*(8^E + 1) + ...

K6 = 8^E + 1 + ...

n = 13

E = (8^164703073313825949+8^2454267028+17179869194)/7

K0 = 3*(8^E + 1) + ...

K1 = 8^E + 1 + ...

K2 = 4*(8^E + 1) + ...

K3 = 8^E + 1 + ...

K4 = 5*(8^E + 1) + ...

K5 = 2*(8^E + 1) + ...

K6 = 8^E + 1 + ...

n = 14

E = (2*8^164703073313825949+17179869194)/7

K0 = 3*(8^E + 1) + ...

K1 = 8^E + 1 + ...

K2 = 4*(8^E + 1) + ...

K3 = 8^E + 1 + ...

K4 = 5*(8^E + 1) + ...

K5 = 2*(8^E + 1) + ...

K6 = 8^E + 1 + ...

n = 15

E = (8^329406144173384870+8^164703073313825949+1152921513196781641)/7

K0 = 3*(8^E + 1) + ...

K1 = 8^E + 1 + ...

K2 = 4*(8^E + 1) + ...

K3 = 8^E + 1 + ...

K4 = 5*(8^E + 1) + ...

K5 = 2*(8^E + 1) + ...

K6 = 8^E + 1 + ...

n = 16

E = (2*8^329406144173384870+2305843009213694088)/7

K0 = 4*(8^E + 1) + ...

K1 = 8^E + 1 + ...

K2 = 5*(8^E + 1) + ...

K3 = 2*(8^E + 1) + ...

K4 = 6*(8^E + 1) + ...

K5 = 3*(8^E + 1) + ...

K6 = 7*(8^E + 1) + ...

Figure 7: Flow-chart illustrating the calculation of E(n), Ki(n), and K(n) for n ≤ 16 in
base b = 8.
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b = 9

n = 1

K0  = 0

K2 = 2

K4 = 4

K6 = 6

n = 2

E = 1

K0 = 9^E + 1 + ...

K2 = 9^E + 1 + ...

K4 = 9^E + 1 + ...

K6 = 9^E + 1 + ...

n = 3

E = 2

K0 = 9^E + 1 + ...

K2 = 9^E + 1 + ...

K4 = 9^E + 1 + ...

K6 = 9^E + 1 + ...

n = 4

E = 3

K0 = 2*(9^E + 1) + ...

K2 = 3*(9^E + 1) + ...

K4 = 9^E + 1 + ...

K6 = 9^E + 1 + ...

n = 5

E = 12

K0 = 2*(9^E + 1) + ...

K2 = 3*(9^E + 1) + ...

K4 = 9^E + 1 + ...

K6 = 9^E + 1 + ...

n = 6

E = 21

K0 = 2*(9^E + 1) + ...

K2 = 3*(9^E + 1) + ...

K4 = 9^E + 1 + ...

K6 = 9^E + 1 + ...

n = 7

E = 103

K0 = 2*(9^E + 1) + ...

K2 = 3*(9^E + 1) + ...

K4 = 9^E + 1 + ...

K6 = 9^E + 1 + ...

n = 8

E = 277

K0 = 9^E + 1 + ...

K2 = 9^E + 1 + ...

K4 = 2*(9^E + 1) + ...

K6 = 3*(9^E + 1) + ...

n = 9

E = 35303692246

K0 = 9^E + 1 + ...

K2 = 9^E + 1 + ...

K4 = 2*(9^E + 1) + ...

K6 = 3*(9^E + 1) + ...

n = 10

E = 105911076184

K0 = 9^E + 1 + ...

K2 = 9^E + 1 + ...

K4 = 2*(9^E + 1) + ...

K6 = 3*(9^E + 1) + ...

n = 11

E = (9^21+564859073063)/8

K0 = 9^E + 1 + ...

K2 = 9^E + 1 + ...

K4 = 2*(9^E + 1) + ...

K6 = 3*(9^E + 1) + ...

n = 12

E = (3*9^21+173)/8

K0 = 9^E + 1 + ...

K2 = 9^E + 1 + ...

K4 = 2*(9^E + 1) + ...

