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ON ADDITIVE BASES AND HARMONIOUS GRAPHS*

R. L. GRAHAMS" AND N. J. A. SLOANE"

Abstract. This paper first considers several types of additive bases. A typical problem is to find nv(k), the
largest n for which there exists a set {0 al < a2 <" < ak} Of distinct integers modulo n such that each in
the range 0 =< -< n can be written at least once as mai + aj (modulo n) with </’. For example, nv(8) 24,
as illustrated by the set {0, 1, 2, 4, 8, 13, 18, 22}. The other problems arise if at least is changed to at most, or

</’ to -</’, or if the words modulo n are omitted. Tables and bounds are given for each of these problems.
Then a closely related graph labeling problem is studied. A connected graph with n edges is called harmonious
if it is possible to label the vertices with distinct numbers (modulo n) in such a way that the edge sums are also
distinct (modulo n). Some infinite families of graphs (odd cycles, ladders, wheels,...) are shown to be
harmonious while others (even cycles, most complete or complete bipartite graphs, .) are not. In fact most
graphs are not harmonious. The function nv(k) is the size of the largest harmonious subgraph of the complete
graph on k vertices.

1. Additive bases. This paper is mostly concerned with modular versions of certain
additive bases for the integers {1, 2,. , n}, and with a closely related graph labeling
problem, that of determining which graphs are harmonious.

Although our primary interest is in just two of these function (nv and vv), it is most
convenient to begin by defining eight closely related functions. Our notation is that
[1, n ]: {1, 2, , n }, Zn denotes the integers modulo n, and k >= 2 is a natural number.
The ill’st four functions are concerned with covering [1, n] or Zn with sums.

n(k) (resp. n(k)) is the largest number re such that there exists a k-element set
A {0 al < a2 <" < ak} of integers with the property that each r [1, n] can be
written in at least one way as r ai + aj, with </" (resp <- j).

nv(k) (resp. n(k)) is the largest number n such that there exists a subset
A {0 al < a2 <" < ak} Of Z, with the property that each r Z can be written in at
least one way as r ai + a. with </" (resp. -<_/’).
Since this does not assign a value to nv(2) we define nv(2) 1. The other four functions
are concerned with packing [0, v] or Z with sums.

v(k) (resp. vt(k)) is the smallest number v such that there exists a k-element set
A {0 a < a2 <" < ak} of integers with the property that the sums ai + a for </"
(resp. <= f) belong to [0, v and represent each element of [0, v at most once.

vv(k) (resp. v(k)) is the smallest number v such that there exists a subset
A {0 al < a2 <. < ak} of Z with the property that each r 7/ can be written in at
most one way as r ag + ai with < f (resp. f).

Although nv and v do not seem to have been studied before, the other functions
have an extensive literature. For example n is the subject of a series of papers by
Rohrbach, Moser, Hammerer, Hofmeister, and others ([36], [37], [46], [59]-[61], [65],
[79]) who refer to the set A as an interval basis (Abschnittsbasis), or 2-basis, and by
Lunnon and others ([1], [la], [43a], [56], [76]) under the name of the postage stamp
problem, n was briefly mentioned by Rohrbach in [66]. The functions vt and v have
been studied by Singer, Erd6s, Turfin, Bose, Chowla and others (see [11], [21], [40,
Chapt. II]). The set A associated with v is often called a B2-sequence. Other types of
additive bases have been defined in [14], [19], [40], [45], [51]. (Since this paper
impinges on many different parts of combinatorics we have attempted to include a fairly
complete bibliography.)
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Our interest in vv stems from its application to error-correcting codes. Let
A (k, 2d, w) denote the largest possible number of binary vectors, each containing w l’s
and k-w O’s, such that any two vectors differ in at least 2d places ([6], [57]). It can
be shown ([28], [29]) that

A(k, 6, w)>-;,ik
and there is a similar bound for A(k, 2d, w) using sets in which all sums of d- 1 distinct
elements are distinct modulo v. When combined with Theorem 1, this implies

A(k, 6, w)>- (1)) as kwi (1+o

which is stronger than any previously known bound (see [28]). We should also point out
that the function A(k, 2d, w) has been studied under another guise in extremal set
theory by Erd6s, Hanani, Sch6nheim, Kalbfleisch, Stanton and others (see [20], [73],
[77]) in the following context. Let D(t, k, s) denote the maximum number of k-element
subsets of an s-element set S such that every t-element subset of S is contained in at
most one of the k-element subsets. Then D(t, k, s) A(s, 2k 2t + 2, k).

We shall justify our interest in nv in 3.

2. Tbles, bonSs n8 properties. Tables I-IV give values of these eight functions,
and examples of the sets A which attain them. Usually the (lexicographically) first

TABLE
n(k) and no(k).

k n (k) An example of the set A.

2 {0, 1}
3 3 {0, 1,2}
4 6 {0, 1, 2, 4}
5 9 {0, 1, 2, 3, 6}
6 13 {0,1,2,3,6,10}
7 17 {0,1,2,3,4,8,13}
8 22 {0, 1, 2, 3, 4, 8, 13, 18}
9 27 {0,1,2,3,4,5,10,16,22}

10 33 {0, 1, 2, 3, 4, 5, 10, 16, 22, 28}
11 40 {0,1,2,4,5,6,10,13,20,27,34}
12 47 {0, 1, 2, 3, 6, 10, 14, 18, 21, 22, 23, 24}
13 56 {0, 1, 2, 4, 6, 7, 12, 14, 17, 21, 30, 39, 48}
14 65 {0, 1, 2, 4, 6, 7, 12, 14, 17, 21, 30, 39, 48, 57}

k ha(k) An example of the set A.

