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“A Handbook of Integer Sequences” 
Fifty Years Later N. J. A. Sloane

Before 1973 there was no database of integer 
sequences. Someone coming across the 
sequence 1, 2, 4, 9, 21, 51, 127, … would have 
had no way of discovering that it had been 
studied since 1870 (today these are called 
the Motzkin numbers, and they form entry 

A001006 in the database). Everything changed in 1973 
with the publication of A Handbook of Integer Sequences, 
which listed 2372 entries. This article describes the 50-year 
evolution of the database from the Handbook to its present 
form as the On-Line Encyclopedia of Integer Sequences (or 
OEIS), which contains 360,000 entries, receives a million 
visits a day, and has been cited 10,000 times, often with a 
comment saying “discovered thanks to the OEIS.”

Integer Sequences
Number sequences arise in all branches of science: for 
example, 1, 1, 2, 4, 9, 20, 48, 115,… gives the number of 
rooted trees with n nodes (A000081; see also Figure 1). And 
for an example from daily life, into how many pieces can 
you cut a pancake with n knife-cuts? The pieces need not 
all be the same size. That one is easy: 1, 2, 4, 7, 11, 16,… , 
n(n + 1)∕2 + 1 (A000124). But what is the answer for cut-
ting up an (ideal) bagel or doughnut? That is a lot harder: 
with a sharp knife you might get a few terms, perhaps 
1, 2, 6, 13,… , but probably not enough to guess the for-
mula, which is n(n2 + 3n + 8)∕6 for n > 0 . For that you 
would need to to consult the database: go to https://​oeis.​
org and enter “cutting bagel,” or go directly to A003600.

My fascination with these sequences began in 1964 
when I was a graduate student at Cornell University, in 
Ithaca, New York, studying neural networks. I had en-
countered a sequence of numbers, 1, 8, 78, 944, 13800,… , 
and I badly needed a formula for the nth term in order to 
determine the rate of growth of the sequence (this would 
indicate how long the activity in this very simple neural 
network would persist).

I noticed that although several books in the Cornell li-
brary contained sequences somewhat similar to mine, as far 
as I could tell, this particular sequence was not mentioned. 
I expected to have to analyze many related sequences, so 

in order to keep track of the sequences in these books, I 
started recording them on 3" × 5" file cards.1

The collection grew rapidly as I searched through more 
books, and once the word got out, people started sending 
me sequences. Richard Guy was an enthusiastic supporter 
right from the start. In 1973, I formalized the collection as 
A Handbook of Integer Sequences, which was published by 
Academic Press (Figure 2).

Once the book appeared, the flood of correspondence 
increased, and it took 20 years to prepare the next version. 
Simon Plouffe helped a great deal, and in 1995, Academic 
Press published our sequel, The Encyclopedia of Integer 
Sequences, with 5487 entries. From this point on, the col-
lection grew even more rapidly. I waited a year, until it had 
doubled in size, and then put it on the internet, calling it 
the On-Line Encyclopedia of Integer Sequences.

In the rest of this article I will first say more about the 
evolution of the database: the Handbook, the 1995 Ency-
clopedia, the On-Line Encyclopedia, and the OEIS Founda-
tion. The next sections describe the database itself: what 
sequences are—or are not—included, how the database is 
used, the layout of a typical entry, the arrangement of the 
entries, and a fact sheet. The final sections describe some 
especially interesting sequences: Recamán’s sequence, 
the iteration of number-theoretic functions, Gijswijt’s 
sequence, lexicographically earliest sequences, the step-
ping stones problem, and stained glass windows. These last 
sections mention several open questions to which I would 
very much like to know the answers.

Notation: a(n) denotes the nth term of the sequence 
under discussion; �(n) is the sum of the divisors of n 
(A000203).

Evolution of the Database
The Handbook of Integer Sequences

Once the collection had grown to a few hundred entries, I 
entered them on punched cards,2 which made it easier to 
check and sort them. The Handbook was typeset directly 
from the punched cards. There were a few errors in the 

1Six-digit numbers prefixed by A refer to entries in the current version of the Handbook, the On-Line Encyclopedia of Integer 
Sequences [12].
2These were never called “punch cards.” To anyone who worked with them in the 1960s, “punch cards” sounds like “grill cheese” 
for “grilled cheese” or “barb wire” for “barbed wire,” both of which I have recently seen in print.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00283-023-10266-6&domain=pdf
https://oeis.org/A001006
https://oeis.org/A000081
https://oeis.org/A000124
https://oeis.org
https://oeis.org
https://oeis.org/A003600
https://oeis.org/A000203
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book, but almost all of them were caused by errors in the 
original publications. Accuracy was a primary concern in 
that book, as it is today in the OEIS.

The book was an instant success. It was, I believe, 
the world’s first dictionary of integer sequences (and my 
original title had Dictionary rather than Handbook). Many 
people said “What a great idea” and wondered why no 
one had done it before. Martin Gardner recommended it 
in the Scientific American of July 1974. Lynn A. Steen, 
writing in the American Mathematical Monthly, said:

Incomparable, eccentric, yet very useful. Con-
tains thousands of “well-defined and interesting” 
infinite integer sequences together with references 
for each ... If you ever wondered what comes after 
1, 2, 4, 8, 17, 35, 71,… , this is the place to look it up.