K6 = 3*(9^E + 1) + ...

n = 13

E = (9^103+2*9^21+829)/8

K0 = 9^E + 1 + ...

K2 = 9^E + 1 + ...

K4 = 2*(9^E + 1) + ...

K6 = 3*(9^E + 1) + ...

n = 14

E = (3*9^103+1485)/8

K0 = 9^E + 1 + ...

K2 = 9^E + 1 + ...

K4 = 2*(9^E + 1) + ...

K6 = 3*(9^E + 1) + ...

n = 15

E = (9^277+9^103+1486)/8

K0 = 9^E + 1 + ...

K2 = 9^E + 1 + ...

K4 = 2*(9^E + 1) + ...

K6 = 3*(9^E + 1) + ...

n = 16

E = (3*9^277+2949)/8

K0 = 2*(9^E + 1) + ...

K2 = 3*(9^E + 1) + ...

K4 = 9^E + 1 + ...

K6 = 9^E + 1 + ...

Figure 8: Flow-chart illustrating the calculation of E(n), Ki(n), and K(n) for n ≤ 16 in
base b = 9.
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b = 10

n = 1

K0  = 0

K1 = 10

K2 = 2

K3 = 12

K4 = 4

K5 = 14

K6 = 6

K7 = 16

K8 = 8

n = 2

E = 2

K0 = 10^E + 1 + ...

K1 = 10^E + 1 + ...

K2 = 10^E + 1 + ...

K3 = 10^E + 1 + ...

K4 = 10^E + 1 + ...

K5 = 10^E + 1 + ...

K6 = 10^E + 1 + ...

K7 = 10^E + 1 + ...

K8 = 10^E + 1 + ...

n = 3

E = 13

K0 = 10^E + 1 + ...

K1 = 10^E + 1 + ...

K2 = 10^E + 1 + ...

K3 = 10^E + 1 + ...

K4 = 10^E + 1 + ...

K5 = 10^E + 1 + ...

K6 = 10^E + 1 + ...

K7 = 10^E + 1 + ...

K8 = 10^E + 1 + ...

n = 4

E = 24

K0 = 2*(10^E + 1) + ...

K1 = 10^E + 1 + ...

K2 = 3*(10^E + 1) + ...

K3 = 10^E + 1 + ...

K4 = 10^E + 1 + ...

K5 = 10^E + 1 + ...

K6 = 10^E + 1 + ...

K7 = 10^E + 1 + ...

K8 = 10^E + 1 + ...

n = 5

E = 1111111111124

K0 = 2*(10^E + 1) + ...

K1 = 10^E + 1 + ...

K2 = 3*(10^E + 1) + ...

K3 = 10^E + 1 + ...

K4 = 10^E + 1 + ...

K5 = 10^E + 1 + ...

K6 = 10^E + 1 + ...

K7 = 10^E + 1 + ...

K8 = 10^E + 1 + ...

n = 6

E = 2222222222224

K0 = 2*(10^E + 1) + ...

K1 = 10^E + 1 + ...

K2 = 3*(10^E + 1) + ...

K3 = 10^E + 1 + ...

K4 = 10^E + 1 + ...

K5 = 10^E + 1 + ...

K6 = 10^E + 1 + ...

K7 = 10^E + 1 + ...

K8 = 10^E + 1 + ...

n = 7

E = (10^24+10000000000115)/9

K0 = 2*(10^E + 1) + ...

K1 = 10^E + 1 + ...

K2 = 3*(10^E + 1) + ...

K3 = 10^E + 1 + ...

K4 = 10^E + 1 + ...

K5 = 10^E + 1 + ...

K6 = 10^E + 1 + ...

K7 = 10^E + 1 + ...

K8 = 10^E + 1 + ...

n = 8

E = (2*10^24+214)/9

K0 = 3*(10^E + 1) + ...

K1 = 10^E + 1 + ...

K2 = 4*(10^E + 1) + ...

K3 = 10^E + 1 + ...

K4 = 5*(10^E + 1) + ...

K5 = 10^E + 1 + ...

K6 = 10^E + 1 + ...