2 2 {0, 1}
3 4 {0, 1, 2}
4 8 {0, 1, 3, 4}
5 12 {0, 1, 3, 5, 6}
6 16 {0,1,3,5,7,8}
7 20 {0, 1, 2, 5, 8, 9, 10}
8 26 {0, 1, 2, 5, 8, 11, 12, 13}
9 32 {0, 1, 2, 5, 8, 11, 14, 15, 16}
10 40 {0, 1, 3, 4, 9, 11, 16, 17, 19, 20}
11 46 {0, 1, 2, 3, 7, 11, 15, 19, 21, 22, 24}
12 54 {0, 1, 2, 3, 7, 11, 15, 19, 23, 25, 26, 28}
13 64 {0, 1, 3, 4, 9, 11, 16, 21, 23, 28, 29, 31, 32}
14 72 {0, 1, 3, 4, 9, 11, 16, 20, 25, 27, 32, 33, 35, 36}
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TABLE II
n,(k) and n,(k).

k nv(k) An example of the set A. k n(k) An example of the set A.

2 1 2 3 {0, 1)
3 3 {0, 1, 2) 3 5 {0, 1, 2)
4 6 {0, 1, 2, 4} 4 9 {0, 1, 3, 4)
5 9 {0, 1, 2, 4, 7} 5 13 {0, 1, 2, 6, 9}
6 13 {0, 1, 2, 3, 6, 10} 6 19 {0, 1, 3, 12, 14, 15)
7 17 {0, 1, 2, 3, 4, 8, 13} 7 21 {0, 1, 2, 3, 4, 10, 15}
8 24 {0, 1, 2, 4, 8, 13, 22} 8 30 {0, 1,.3, 9, 11, 12, 16, 26}
9 30 {0, 1, 2, 4, 10, 15, 17, 22, 28} 9 35 {0, 1, 2, 7, 8, 1.1, 26, 29, 30}

10 36 {0, 1, 2, 3, 6, 12, 19, 20, 27, 33}

TABLE III
vo,(k) and vt(k).

k vo,(k) An example of the set A. k v(k) An example of the set A.

2 {0,1} 2 2 {0,1}
3 3 {0, 1, 2} 3 6 {0, 1, 3}
4 6 {0, 1, 2, 4} 4 12 {0, 1, 4, 6}
5 11 {0, 1, 2, 4, 7} 5 22 {0, 1, 4, 9, 11}
6 19 {0, 1, 2, 4, 7, 12} 6 34 {0, 1, 4, 10, 12, 17}
7 31 {0, 1, 2, 4, 8, 13, 18} 7 50 {0, 1, 4, 10, 18, 23, 25}
8 43 {0, 1, 2, 4, 8, 14, 19, 24} 8 68 {0, 1, 4, 9, 15, 22, 32, 34}
9 63 {0, 1, 2, 4, 8, 15, 24, 29, 34} 9 88 {0, 1, 5, 12, 25, 27, 35, 41, 44}
10 80 {0, 1, 2, 4, 8, 15, 24, 29, 34, 46} 10 110 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55}

k

TABLE IV
v,(k) and v(k).

An example of the set A.

2 2 {0, 1}
3 3 {0, 1,2}
4 6 {0, 1, 2, 4}
5 11 {0, 1, 2, 4, 7}
6 19 {0,1,2,4,7,12}
7 28 {0, 1, 2, 4, 8, 15, 20}
8 40 {0, 1, 5, 7, 9, 20, 23, 35}
9 56 {0, 1, 2, 4, 7, 13, 24, 32, 42}
10 72 {0, 1, 2, 4, 7, 13, 23, 31, 39, 59}

k v(k) An example of the set A.

2 3 {0, 1}
3 7 {0, 1, 3}
4 13 {0, 1, 3, 9}
5 21 {0,1,4,14,16}
6 31 {0,1,3,8,12,18}
7 48 {0, 1, 3, 15, 20, 38, 42}
8 57 {0, 1, 3, 13, 32, 36, 43, 52}
9 73 {0, 1, 3, 7, 15, 31, 36, 54, 63}
10 91 {0, 1, 3, 9, 27, 49, 56, 61, 77, 81}
11 9

12 133 {0, 1, 3, 12, 20, 34, 38, 81, 88, 94, 104, 109}
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example of A is given. The entries in the no table are taken from [1], [56], and [76], and
the entries in the v table which come from difference sets (see (8)) are taken from [2a,
Table 6.1]. The other entries are believed to be new.

The best bounds presently known for these functions are as follows.
THEOREM 1.

(1) (k 1)a < n,,(k), n(k) < .4802ka + O(k),

(2) (k 1)2 < n.(k), n,(k) < 1/2k 2 + O(k),

(3) 2k2-O(k3/a)<v,(k), vo(k)<2ka+O(k36/23),
(4) k2- O(k) < vn,(k < k2 + 0(k36/23),
(5) k2- k + 1 -< v(k) < k2 + 0(k36/23).

Discussion of Proof. Hiimmerer and Hofmeister [36] showed that n(k)>
5(k 1)2/18, and it is not difficult to modify their proof to give n(k) > 5(k 1)2/18.
The lower bounds in (2) then follow from n,(k)<=n,/(k) and no(k)<=n(k) 1 (see
Lemma 2 below). The upper bound in (1) is due to Klotz [46]. Since there are (2k) sums
ai + aj(i < j) from a k-element set A, we have immediately that

(6) n’(k)<(k)=2 =<v,(k),

and similarly

(7) n(k)<(k+l) < v(k)
2

which imply the upper bound in (2). Notice that if equality holds on either side of (6)
then it holds on both sides, and similarly in (7).