Harvey J. Hindin, writing from New York City, exuber-
antly concluded a letter to me by saying, “There’s the 
Old Testament, the New Testament, and the Handbook of 
Integer Sequences.”

I never did find the sequence that started it all in the 
literature, but I learned Pólya’s theory of counting, and 
with John Riordan’s help found the answer, which appears 
in [14] and A000435.

The Encyclopedia of Integer Sequences
Following the publication of the Handbook, a large amount 
of correspondence ensued, with suggestions for further 
sequences and updates to the entries. By the early 1990s, 
over a cubic meter of new material had accumulated. A 
Canadian mathematician, Simon Plouffe, offered to help in 
preparing a revised edition of the book, and in 1995, The 
Encyclopedia of Integer Sequences, by me and Plouffe, was 
published by Academic Press. It contained 5487 sequences, 
occupying 587 pages. By now, punched cards were obso-
lete, and the entries were stored on magnetic tape.

The On‑Line Encyclopedia of Integer Sequences
Again, once the book appeared, many further sequences 
and updates were submitted from people all over the world. 
I waited a year, until the size of the collection had doubled, 
to 10,000 entries, and then in 1996, I launched the On-Line 
Encyclopedia of Integer Sequences (now usually called simply 
the OEIS) on the internet. From 1996 until October 26, 2009, 
it was part of my homepage on the AT&T Bell Labs website.

Incidentally, in 2004, the database was mentioned by 
the internet website slashdot (“News for Nerds. Stuff that 
Matters”), and this brought so much traffic to my AT&T 
Labs homepage that it briefly crashed the whole AT&T 
Labs website. My boss was quite proud of this, since it was 
a rare accomplishment for the Mathematics and Statistics 
Research Center.

The OEIS Foundation
In 2009, in order to ensure the long-term future of the data-
base, I set up a nonprofit foundation, the OEIS Foundation 

(a) (b) (c)

Figure 1.   (a) One of 48 unlabeled rooted trees with 7 nodes (the root node is at the bottom). (b) Four cuts of a pancake can pro-
duce 11 pieces. (c) Three cuts of a bagel can produce 13 pieces.

Figure 2.   Front cover of the Handbook. The embossed 
figures show side views of the two ways of folding a 
strip of three (blank) stamps and the five ways of fold-
ing a strip of four stamps. The full sequence begins 
1, 1, 2, 5, 14, 38, 120, 353, 1148, 3527,… , A001011. No formula 
is known.

https://oeis.org/A000435
https://oeis.org/A001011
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Inc., a 501(c)(3) public charity, whose purpose is to own, 
maintain, and raise funds to support the On-Line Encyclope-
dia of Integer Sequences, or OEIS.

On October 26, 2009, I transferred the intellectual 
property of the On-Line Encyclopedia of Integer Sequences 
to the foundation. A new OEIS with multiple editors was 
launched on November 11, 2010.

Since then, it has been possible for anyone in the world 
to propose a new sequence or an update to an existing se-
quence. To do this, users must first register, and then sub-
missions are reviewed by the editors before they become a 
permanent part of the OEIS. Technically, the OEIS is now a 
“moderated wiki.”

I started writing this article on November 11, 2022, 
noting that this marked 11 years of successful operation of 
the online OEIS, and that the database is in its 59th year of 
existence.

The Database Today
What Sequences Are Included?

From the very beginning, the goal of the database has 
been to include all “interesting” sequences of integers. 
This is a vague definition, but some further examples may 
make it clearer. The database includes a huge number of 
familiar and unfamiliar sequences from mathematics (the 
prime numbers, 2, 3, 5, 7, 11, 13,… , A000040; the orders 
of noncyclic simple groups, 60, 168, 360, 504, 660, 1092,… , 
A001034); computer science (the number of comparisons 
needed for merge sort, 0, 1, 3, 5, 8, 11, 14,… , A001855); 
physics (see “self-avoiding walks on lattices,” Ising model, 
etc., e.g., A002921); chemistry (the enumeration of chemi-
cal compounds was one of the motivations behind Pólya’s 
theory of counting; see, e.g., A000602); and not least, 
from puzzles and IQ tests: 1, 8, 11, 69, 99, 96, 111,… , the 
“strobogrammatic” numbers, guess!, or see A000787; 
4, 14, 23, 34, 42, 50, 59,… , the stops with numerical values 
for the A Train (8 Avenue express) in Manhattan, as of 
January 2023, A011554. The latter entry has links to a map 
and the train schedule.

Sequences that have arisen in the course of someone’s 
work—especially if published—have always been welcomed. 
On the other hand, sequences that have been proposed simply 
because they were missing from the database are less likely to 
be accepted. And of course, the sequence must be well defined.

Very short sequences and sequences that are subse-
quences of many other sequences are not accepted. A 
sequence for which the only known terms are 2, 3, 5, 7 
would not be accepted, since it is matched by a large num-
ber of existing sequences. The definition may not involve 
an arbitrary but large parameter (primes ending in 1 are 
fine, A030430, but not primes ending in 2023).

The OEIS Wiki has a section listing additional examples 
of what not to submit, as well as a great deal of informa-
tion about the database that I won’t repeat here, such as 
the meaning of the various keywords, the definition of the 
“offset” of a sequence, descriptions of the submission and 
editorial processes, and a list of over 10,000 citations of the 
OEIS in the scientific literature.