K7 = 2*(10^E + 1) + ...

K8 = 10^E + 1 + ...

n = 9

E = (10^1111111111124+10^24+214)/9

K0 = 3*(10^E + 1) + ...

K1 = 10^E + 1 + ...

K2 = 4*(10^E + 1) + ...

K3 = 10^E + 1 + ...

K4 = 5*(10^E + 1) + ...

K5 = 10^E + 1 + ...

K6 = 10^E + 1 + ...

K7 = 2*(10^E + 1) + ...

K8 = 10^E + 1 + ...

n = 10

E = (2*10^1111111111124+214)/9

K0 = 3*(10^E + 1) + ...

K1 = 10^E + 1 + ...

K2 = 4*(10^E + 1) + ...

K3 = 10^E + 1 + ...

K4 = 5*(10^E + 1) + ...

K5 = 10^E + 1 + ...

K6 = 10^E + 1 + ...

K7 = 2*(10^E + 1) + ...

K8 = 10^E + 1 + ...

n = 11

E = (10^2222222222224+10^1111111111124+10000000000114)/9

K0 = 3*(10^E + 1) + ...

K1 = 10^E + 1 + ...

K2 = 4*(10^E + 1) + ...

K3 = 10^E + 1 + ...

K4 = 5*(10^E + 1) + ...

K5 = 10^E + 1 + ...

K6 = 10^E + 1 + ...

K7 = 2*(10^E + 1) + ...

K8 = 10^E + 1 + ...

n = 12

E = (2*10^2222222222224+20000000000014)/9

K0 = 3*(10^E + 1) + ...

K1 = 10^E + 1 + ...

K2 = 4*(10^E + 1) + ...

K3 = 10^E + 1 + ...

K4 = 5*(10^E + 1) + ...

K5 = 10^E + 1 + ...

K6 = 10^E + 1 + ...

K7 = 2*(10^E + 1) + ...

K8 = 10^E + 1 + ...

n = 13

E = (10^((10^24+10000000000115)/9)+10^2222222222224+20000000000014)/9

K0 = 3*(10^E + 1) + ...

K1 = 10^E + 1 + ...

K2 = 4*(10^E + 1) + ...

K3 = 10^E + 1 + ...

K4 = 5*(10^E + 1) + ...

K5 = 10^E + 1 + ...

K6 = 10^E + 1 + ...

K7 = 2*(10^E + 1) + ...

K8 = 10^E + 1 + ...

n = 14

E = (2*10^((10^24+10000000000115)/9)+20000000000014)/9

K0 = 3*(10^E + 1) + ...

K1 = 10^E + 1 + ...

K2 = 4*(10^E + 1) + ...

K3 = 10^E + 1 + ...

K4 = 5*(10^E + 1) + ...

K5 = 10^E + 1 + ...

K6 = 10^E + 1 + ...

K7 = 2*(10^E + 1) + ...

K8 = 10^E + 1 + ...

n = 15

E = (10^((2*10^24+214)/9)+10^((10^24+10000000000115)/9)+10^24+10000000000113)/9

K0 = 3*(10^E + 1) + ...

K1 = 10^E + 1 + ...

K2 = 4*(10^E + 1) + ...

K3 = 10^E + 1 + ...

K4 = 5*(10^E + 1) + ...

K5 = 10^E + 1 + ...

K6 = 10^E + 1 + ...

K7 = 2*(10^E + 1) + ...

K8 = 10^E + 1 + ...

n = 16

E = (2*10^((2*10^24+214)/9)+2*10^24+212)/9

K0 = 4*(10^E + 1) + ...

K1 = 10^E + 1 + ...

K2 = 5*(10^E + 1) + ...

K3 = 10^E + 1 + ...

K4 = 6*(10^E + 1) + ...

K5 = 2*(10^E + 1) + ...

K6 = 7*(10^E + 1) + ...

K7 = 3*(10^E + 1) + ...

K8 = 10^E + 1 + ...

Figure 9: Flow-chart illustrating the calculation of E(n), Ki(n), and K(n) for n ≤ 16 in
base b = 10.
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