The lower bounds in (3) follow from a straightforward modification of the
Erd6s-Turfin argument ([21], [40, Chapt. II, 3, Theorem 4]); we omit the details. The
lower bound in (4) will be proved at the end of this section. The lower bound in (5) holds
because if the sums ai + aj (1 <_- <_-j <- k) are distinct modulo v, then so are the k(k 1)
nonzero differences ai- ai; hence v 1 => k2-k. It follows that the equality signs can
only hold in (7) when k 2; thus

k+l)n(k) <
2

< v(k) for k > 2.

We shall see in Theorem 5 that the equality signs can only hold in (6) when k 2, 3 or 4.
The upper bounds in (3)-(5) are all obtained by using Singer difference sets and the fact
that (see [43]), whenever x is sufficiently large, there is a prime p with

13/23x<p<--x+x

(compare [40, Chapt. II, 3, Theorem 6]. In particular, difference sets attain the lower
bound in (5), so

(8) v (k) k2- k + 1, whenever k 1 is a prime power.

A projective plane of order 6 would have implied v(7)= 43, but since this plane does
not exist we may regard the cyclic shifts of A {0, 1, 3, 15, 20, 38, 42} modulo 48
(corresponding to v(7)= 48) as giving, in a sense, the best approximation to such a

plane. Other approximations are described in [40a] and [56a].
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The following properties of these functions are easily established.
LEMMA 2.

LEMMA 3.

n(k)<=v(k),

nv(k)<-vv(k),

n(k)<-no(k),

v,,(k)<-vo(k)-l,

n(k)<=nv(k),

no(k)<=vo(k),

n(k)<=v(k),

nv(k)<=n(k),

vv(k)v(k),

n(k)<=n(k)-l,

v(k) -> v(k)- l.

(a) IrA {0 al < a2 <’" <: ak} attains n(k), then a2 1, a3 2, a4 3 or 4, and
ak <= n(k 1) + 1. Furthermore,

n,,(k)+3<=n(k+l), for k->3.

(b) IrA {0 al < a2 <" < a} attains no(k), then a2 1, a3 2 or 3, an 3, 4 or
5, and a <= no(k 1) + 1. Furthermore,

no(k)+2<=no(k+l).

(c) If A {0 al < a2 <" < a} attains nv(k) (or n(k), vv(k) or v(k)) and if
nv(k) (or n(k), vv(k), v(k)) is of the form prqS, with p, q prime, r, s -> O, then we may
assume that a2 1.

Proof. (a) and (b) are straightforward. (c) Suppose A {0= al <a2 <"" <ak} is
such that the sums ai + aj (i < ]) cover 7/n, where n n(k) prqS. If some ai is relatively
prime to n then A’= a71A contains 0 and 1, and also attains nv(k) n. If not, since not
all the ai can be divisible by p, nor by q, we can find at and a, such that plat, qat, p au,
qla,. Then at- au is relatively prime to n, and (at- a,)-1 (A a,) contains 0 and 1 and
attains nv(k)= n. Similarly for n, vv and vs. Q.E.D.

Parts (a) and (b) of this Lemma simplify the computation of n and no (and the
absence of similar results for the other six functions makes their calculation more
difficult). The calculations are further simplified by the next lemma.

LEMMA 4. If there is no k-element set A such that the sums a + ai (i <]) cover
1, m ], then n, (k) <= m 1 and similarly for no (k). Ifthere is no k-element setA such that
the sums a + ai (i <]) belongto [0, m] andare distinct, then v,(k)>= m + 1; andsimilarly
forvo(k).

But these properties need not hold for the modular functions. Consider for
example the problem of determining nv(8). The set A {0, 1, 2, 3, 4, 8, 13, 18} covers, for all n in the range 8 =< n =< 22, but no 8-element set covers 7/23. Nevertheless
A {0, 1, 2, 4, 8, 13, 18, 22} covers 7/24, and n(8)= 24. Similarly when determining
n(6) we find that A {0, 1, 2, 5, 7, 11} covers , for 6 -< n <- 15, A {0, 1, 2, 4, 9, 14}
covers 2716, A ={0, 1,2,3, 8, 12} covers 17, no 6-element set covers 7/ls, A
{0, 1, 3, 12, 14, 15} covers/:19, and n(6)= 19.

We conclude this section by determining when the equality signs can hold in (6).
THEOREM 5.

(9) n(k)=() =v(k)

if and only/fk 2, 3 or 4; otherwise nv(k)<()<vv(k).
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Pro@
(i) If (9) holds and k 0 or 1 (modulo 4) then k must be a perfect square (cf. [80]).

For in this case n () is even, and so the parity of an element of 7/n is well defined. Let
A __c_ 7/, attain nv(k) vv(k) (), and suppose c of the ai are odd and/ are even, with
c +/ k. The number of odd sums ai+aj (i<]) is c/ =1/2(), hence (c-/)2=
k k (k 1) k is a perfect square.

(ii) Equation (9) holds for n 2, 3, 4 (see Tables II, IV), part (i) eliminates k 5,
8, 12 and 13, and a computer search elminated k 6, 7, 9, 10 and 11.

(iii) The values of k >- 14 are eliminated by the following lemma. Q.E.D.
LEMMA 6. Suppose A {0 al < a2 <" < ak} is a subset of 7/ such that the sums

ai + aj (i < ]) represent each element of Zn at most once. Let u [n/3] and assume

(10) k<=u-1.