Most OEIS entries give an ordered list of integers. But 
triangles of numbers are included by reading them row by 
row. For example, Pascal’s triangle becomes 1,  1, 1,  1, 2, 1,  
1, 3, 3, 1, ..., A007318. Doubly infinite square arrays are 
included by reading them by antidiagonals: the standard 
multiplication table for positive integers becomes 1,  2, 2,  
3, 4, 3,  4, 6, 6, 4, ..., A003991.

Sequences of fractions are included as a linked pair 
giving the numerators and denominators separately (the 
Bernoulli numbers are A027641/A027642). Important in-
dividual real numbers are included by giving their deci-
mal or continued fraction expansions (for � , see A000796 
and A001203). A relatively small number of sequences of 
nonintegral real numbers are included by rounding them 
to the nearest integer or by taking floors or ceilings (the 
imaginary parts of the nontrivial zeros of Riemann’s zeta 
function give A002410).

Two less obvious sources for sequences are binomial 
coefficient identities and number-theoretic inequalities. The 
values of either side of the identity

[8, (3.68)] give A036910. From the inequality 𝜎(n) < n
√
n 

for n > 2 [11, Sect. III.1.1.b], we get the integer sequence 
⌊n
√
n⌋ − �(n) , A055682. The point here is that if you want 

to find out whether this inequality is known, you look up 
the difference sequence, and find A055682 and a refer-
ence to the proof. Many more sequences of these two types 
should be added to the database.

How the Database Is Used
The main applications of the database are in identifying 
sequences and in finding out the current status of a known 
sequence. Barry Cipra has called it a mathematical analogue 
of a “fingerprint file.” You encounter a number sequence 
and wish to know whether anyone has ever come across 
it before. You enter the first few terms of the sequence 
into the search field on the OEIS home page, and if your 
sequence is in the database, the reply will give a definition 
of the first 50 or so terms, and, when available, formulas, 
references, computer code for producing the sequence, 
links to any relevant web sites, and so on.

Figures 3 and 4 show what happens if you enter 
1, 2, 5, 14, 42, 132, 429, the first few Catalan numbers, one 
of the most famous sequences of all.

I could have chosen a simpler example, like the Fibo-
nacci numbers, but I have a particular reason for choos-
ing the Catalan numbers. When the OEIS was new, people 
would sometimes say to me that they had a sequence they 
were trying to understand, and would I show them how 
to use the database. At least twice when I used the Catalan 
sequence as an illustration, they said, “Why, that is my 
sequence! How on earth did you know?” It was no mind-
reading trick. the Catalan numbers are certainly the most 
common sequence that people don’t know about. This 
entry is the longest—and one of the most important—in 
the whole database.
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Figure 3.   The result of querying the database with 1, 2, 5, 14, 42, 132, 429. This figure shows the banner at the top of the reply. 
There are 26 matches, ranked in order of importance, the top match being the one we want, the Catalan numbers. A shortened ver-
sion of the top match is shown in the next figure.

Figure 4.   The entry for the Catalan numbers A000108. The full entry has over 750 lines, which have been edited here to show 
samples of the different fields.

https://oeis.org/A000108
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If we do not find your sequence in the database, we 
will send you a message inviting you to submit it (if you 
consider it to be of general interest), so that the next person 
who comes across it will be helped, and your name will go 
on record as the person who submitted it.

The second main use of the database is to find out the 
latest information about a particular sequence. Of course, 
we cannot hope to keep all 360,000 entries up-to-date. But 
when a new paper is published that mentions the OEIS, 
Google will tell us, and we then add links to that paper 
from every sequence that it mentions. People have told us 
that this is one of the main ways they use the OEIS. After 
all, even a specialist in (say) permutation groups cannot 
keep track of all the papers published worldwide in that 
area. And if a paper in a physics or engineering journal 
happens to mention a number-theoretic sequence, for ex-
ample, Google will notify us and we will record it.

There are also many other ways in which the database 
has proved useful. For example, it is an excellent source 
of problems to work on. The database is constantly be-
ing updated. Every day, we get thirty to fifty submissions 
of new sequences, and an equal number of comments on 
existing entries (new formulas, references, additional terms, 
etc.). The new sequences are often sent in by nonmathema-
ticians, and they are a great source of problems. You can 
see the current submissions at https://​oeis.​org/​draft. Often 
enough, you will see a sequence that is so interesting you 
want to drop everything and work on it. And remember 
that we are always in need of more volunteer editors. In 
fact, anyone who has registered with the OEIS can suggest 
edits; you do not even need to be an official editor. We have 
been the source of many international collaborations.

There is also an educational side: several people have 
told us that they were led into mathematics through work-
ing as an editor. Here is a typical story.

Subject: Reminiscence from a young mathematician

I wanted to relay a bit of nostalgia and my heartfelt 
thanks. Back in the late 1990s, I was a high school stu-
dent in Oregon. While I was interested in mathemat-
ics, I had no significant mathematically creative outlet 
until I discovered the OEIS in the course of trying to 
invent some puzzles for myself. I remember becoming 
a quite active contributor through the early 2000s, 
and eventually at one point, an editor. My experience 
with the OEIS, and the eventual intervention of one 
of my high school teachers, catalyzed my interest in 
studying mathematics, which I eventually did at ... 
College. I went on to a Ph.D. in algebraic geometry at 
the University of ... and am currently at ....

I wanted to thank you for seriously engaging with an 
18-year-old kid, even though I likely submitted my 
fair share of mathematically immature sequences. I 
doubt I would have become a mathematician without 
the OEIS!

A less obvious use of the database is to quickly tell you 
how hard a problem is. I use it myself in this way all the 
time. Is the sequence “Catalan” or “Collatz”? If a sequence 

comes up in your own work or when you are review-
ing someone else’s work, it is useful to know right away 
whether it is a well-understood sequence, like the Catalan 
numbers, or whether it is one of the notoriously intractable 
problems like the Collatz, or 3x + 1 , problem (A006577).

Finally, the OEIS is a welcome escape when you feel 
the world is falling apart. Take a look at Scott Shannon’s 
drawings of stained glass windows in A331452 or Jonathan 
Wild’s delicate illustrations of the ways to draw four circles 
in A250001 or Éric Angelini’s “1995” puzzle (A131744) or 
any of his “lexicographically earliest sequences” (A121053, 
A307720, and many more); or find better solutions to the 
Stepping Stones Problem (A337663). You can find brand 
new problems at any hour of the day or night by looking 
at the stack of recent submissions: but beware, you may 
see a problem there that will keep you awake for days. Or 
search in the database for phrases like “It appears that ...” 
or “Conjecture: ...” or “It would be nice to know more!”

Layout of a Typical Entry
This is a good place to mention some of the features of 
an OEIS entry. Most of the fields (see Figures 3 and 4) are 
self-explanatory. At the top, it tells you how many matches 
were found to your query (26 in the example). These are 
ranked in order of importance.

The DATA section shows the start of the sequence, usu-
ally enough terms to fill a few lines on the screen (typi-
cally 300 to 500 decimal digits). All terms listed must be 
known to be correct, and there cannot be any gaps. If the 
first n terms are known but the (n + 1) st is known only to 
be either 14 or 15, then the listing of the sequence must 
end with the nth term. In the case of Mersenne primes 
(A000043), it is common for later primes to be discovered 
before all smaller candidates have been tested. Until it is 
known for certain that the new discoveries are indeed the 
next terms, they cannot be added to the sequence (although 
of course they can be mentioned in comments). Often, one 
wants more terms than are shown in the DATA section, 
and in many cases, the first link in the entry will point to 
a plain-text file with perhaps 10,000 or 20,000 terms. That 
file will have a name like b001006.txt and is called 
the “b-file” for the sequence. Some entries also have much 
larger tables, giving a million or more terms.

If you click the “graph” button near the top of the reply, 
you will be shown two plots of the sequence, and if you 
click the “listen” button, you can listen to the sequence 
played on an instrument of your choice. The default instru-
ment is the grand piano, and the terms of the sequence 
would then be mapped to the 88 keys by reducing the 
numbers mod 88 and adding 1.

I conclude this section with a philosophical comment. 
When you are seriously trying to analyze a sequence and 
are prepared to spend any amount of time needed (search-
ing for a formula or recurrence, for instance), you need all 
the help you can get, which is why we provide the b-files 
and other data files, and why we give computer programs 
in so many languages. This is also the reason we give as 
many references and links as possible for a sequence. Even 
if the reference is to an ancient or obscure journal, or one 

https://oeis.org/draft
https://oeis.org/A006577
https://oeis.org/A331452
https://oeis.org/A250001
https://oeis.org/A131744
https://oeis.org/A121053
https://oeis.org/A307720
https://oeis.org/A337663
https://oeis.org/A000043
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that has been accused of being “predatory,” we still give 
the reference, especially for sequences that are not well 
understood. The same thing holds for formulas, comments, 
and cross references to other sequences. When you are 
desperate, you will accept help from anywhere. And do not 
forget “Super​seeke​r,” which invokes a collection of algo-
rithms to try to analyze your sequence or to transform it 
into an OEIS entry.

Arrangement of the Entries
The entries in the database are (virtually) arranged in two 
different ways, the first essentially chronological, the sec-
ond lexicographic.

The first is by an entry’s absolute identification number, 
or A-number.3 Once the collection reached a few hundred 
entries, I sorted them into lexicographic order and numbered 
them A1, A2, A3, .... The sequence A1 gives the number 
of symmetry groups of order n, A2 is the famous Kolakoski 
sequence, and so on. This numbering is still used today, only 
A1 has become A000001, A2 is A000002, and as each new 
submission comes in, it gets the next free number. Currently, 
sequences are being issued numbers around A360000. Reject-
ed A-numbers are recycled, so there are no gaps in the order. 
We reached 100,000 entries in 2004, and 250,000 in 2015. The 
present growth rate is about 12,000 new entries each year.

The second arrangement is a kind of lexicographic 
ordering. First I describe an idealized, theoretical, lexico-
graphic order. Sequences of nonnegative numbers can be 
arranged in lexicographic (or dictionary) order. For exam-
ple, sequences beginning 1, 2, 4,… come before 1, 2, 5,… , 
1, 3,… , etc., but after 1, 2, 3,… . Also, 1, 2, 4,… comes 
after the two-term sequence 1, 2, because blanks precede 
numbers.

More formally, we compare the two sequences term by 
term, and in the first position where they differ, whichever 
is smaller (or blank) is the lexicographically earlier one. For 
sequences with negative terms, we ignore the signs and 
sort according to the absolute values.