Then

(11) k2u <-_ n{u(u 1)+ 3ku k(k + 1)}.

Pro@ The proof is a modification of the Erd6s-Turfin argument ([21 ], [40, p. 86]).
Consider the n subsets , ={m, m +1,... ,re+u-l}

of ;gn, for 0-<_ m _-< n- 1, and let Am--Im IA I. Since each ai belongs to exactly u
subsets,

(12) E A,, ku.
m=0

Let T be the number of triples (ai, ai, m) with 1 _-<i<]-< k and ai fire, a ,. The
number of pairs (ai, ai) contained in , is 1/2A, (Am 1), so

n-1

(13) T=1/2 A.(A,-I).
m=0

From (12), (13) and Cauchy’s inequality,

(14) T_->
k2u 2 ku
2n 2

For _-< ] let

p(ai, ai) min {aj- ai, n ai + ai}.

If a and aj, <j, are contained in ,, p(ag, aj) is an integer d with 1 _-<d_-< u- 1.
Conversely, given d e [1, u 1], how many pairs (ai, ai) satisfy < ], p(a, a) d? It is
easly seen that the answer is 0, 1 or 2. If there is one solution we call d ordinary, if two,
special. A special d is associated with a unique triple a, a, ak with

2aj ai -t-ak, p(ai, ai)=P(a,ak).

Since there is at most one special d associated with ai, there are at most k special d’s. An
ordinary d contributes u-d to T since the unique pair (ai, a) with o(ai, aj)--d is
contained in exactly u d of the sets ,. Similarly, a special d contributes 2(u d) to T,
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and so

T= (u-d)+ 2(u-d)
d ordinary d special

"-
<- E (u-d)+ (u-d.),

d=l v=l

where dl, , ds are the special values of d, with s -< k. Using (10) we can bound this by

T <-1/2u(u-1)+ ku -(l + 2 +. +k)
(15)

=1/2u(u 1)+ ku -1/2k(k + 1),

and (11) follows from (14) and (15). Q.E.D.
COROLLARIES.
(i) If we set n (z), then for k >= 14 (10) is satisfied but (11) is not, which eliminates

the cases k >- 14 of Theorem 5.
(ii) For n large, (11) implies

k <_4-+ O(1),

which is equivalent to the lower bound in (4).

3. Harmonious graphs. We call a connected graph with v nodes and e _-> v edges
harmonious if it is possible to label the nodes x with distinct elements A (x) of e in such
a way that, when each edge xy is labeled with A (x) + A (y), the resulting edge labels are
distinct. If the graph is a tree (with v nodes and e v 1 edges) we require exactly one
node label to be repeated. Such a labeling of the nodes and edges is called a harmonious
labeling of the graph. In a harmonious labeling the node labels are distinct (or contain
exactly one duplicate, if the graph is a tree), and the induced edge labels are 0,
1,..., e-1. Fig. 1 shows some harmonious graphs with 5 nodes, and Fig. 2 gives
harmonious labelings of all trees with 7 nodes.

Harmonious graphs arise naturally out of the problems considered in 1. For if
nv(v) vv(v) () is attained by a set A {al," ao}, for v _>- 3, then al," av is a
harmonious labeling of Kv, the complete graph on v nodes. From Theorem 5 we obtain"

THEOREM 7. The complete graph on v nodes is harmonious if and only if v <-4 (see
Fig. 3).

For larger values of v it is natural to ask how large a subgraph of Ko can be
harmonious. From the definition in 1 we see that the answer is given by:

n(v) is the greatest number of edges in
any harmonious graph on v nodes.

For if A {al, a} attains nv(v), we label the nodes ofK with al, ao and omit
any edge whose label has already appeared. Since by definition the sums ai + aj (i < ])
cover Ze, every edge label appears at least once. For example Fig. l(n) shows the largest
harmonious graph on 5 nodes, corresponding to the value nv(5) 9, which is attained by
A {0, 1, 2, 4, 7}. One of the two edges labeled 2 has been omitted from Ks.

Although many other ways of labeling graphs have been studied in the literature
([8], [9], [25], [49], [54], [67]), this one appears to be new. However, there are many
similarities between harmonious graphs and what are called graceful graphs. A
connected graph with v nodes and e _-> v 1 edges is graceful if it is possible to label the
nodes x with distinct integers (x) from {0, 1,..., e} in such a way that, when each
edge xy is labeled with [/x (x) -/z (y)[, the resulting edge labels are distinct (and therefore
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(0) mod4 (b) c ,mod5 (c) mod 5 (d) mod 5

2 3 2 0

(e) mod 6 (f) mod6 (g) mod 6 (h) mod 7

6 0 6 0 60
(i) mod "7 mod 7’ (k) mod "7

, o
zo

mod 8 (rn) w 4, mod 8 (n) mod 9

FIG. 1. Some harmonious graphs with 5 nodes.

0
5 34 54021 525

FIG. 2. Harmonious labelings o[ the trees with 7 nodes (modulo 6).
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K?., mod Ks, mod K4, rood 6

FIG. 3. The complete graphs K2, K3 and K4.

all values in {1, 2, , e } appear uniquely). A graceful labeling of a graph is also called a
B-valuation or a restricted difference basis. These have an extensive literature ([3]-[5],
[7]-[10], [15], [22]-[27], [30], [31], [33]-[35], [42], [44], [47], [48], [50], [53], [57a],
[58], [64], [67], [69], [74], [78], [81]).