Here is the actual ordering used in the OEIS. The 
sequences are arranged (virtually) into a version of lexico-
graphic order, according to the following rules. First, delete 
all minus signs. Then find the first term that is greater than 
1 and discard all the terms before it. What’s left determines 
its position in the lexicographic order. For example, to 
place −1, 0, 1, 1, 2, 1, 17,−3,−2, 6,… in the ordering, we 
would ignore the terms before the underlined 2 and consid-
er the sequence as beginning 2, 1, 17, 3, 2, 6, ....

Sequences that contain only 0’s, 1’s and −1 ’s are sorted 
into lexicographic order by absolute value and appear at 
the beginning of the ordering. The first sequence in the 
database is therefore the zero sequence A000004.

In this way, every sequence has a unique position in the 
ordering. The sequences have been sorted in this way since 
the 1960s. For the first 10 years, the punched card entries 
were physically sorted into this order.

When you look at any OEIS entry, A005132 say, toward 
the bottom you will see4 two lines like

Sequence in context: A277558 A350578 A335299 
* A064388 A064387 A064389

Adjacent sequences:  A005129 A005130 A005131 
* A005133 A005134 A005135

which tell you the three entries immediately before and 
after that entry in the lexicographic ordering and the 
three entries before and after it in the A-numbering. The 
asterisks represent the sequence you are looking at. The 
first group can be useful if you are uncertain about a term 
in your sequence, the second in case you want to look at 
other sequences submitted around that time.

Today, the sequences are stored internally in an SQLite 
database. However, the punched card format has been so 
useful that when you view a sequence, as in Figure  4, 
it is still presented to you in something very like the old 
punched card format.

Summary: “A Handbook of Integer 
Sequences” Today

•	 Now the On-Line Encyclopedia of Integer Sequences or 
OEIS: https://​oeis.​org

•	 Accurate information about 360,000 sequences.
•	 Definition, formulas, references, links, programs. View as 

list, table, graph, music!
•	 Traffic: 1 million hits a day.
•	 30 new entries, 50 updates every day.
•	 Often called one of best math sites on the Web. Finger-

print file for mathematics.
•	 “Street creds”: 10,000 citat​ions.
•	 A moderated Wiki, owned by OEIS Foundation, a 501(c)

(3) public charity.
•	 Uses: to see whether your sequence is new, to find refer-

ences, formulas, programs.
•	 Catalan or Collatz? (Very easy or very hard?)
•	 Source of fascinating research problems;5 low-hanging 

fruit from recent submissions.
•	 Accessible (free, friendly).
•	 Fun ( 1, 2, 4, 6, 3, 9, 12, 8, 10, 5, 15,…?). Interesting, educa-

tional. Escape.
•	 Addictive (better than video games).
•	 Has led many people into mathematics.
•	 One of the most successful international collaborations, a 

modest contribution toward world peace.
•	 Needs editors.

Some Favorite Sequences
I am sometimes asked for my favorite sequence. This is a 
difficult question. I’m tempted to reply by saying, “If you 
were the keeper of the only zoo in the world, how would 

3The sequences in the 1973 and 1995 books were numbered respectively N0001, ... and M0001, ....
4If you don’t see them, click on the A-number at the top of the entry.
5Look for “Conjecture,” “It appears that,” “It would be nice to,”, ...

https://oeis.org/ol.html
https://oeis.org/A000001
https://oeis.org/A000002
https://oeis.org/A000004
https://oeis.org/A005132
https://oeis.org
https://oeis.org/wiki/Works_Citing_OEIS
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you answer that question?” (Because that is roughly the 
situation I’m in.) Would you pick one of the exotic animals, 
a giraffe, a kangaroo, or a blue whale? Or one of the essen-
tial animals, like a horse, a cow, or a duck? If the question 
came from a visiting alien, then of course there would be 
only one possible answer: a human being.

For sequences, the essential ones are the primes, the 
powers of 2, the Catalan numbers, and (especially if the 
question came from an alien with no fingers or toes) the 
counting sequence 0, 1, 2, 3, 4,… (A001477).

But here I’ll mention a few that are fairly exotic. The 
Recamán and Gijswijt sequences have simple recursive defi-
nitions, yet are astonishingly hard to understand.

Recamán’s Sequence (A005132)
This remarkable sequence has resisted analysis for over 
30 years, even though we have computed an astronomi-
cal number of terms. It was contributed to the database by 
Bernardo Recamán Santos in 1991.

The definition is deceptively simple. The first term is 0. 
We now add or subtract 1, then we add or subtract 2, then 
add or subtract 3, and so on. The rule is that we always first 
try to subtract, but we can subtract only if that leaves a 
nonnegative number that is not yet in the sequence. Other-
wise, we must add.

Here is how the sequence begins. We have the initial 
0. We can’t subtract 1, because that would give a nega-
tive number, so we add 1 to 0. So the second term is 1. We 
can’t subtract 2 from 1, so we add it, getting the third term 
1 + 2 = 3 . Again we can’t subtract 3, for that would give 0, 
which has already appeared, so we add 3, getting the fourth 
term 3 + 3 = 6.

Now we must add or subtract 4, and this time we can 
subtract, because 6 − 4 = 2 , and 2 is nonnegative and 
a number that hasn’t yet appeared. So at this point, the 
sequence is 0, 1, 3, 6, 2. Then it continues with 7(= 2 + 5) , 
13(= 7 + 6), 20(= 13 + 7), 12(= 20 − 8) , and so on. The 
terms a(0) through a(15) are

When you are adding rather than subtracting, repeated 
terms are permitted (e.g., a(20) = a(24) = 42).

Edmund Harriss has found an elegant way to draw the 
sequence as a spiral on the number line (Figure 5). Start at 
0, and when we subtract n, draw a semicircle of diameter 
n to the left from the last point, and draw one to the right 
when we are adding n. Draw the semicircles alternately be-
low and above the horizontal axis so as to produce a smooth 
spiral.

The main question about this sequence is this: does 
every positive number appear? What makes this sequence 
so interesting is that certain numbers (for reasons we do 
not understand) are extremely reluctant to appear. For 
example, 4 does not appear until 131 steps, and 19 takes 
99,734 steps.

A group of us at AT&T Labs worked on this in 2001 and 
found a way to greatly speed up the computation. Allan 
Wilks used our method to compute the first 1015 terms and 
found that 2406 (which had been missing for a long time) 
finally appeared at step 394,178,473,633,984.

At that point, the smallest missing number was 
852655 = 5 ⋅ 31 ⋅ 5501 . Benjamin Chaffin has continued 
this work, and in 2018, he reached 10230 terms. However, 
852,655 was still missing, and there has been no progress 
since then.

Thirty years ago, I thought that every number would 
eventually appear. Now I am not so sure. My current belief 
is that there are two possibilities: (1) There are infinitely 
many numbers that never appear, and 852,655 just hap-
pens to be the smallest of them and has no other special 
property. A similar phenomenon seems to occur in iterating 
various number-theoretic functions—see the next section. 
(2) Every number will eventually appear (just as presuma-
bly every one of Shakespeare’s plays will eventually appear 
in the expansion of � in base 60), although we may never 
be able to extend the sequence far enough to hit 852,655. 
For the latest information about this sequence (or any other 
sequence mentioned in this article), consult the OEIS.

Open question: Does 852,655 appear in A005132?

Iteration of Number‑Theoretic Functions
Many mysterious sequences arise from the iteration of 
number-theoretic functions. A classic problem concerns 
the iteration of the function f (n) = �(n) − n , the sum of 
the divisors of n that are less than n (technically, the sum 
of the “aliquot parts” of n) A001065. For an initial value 
of n, what happens to the sequence (or “trajectory”) 
n, f (n), f (f (n)), f (f (f (n))),… ? All n < 276 terminate by 
entering a cycle (such n are called “perfect,” “amicable,” or 
“sociable” numbers, depending on whether the cycle is of 
length 1, 2, or ≥ 3 )) or by reaching a prime, then 1, then 0.

But it appears likely that n = 276 , and perhaps all suffi-
ciently large even numbers, will never terminate [5, 9, §B6]. 
The trajectory of 276 is sequence A008892. At the time of 
writing, 2145 terms of this trajectory have been computed, 
and it is still steadily growing, term 2145 being a 214-digit 
number [7].

0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9, 24 .

Figure 5.   Harriss’s drawing of the first 64 terms of Recamán’s 
sequence. (The tiny initial semicircle, at the extreme left, is 
below the axis. It has diameter 1 and joins the points 0 and 1. 
It continues as a semicircle of diameter 2 above the axis, join-
ing the points 1 and 3.)

https://oeis.org/A001477
https://oeis.org/A005132
https://oeis.org/A001065
https://oeis.org/A008892
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There are arguments that suggest that 276 will eventu-
ally terminate, and other arguments that suggest it will 
grow forever. It is surprising that even today, mathematics 
cannot resolve such a concrete question.

Sequence A098007 gives the number of distinct terms 
in the trajectory of a general initial number n, or −1 if the 
trajectory is unbounded. The value of A098007(276) is 
unknown.

If indeed 276 does go to infinity, it is natural to ask, 
how did 276 know it was destined to be the first immortal 
number under the map f? The answer may be that there are 
infinitely many immortal numbers, and 276 just happens to 
be the first. It got lucky, that’s all! Just as 852,655 got lucky 
in Recamán’s problem.

A similar question, discussed by Richard K. Guy [9, §B41],  
which has received much less attention, concerns the map 
g(n) = (�(n) + �(n))∕2 , where �(n) is the Euler totient 
function A000010. The trajectory may end at 1, a prime, 
or a fraction, or it may increase monotonically to infin-
ity. Sequence A292108 gives the number of steps in the 
trajectory, or −1 if the trajectory is infinite. All numbers 
n < 270 have finite trajectories, but it appears that 270 in-
creases forever. The trajectory of 270 is A291789. For this 
problem there is less doubt about what happens, because 
Andrew Booker has given a heuristic argument showing 
that almost all numbers go to infinity. What makes 270 the 
first immortal number under g? Again I suspect it just got 
lucky!

Open questions: Does the trajectory of 276 under f in-
crease forever? What about the trajectory of 270 under g?

Gijswijt’s Sequence (A090822)
For this sequence, it will be helpful to remember that 
chemists do not write HHO for water; they write H2O . 
And they do not write AlAlAlSOOOOSOOOO ; they 
write Al3(SO4)2 . We will apply a similar compression to 
sequences of numbers, except that we indicate repetition 
by superscripts rather than subscripts.

For this problem, when we look at a sequence of num-
bers, we want to write it in the form XYY…Y , or XYk , 
where X and Y are themselves sequences of numbers, X can 
be missing, and the exponent k is as large as possible.