We are interested in determining which graphs are harmonious. The principal
results we have obtained are summarized in Table V, which shows which graphs are
harmonious (H) and for comparison which are graceful (G). The entries in the table are
explained in the remaining sections.

TABLE V
Comparison of harmonious and graceful graphs.

Graph Harmonious? Graceful?

Caterpillars H ( 5) G [15], [67]
Trees Conjectured to be H, true Conjectured to be G, true

for -<9 nodes for -<16 nodes [7], [67]
Cycle C4m Not H ( 6) G [10], [64]
Cycle C4m+1 H ( 6) Not G [10], [64].
Cycle C4m+2 Not H ( 6) Not G [10], [64]
Cycle C4,,+3 H ( 6) G [10], [64]
Ladder L,, H iff n >_-3 ( 7) G 10, p. 121]
Friendship graph Fn H iff n 2 G iff n --0 or

(mod 4) ( 8) (mod 4) [4], [5]
Fan fn H ( 9) G ( 9)
Wheel W H ( 10) G [22], [44]
Complete graph K, H iff n -< 4 (Theorem 7) G iff n -< 4 [25], [74]
Complete bipartite K,,n H iff m or n (Theorem 19) G [25], [67]
Small graphs All with _-<5 nodes are H except All with -<5 nodes are G except

for 5 (Fig. 15) for 3 [25]
Petersen H (Fig. 16) G [25]
Cube, octahedron Not H (Theorem 22) G [25]
Icosahedron H (Fig. 17) G [23]
Dodecahedron H (Fig. 18) G [23]
Most graphs Not H (Theorem 23) Not G (Theorem 24)

Several of these families of graphs were suggested by the following application.
Consider a network of transmitting stations, each of which must be able to communicate
with certain others--those to which it is linked in the network. The total bandwidth
available is divided into e channels, where e is the number of links in the network, and
each station x is assigned a number A (x) from 7/e. When x and y communicate they use
channel number A (x) +A (y). If the numbering is harmonious, each channel is assigned
to exactly one link.

Harmonious graphs are also interesting because they lead to modular versions of
various combinatorial problems. For example, a harmonious labeling of the friendship
graph Fn (see 8) may be regarded as a modular generalization of the Langford-Skolem
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problem (see [2], [4], [17], [18], [32], [41], [52], [55], [62], [63], [68], [70], [75]), a
version of that problem which does not seem to have been discussed before.
Harmonious labelings of fans, wheels, complete bipartite graphs, etc. (see below) also
have interesting combinatorial interpretations.

To conclude this section we mention that there is a curious geometric inter-
pretation of the condition that a graph G be harmonious. Let Pe denote a fixed regular
e-gon embedded in the plane. Then G is harmonious if and only if the nodes of G can be
embedded into the nodes of Pe SO that no two edges of the embedded copy of G are
parallel. This follows from the observation that if the nodes of Pe are labeled cyclically
with 0, 1, , e 1, then the direction of the chord joining and ] depends only on + j
(modulo e). (The condition must be modified slightly if G is a tree.) For example, Fig. 4
shows the graph of Fig. 1 (f) embedded in a regular hexagon.

FIG. 4. The harmonious labeling ofFig. (f) corresponds to an embedding ofthis graph in a regular hexagon
in such a way that no two edges are parallel.

4. General properties of harmonious graphs. The first property concerns
equivalent labelings of the same graph.

THEOREM 8. If is a harmonious labeling of the nodes of a graph with e edges, then
so is aA + b, where a is an invertible element of ’e and b is any element of

Proof. The edge labels (x) + , (y) are changed to a(, (x) + , (y)) + 2b, but remain
distinct. Q.E.D.

COROLLARY.
(i) Any node in a harmonious graph can be assigned the label O.
(ii) The repeated node label in a harmonious tree can be any element of e.
On the other hand one harmonious graph may lead to others via the following

constructions, which have the effect of moving an edge with a given label from one part
of the graph to another.

THEOREM 9. Let G be a harmoniously labeled graph containing (i) an edge wx with
label A (w)+ A (x), and (ii) a pair of nodes y, z not joined by an edge but satisfying
A (w) + A (x) A (y) + A (z). Then deleting the edge wx and inserting yz changes G to
another harmonious graph.

For example we can move the edge labeled 4 in Fig. 1 (b) and obtain Fig. 1 (c).
THEOREM 10. Let G be a harmoniously labeled tree containing an edge wx labeled

A (w) + A (x), where x is an endpoint (ofdegree 1), and A (x) is the repeated node label, fly
is any other node in G, we may delete edge wx and node x and replace them with a new
node z and edge yz where z is labeled with A (z)= A (w)+ A (x)-A (y).

For example the second and third trees in Fig. 2 are obtained from the first by
moving the edge labeled 2.



392 R.L. GRAHAM AND N. J. A. SLOANE

The last theorem in this section gives a necessary condition for certain graphs to be
harmonious.

THEOREM 11. If a harmonious graph has an even number e of edges and the degree
of every node is divisible by 2"(a => 1), then e is divisible by 2"/1.

Proof. Let node x have label h (x) and degree 8(x). The sum of the edge labels is
,xS(X)h(x)=O+l+ .+(e-1)----1/2e(e-1)=e/2 (modulo e); hence 2" divides e/2
and so 2/1 divides e. Q.E.D.

For example the 1-skeleton of the octahedron has 12 edges and 6 nodes, each of
degree 4, so is not harmonious.