For example, we can write 1, 2, 2, 2, 2 as XYk , where 
X = 1 , Y = 2 , and k = 4 . The highest k we can achieve for a 
sequence is called its curling number. So 1, 2, 2, 2, 2 has curl-
ing number 4. If you think of an animal with its head looking 
to the left, with a very curly tail, then X represents the head 
and body of the animal, and Yk represents the curls in its tail.

Consider the sequence 3, 2, 4, 4, 2, 4, 4, 2, 4, 4. We 
could take X = 3, 2, 4, 4, 2, 4, 4, 2 and Y = 4 , getting XY2 , 
with k = 2 , or we could take X = 3 , Y = 2, 4, 4 , getting 
XY3 , with k = 3 , which is larger. So this sequence has curl-
ing number 3.

Remember that X may be missing. So the sequence with 
a single term 99, say, can be written as Y1 , where Y is the 
number 99, and it has curling number 1. The notion of 
curling number is independent of the base in which the 
numbers are written.

We are now ready to define Dion Gijswijt’s absolutely 
brilliant sequence, which he sent to the OEIS in 2004.

The rule for finding the next term is simple: it is the 
curling number of the sequence so far. And you start with 
1. That’s the sequence!

So let’s construct it. We start with 1, and the curling 
number of 1 is 1. So now we have 1, 1. This has curling 
number 2, so now we have 1, 1, 2. At each step we recom-
pute the curling number and make that the next term.

Here are the first few generations:

To go from line 6 to line 7, we took Y = 1, 1, 2 . In line 8, 
we see the first 3, at the ninth term, and after a while, a 4 
appears at term 220.

But Gijswijt was unable to find a 5, and he left that ques-
tion open when he submitted the sequence. Some AT&T 
Labs colleagues computed many millions of terms, but no 5 
appeared.

Finally, over the course of a long weekend, Fokko van 
der Bult (a fellow student of Gijswijt’s in Amsterdam) and 
I independently showed that there is a 5. In fact, there are 
infinitely many 5’s, but the first one does not appear until 
about term 1010

23

 . The universe would be cold long before 
any computer search would find it.

In the paper we wrote about the sequence [15], we also 
conjectured that the first time a number N > 4 appears is at 
about term

where the up-arrows ( ↑ ) indicate exponentiation, a tower 
of exponents of height N − 1 . This is a very slow-growing 
sequence.

A very recent manuscript by a student of Gijswijt’s, Levi 
van de Pol [16], still under review, has extended our work 
and may have proved the above conjecture.

I cannot resist adding a further comment about curling 
numbers, which if true shows that the Gijswijt sequence 
is in a sense universal. My “curling number conjecture” 
asserts that if any finite starting sequence is extended by 
the rule that the next term is the curling number of the se-
quence so far, then eventually the curling number will be 1.

If true, this implies that if the starting sequence con-
tains no 1’s, then the sequence eventually becomes  
Gijswijt’s sequence [4, Theorem 23]. In fact, I conjecture 
that this is true for any starting sequence.

Open question: Is the curling number conjecture true?

1

1 1

1 1 2

1 1 2 1

1 1 2 1 1

1 1 2 1 1 2

1 1 2 1 1 2 2

1 1 2 1 1 2 2 2

1 1 2 1 1 2 2 2 3

2 ↑ (2 ↑ (3 ↑ (4 ↑ (5 ↑ … ↑ (N − 1))))),

https://oeis.org/A098007
https://oeis.org/A098007
https://oeis.org/A000010
https://oeis.org/A292108
https://oeis.org/A291789
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Lexicographically Earliest Sequences
Although there is no space here to discuss them in detail, 
there are many fascinating and difficult sequences in the 
OEIS whose definition has the form “Lexicographically 
Earliest Sequence of distinct positive numbers with the 
property that ...,” where now we are using lexicographic 
in its pure sense, as mentioned when we were discussing 
the arrangement of sequences in the database. A favorite 
example is the EKG (or ECG) sequence A064413, whose 
definition is the lexicographically earlier infinite sequence 
of distinct positive numbers with the property that each 
term after the first has a nontrivial common factor with the 
previous term [10]. Other L.E.S. examples are the Yellow-
stone permutation A098550 [2], the Enots Wolley sequence 
A336957 (the name suggests the definition), and the Binary 
Two-Up sequence A354169 [6].

Open question: show that the terms of the Enots Wolley 
sequence are precisely 1, 2, and all numbers with at least 
two distinct prime factors.

The Stepping Stones Problem (A337663)
This lovely problem was invented in 2020 by two  
undergraduates, Thomas Ladouceur and Jeremy Reben-
stock. You have an infinite chessboard and a handful of 
brown stones, which are worth one point each.  
You also have an infinite number of white stones, of 
values 2, 3, 4,… , one of each value. Suppose you have n 
brown stones. You start by placing them anywhere on  
the board. Now you place the white stones, trying to 
place as many as you can. The rules are that you can 
place a white stone with value k on a square only if the 
values of the stones on the eight squares around it add up 
to k. And you must place the white stones in order, first 
2, then 3, and so on. You stop when you cannot place the 
next-higher-numbered white stone. The goal is to find  
the highest value that can be placed. Call this value, for 
the game with n stones, a(n).