5. Are all trees harmonious? It is easy to see that paths and stars are harmonious
(see the first and last examples in Fig. 2). More generally, let a caterpillar be a tree with
the property that the removal of its endpoints leaves a path.

THEOREM 12. Any caterpillar is harmonious.
Proof. Draw the caterpillar as a bipartite graph, as shown in Fig. 4a, with say nodes

on the left and r on the right. There are e + r- 1 edges. If e is odd, or if e is even and r
is odd, choose a 7/e SO that 2a r- 1 (in Ze). If e and r are both even, then is odd and
we choose a so that 2a 1 I. We label the left-hand nodes a, a / 1, , a / 1 and
the right-hand nodes -a, 1- a,. ., r- 1- a, as in Fig. 4a. The full set of node labels is
{0, 1, , e 1} with either a repeated (if 2a r- 1) or -a repeated (if 2a 1 l). The
edge labels are {0, 1,. , e 1}, and the graph is harmonious. Q.E.D.

We shall usually just specify the node labels and leave to the reader the straight-
forward verification that the labeling is harmonious.

mod 9

FIG. 4a. A caterpillar with e 9 edges, drawn as a bipartite graph with 5 nodes on the left and 5
nodes on the right. We obtain a harmonious labeling by choosing a 2, so that 2a r- 1.

By repeatedly applying the constructions of Theorems 9 and 10 to caterpillars, it is
easy to generate large numbers of harmonious trees. Those with 7 nodes are shown in
Fig. 2, and in the same way we have established the following theorem, whose proof is
omitted.

THEOREM 13. All trees with <-_9 nodes are harmonious.
We conjecture that all trees are harmonious (cf. [7]).
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6. Cycles.
THEOREM 14. The cycle C, with n nodes, n >= 3, is harmonious ifand only ifn is odd.
Proof. If n is odd we label the nodes 0, 1,..., n- 1 (see Fig. l(b)). If n 2m is

even, suppose ao, a x,..., az,- is a harmonious labeling of C,. The numbers
ao + a x, a + a2,’’’, a,_ + ao are congruent (modulo 2m) to some permutation of
0, 1, 2,..., 2m- 1. Adding these numbers we obtain 2S =-S (modulo 2m), where
S 0 + 1 + 2 +. + 2m 1 rn (modulo 2m). Hence rn 0 (modulo 2m), a contradic-
tion. Q.E.D.

7. Ladders are harmonious. The ladderLn (n >- 2) is the product graph P2 en, and
contains 2n nodes and 3n- 2 edges (Figs. 5, 6).

THEOREM 15. All ladders except L2 are harmonious.
Proof. Lz=C4 is not harmonious by the previous theorem. L2a+x (a >= 1) is

harmonious" label one path 0, a + 1, 1, a + 2, 2, a + 3, and the other 3a + 1, 2a + 1,
3a + 2, 2a + 2, 3a + 3, 2a + 3, (Fig. 5). L4 is harmonious: label the paths 0, 5, 1, 9
and 2, 6, 3, 4. Finally Fig. 6 shows a harmonious labeling of L2a for a >-3. Q.E.D.

5 4 5 6

d t3

FIG. 5. The ladder Ls.

0 + -I-- -I-.

+3 | 5a-5

mod 6a-2
FIG. 6. The ladder L2a, a >-_ 3.

The labeling of L2a+x is exceptionally pleasant since the edges are numbered
consecutively. Furthermore by simply joining the ends of the ladder we obtain a
harmonious labeling of the prism P2 C2a+1 (Fig. 7), and the pattern may be continued
to produce a harmonious labeling of any P,, C2a+x (Fig. 8). The cube P2 C4 is not
harmonious (Theorem 22 below), but P3 x C4 is (Fig. 9).

8. Friendship graphs. The friendship graph F,(n >= 1) consists of n triangles with a
common vertex (see Fig. 10).

THEOREM 16. Fn is harmonious except when n --2 (modulo 4).
Proof. If n--2 (modulo 4), F, is not harmonious by Theorem 11. If n-= 0 or 1

(modulo 4) it was shown by Skolem [75] that the numbers {1, 2,..., 2n} may be
partitioned into n pairs (ar, br) with br-ar r, for r 1,..., n. Then a harmonious
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25

%

FIG. 8. The prism P3 x

FIG. 9. The prism P3 x C4.

mod t2

FIG. 10. The [riendship graph F4.
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labeling of Fn is obtained by labeling the vertices of the triangles with (0, r, n + at), for
r 1,. , n (see Fig. 10). If n 3 (modulo 4) it is known [4, Th. 1, the case d 3] that
{1, 2,..., 2n-6} may be partitioned into n- 3 pairs (ar, br) with br-ar r + 2, for
r 1,.. , n -3. We label the triangles of F, with (0, 1, 3n 1), (0, 2, 3n -6), (0,
3n 2, 3n 3), and (0, r + 2, n + a) for r 1,. , n 3. Q.E.D.

9. Fans are harmonious. The fan fn (n -> 2) is obtained by joining all nodes of P to
a further node called the center, and contains n + 1 nodes and 2n 1 edges.

THEORZM 17. f, is harmonious.
Proof. Let m [n/2] and label the center with 0 and the nodes of the path with m, n,

m+l,n+l,m+2,...(seeFig, ll).
Remarks.

(i) f2,, may also be harmoniously labeled in such a way that the endpoints of the
path are 1 and -1: label the nodes of the path with 1, 2, 5, 6, 9, 10, , 4m -3, 4m -2.

(ii) f, is also graceful, although this fact does not seem to have been mentioned
before: label the center with 0 and the nodes of the path with 2n- 1, 1, 2n-3, 3,
2n -5,.

(iii) Let g,(n->2) be the graph with n + 2 nodes and 3n- 1 edges obtained by
joining all nodes of P, to two additional nodes. A harmonious labeling of g2, is
obtained by labeling the path with 2, 4, 8, 10, 14, 16, , 6m -4, 6m 2, and the two
additional nodes with 0 and 1 (Fig. 12). But g2,/1 does not seem to have such a simple
labeling.

|2 0

t) 2

FIG. 11. The fan fT.

FIG. 12. The graph g6.

10. Wheels are harmonious. The wheel W, (n -> 3) is obtained by joining all nodes
of C, to a further node called the center, and contains n + 1 nodes and 2n edges (see
Fig. 13). A harmonious labeling of W, is equivalent (by Theorem 8) to finding a subset
{al,. , a,} of Z2, with the property that

al,’’ ",an, al+a2, a2+a3,’’’,an+al
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02.I 0

4

22

mod 2.4
t2 18

FIG. 13. The wheel W12.

comprise all the elements of 7/2n (for then we may label the cycle with al,. , a, and
the center of the wheel with 0).

THEOREM 18. Wn is harmonious.
Proof. The cases W2,,/1, W4,,, W8m+2 and W8,/6 will be handled separately. In

each case the center is labeled with 0. For W2,+1 the cycle is labeled 1, 3, 5, , 4m /

1. For W4, we divide the cycle into 2m pairs, m of which will be labeled (4i / 1, 4i +
3), 0 _-< _-< m 1; m 1 of which will be labeled (4i / 7, 4i + 1), m -<_ -<_ 2m 2; and one
which will be labeled (4m- 2, 4m + 2). The actual labeling of the cycle is

4m-2,4m+2;

1, 3; 4m +7, 4m /1; 5, 7; 4m +11, 4m +5;

4i-7, 4i-5; 4m +4i-1, 4m +4i-7;

4i-3, 4i-1; 4m +4i+3, 4m +4i-3;

4i+1,4i+3;4m +4i+7,4m +4i+1;

4m-ll,4m-9; 8m-5, 8m-ll;

4m-7,4m-5;8m-l,8m-7;

4m-3,4m-1.

Fig. 13 shows the labeling of W12o To verify that this labeling is harmonious we observe
that, out of the residues modulo 8m, all the numbers congruent to 1 or 3 (modulo 4)
except 4m / 3 and 8m 3 appear as spoke labels, and 4m + 3 and 8m 3, together with
all numbers congruent to 0 (modulo 4) appear on the perimeter. Furthermore, the
numbers congruent to 2 (modulo 4) appear on the perimeter in the order. 4m / 8i
6, 4m +8i- 10, 4m /8i/2, 4m +8i-2, .

For W8m+2 (m 1) the cycle C8m/2 will be labeled modulo 4 as follows:

2,1,2,1,...,2,1; 1,1,...,1; 0,0,...,0.

4m+2 2m-1 2m+1
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The actual labels for these three sets of nodes are

and

4rn +2, 16m +1, 4m-2, 16m-3,..., 12m +6, 8m + 1;

4m-3, 8m-3, 4m-7, 8m-7,. , 4m +5, 1;

4m, 8m +4, 4rn +4, 8m +8,..., 12m, 8m

(the last set being 4 times the labels of f2,/1 given above). For example W18 is labeled
(modulo 36) as follows.

nodes: 10 33 6 29 2 25 34 21 30 17;

perimeter: 7 5 35 31 27 23 19 15 11 22

nodes: 5 13 1; 8 20 12 24 16

perimeter" 18 14 9 28 32 0 4 26.

For W8rn+6 (m >-0) the cycle is labeled

12m +2, 12m +5, 12m-2, 12m +1, , 4m-2, 4m +1;

16m +5, 4m-3, 16m +1,4m-7, , 12rn +9, 1;

16m + 8, 16m + 4, 16m 8, 16m 12, , 24, 20, 8, 4

(the last set being 4 times the second labeling of f2,+2 given above). For example, W14 is
labeled (modulo 28) as follows.

nodes: 14 17 10 13 6 9 2 5; 21 1; 24 20 8 4

perimeter" 3 27 23 19 15 11 7 26 22 25 16 0 12 18

11. Complete bipartite graphs. Let K,..n denote the complete bipartite graph with
m + n nodes and mn edges.

THEOREM 19. K,.,n is harmonious if and only if m or n 1.
Proof. If m or n 1, the graph is a star and is harmonious (see 5). Suppose m > 1

and n > 1. A harmonious labeling of K,.,. is equivalent to a direct sum decomposition of
7/,.n A B, where A and B are disjoint subsets of 7/.. with IAI m, IBI n. Since all
the sums a + b (a A, b B) are distinct, so are all the differences a b. But there are
mn differences, hence 0 a- b must occur exactly once. Therefore A and B are not
disjoint, and K,.,. is not harmonious. Q.E.D.

The proof has an interesting corollary.
COROLLARY. If _, A B then IA C1BI 1.
Although many papers have dealt with decompositions of this type ([12], 13], 16],

[38], [71], [72]), this result does not seem to have been noticed before.

12. The one-point union of two complete graphs. The graphK (n _-> 3) consists
of two copies of K, sharing a common node, and contains 2n- 1 nodes and n (n- 1)
edges (see Fig. 14). It is known that K(,2 is never graceful [5].
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THEOREM 20. K(2) is harmonious if n 4 but is not harmonious if n is odd or n 6
Proof. For n =4 see Fig. 14, and for odd n apply Theorem 11. The computer

eliminated n 6. Q.E.D.
We conjecture that K,2) is harmonious only when n is 4.

rood t

FIG. 14. The graph K(42).

13. Some small graphs.
THEOREM 21. Them are six connected graphs with <=5 nodes that are not

harmonioussee Fig. 15.
Proof. It has already been shown that C4, F2=K32), K5 and K2,3 are not

harmonious, and the other two graphs in Fig. 15 are easily eliminated by hand.
Harmonious labelings of most of the other graphs with <_-5 vertices are given in Fig. 1,
and the remainder are easily dealt with. Q.E.D.

4 F2

K2,3

FIG. 15. The six nonharmonious graphs with <-5 nodes.

For comparison we note that Golomb [25] showed there are three connected
graphs with _-<5 nodes that are not graceful, namely C5, F2 and Ks; and Rao Hebbare
[64] found that there are six nongraceful connected graphs with 6 nodes.

THEOREM 22. The Petersen graph and the 1-skeletons of the tetrahedron, icosa-
hedron and dodecahedron are harmonious, while the 1-skeletons of the cube and
octahedron are not.

Proof. For the first four see Figs. 16, l(m), 17 and 18. The octahedron is not
harmonious by Theorem 11, and the computer was used to check that the cube is
not. Q.E.D.
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mod t.5

FIG. 16. The Petersen graph.

8

mod 30 9

FIG. 17. The icosahedron.

12

25

7

mod 30

FIG. 18. The dodecahedron.
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14. Most graphs.
THEOREM 23. Almost all graphs are not harmonious.
Proof. For our model of a random graph with n nodes we assume that each of the (z)

possible edges independently exists or does not with probability 1/2. Fix e (0, 1/2), and let d
be a fixed integer in the range [(1/2- e)(), (1/2 + e )(.)]. We shall show that almost no graphs
with n nodes and d edges are harmonious (as n ). Since almost all graphs with n
nodes have a number of edges in this range, the theorem follows.

(n (n 1)/2) labeled graphs with n nodes and d edges, and so at leastThere are
d

1 (n(n-1)/2)n! d

unlabeled graphs with n nodes and d edges.
Let A be a labeling of the n nodes with distinct numbers from {0, 1,..., d- 1}.

There are d(d 1) (d n + 1) _-< d" such labelings. Let us consider how many graphs
there are for which A is a harmonious labeling. Let Pi be the number of pairs of nodes
{v, v’} with h (v) + h (v’) (modulo d). Then

A graph is harmonious with this labeling if it consists of one edge taken from each of the
classes counted by p. Thus there are

d-1

i=0

labeled graphs for which h is a harmonious labeling. This product is maximized by
taking the p’s as equal as possible; in particular

Therefore there are at most

1-7I (n(n 1),)
d

pi <
i=0 2d

n(n d

2d

harmonious labeled graphs. This is also an upper bound on the number of harmonious
unlabeled graphs. To complete the proof we show that the ratio

dn( n (n -1))
a

2d
p=

1 (n(n-l)/2)n! d

approaches 0 when n oo and d is in the required range. Write d (1/2-/x)(), with

x (-1/2, 1/2). Then
dnn !48(.) (1/2- )(+/x)

P(
(1/2- t)a2(’) H2[(112)-"]

where HE(X)=-x log2 x-(l-x)log2 (l-x) (cf. [57, p. 309]). The denominator is
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equal to

2-()[(1/2+]og[(/2)+]

and sop0asnoo. Q.E.D.
The same argument establishes an unpublished result of Erd6s (cf. [25]):
THEOREM 24. Almost all graphs are not graceful

15. Comparison of harmonious and graceful graphs. A study of Table V suggests
that the properties of being harmonious and graceful are roughly similar, although the
entries for cycles show that the two properties are in general independent. Comparing
the harmonious labelings of the previous sections with graceful labelings of the same
graphs (see for example [10], [22], [44]) suggests that harmonious labelings are
considerably more complicated. We know that nv(v), the number of edges in the largest
harmonious graph on v nodes, is bounded by (2). On the other hand, if g(v) denotes the
number of edges in the largest graceful graph on v nodes, it is known that
limo_,o g(v)/v 2 exists and satisfies

(16) 1/2-< lim g(--v) =< 0.411,
(see [26], [42], [53], [58], [81]). Table VI compares the first few values of nv(v) and
g(v): they are extremely close. We conclude therefore with an open problem: show that
limv_ n(v)/v exists, and find improvements to (2) comparable with (16).

TABLE VI
The size of the largest harmonious graph on v nodes
(n.(v)) compared with the size of the largest graceful
graph (g(v)). The values of g(v) are taken from [53]
and [58].

v nv(v) g(v)

2
3 3 3
4 6 6
5 9 9
6 13 13
7 17 17
8 24 23
9 30 29

10 36 36
11 43
12 50
13 58
14 68

Acknowledgments. We should like to thank P. Erd6s and A. M. Odlyzko for
helpful discussions, and F. R. K. Chung for proving Theorem 17 and parts of
Theorem 18.

Note added in proof. Thom Grace (written communication, June 14, 1980) has
shown that g2,/1 is harmonious (see 9): label the path m, 0, m + 1, 1,. , m 1, 2m,
and the two additional nodes 3m and 5m + 1 (modulo 6m +2). E. Levine (written
communication, June 24, 1980) has shown that if K(ff is harmonious (see 12) then n is
a sum of two squares.
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