Say we start with n = 2 brown stones. There are infi-
nitely many squares on which they can be placed, but in 
order for us to be able to place the white stone with value 
2, they must be placed with at most one blank square 
between them. It turns out that the best thing is to place 
them so they are separated diagonally by a single blank 
square, as in Figure 6.

Now we start trying to place the white stones. The 
2 stone has to go between the two brown (or 1) stones, 
and then the 3 goes on a square adjacent to the 1 and 
the 2. There is now a choice for where the 4 goes, but 
the choice shown in Figure 6 is the best. (After we have 
placed the 4, the neighbors of the 3 no longer add up to 
3, but that is OK. It is only when we place the 3 that its 
neighbors must sum to 3.) Continuing in this way, we 
eventually reach 16. There is nowhere to place the 17, 
so we stop. Ladouceur and Rebenstock showed, using 
a computer and considering all possible arrangements, 
that 16 is the highest value that can be attained with two 
starting stones. So a(2) = 16.

This is clearly a hard problem, since the number of pos-
sibilities grows rapidly with the number of brown stones. 
Only six terms of this sequence are known: a(1) through 
a(6) are 1, 16, 28, 38, 49, 60. A solution for n = 4 found by 
Arnauld Chevallier is shown in Figure 7. There are lower 
bounds for larger values of n that may turn out to be opti-
mal. For n = 7, 8, 9, 10 , the current best constructions give 
71, 80, 90, 99. See A337663 for the latest information.

We don’t know how fast a(n) grows. Some upper and 
lower bounds, initiated by Robert Gerbicz and Andrew 
Howroyd, can be found in the Comments section of 
A337663. The simple linear construction shown in Fig-
ure 8 shows that a(n) ≥ 6(n − 1) for n ≥ 3.

By combining the constructions of Figures 6 and 
8, Menno Verhoeven obtained a(n) ≥ 6n + 3 for n ≥ 3 
(Figure 9).

The best lower bound for large n is due to Robert 
Gerbicz, who has shown by a remarkable extension of the 
construction in Figures 8 and 9 that 

(A preliminary version of his bound gives 

for all n, although the exact values of the constants have 
not been confirmed.) In his construction, the “chimney” on 
the right of Figure 9 gets expanded into a whole trellis.

One might think that with a sufficiently clever arrange-
ment, perhaps extending the construction in Figure 8 so 
that the path wraps around itself in a spiral, one could 

lim
n→∞

a(n)∕n > 6.

a(n) > 6.0128n − 5621

9 5 10 11
4 1

12 8 3 2 16*

6 1 15
13 7 14

Figure 6.   A solution to the Stepping Stones Problem for two 
starting stones. The high point a(2) = 16 here is indicated by 
an asterisk, as it is in the next three tables.

35 18 36 23 21 32
17 1 14 9 12 20
34 16 15 5 4 8 26 27

31 10 1 3 19 25 1 28
11 2 6 33 29
24 13 22 1 7
37 30 38*

Figure 7.   A solution to the Stepping Stones Problem for four 
starting stones.

https://oeis.org/A064413
https://oeis.org/A098550
https://oeis.org/A336957
https://oeis.org/A354169
https://oeis.org/A337663
https://oeis.org/A337663
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achieve large numbers with only a few starting stones. But 
a simple counting argument due to Robert Gerbicz shows 
that this is impossible. The current best upper bound 
is due to Jonathan F. Waldmann, who has shown that 
a(n) < 79n + C for some constant C. See A337663 for the 
latest information, including proofs of the results men-
tioned here.

Open problem: improve the lower and upper bounds on 
a(n). The lower bound looks especially weak.

Stained Glass Windows
In 1998, Bjorn Poonen and Michael Rubinstein [13] 
famously determined the numbers of vertices and cells in 
the planar graph formed from a regular n-gon by join-
ing every pair of vertices by a chord. The answers are in 
A006561 and A007678. Lars Blomberg, Scott Shannon, and 
I have studied versions of this question when the regular 

n-gon is replaced by other polygons, for instance by a 
square in which n equally spaced points are placed along 
each side, and each pair of boundary points is joined by a 
chord. We also studied rectangles, triangles, etc. In most 
cases, we were unable to find formulas for the numbers 
of vertices or cells, but we collected a lot of data, and the 
graphs, when colored, often resemble stained glass win-
dows (see [3] and the illustrations in A331452 and other 
sequences cross-referenced there).6 So we consoled our-
selves with the motto, “If we can’t solve it, make art!”

The most promising case to analyze seems to be the n × 2 
grid (although we did not succeed even there).

Open question: how many vertices and cells are there 
in the graph for the n × 2 grid, as illustrated for n = 4 in 
Figure 10? Sequences A331763 and A331766 give the first 
100 terms, yet even with all that data, we have not found a 
formula.

The case of an n × n grid seems even harder.  
Figure 11 shows the 6 × 6 graph. Sequences A331449 

1
2 3 4 5 6 7 8 9

1 1 1 10
18* 17 16 15 14 13 12 11

Figure 8.   Every additional 1 on the middle row increases the 
number of white stones by 6, showing that a(n) ≥ 6(n − 1) for 
n ≥ 3.

25
24 1 26
23 27
22 28
21 1 29
20 30
19 31

9 5 10 11 18 1 32
4 1 17 33*

12 8 3 2 16
6 1 15

13 7 14

Figure 9.   Combining the constructions of Figures 6 and 8 
gives a(n) ≥ 6n + 3 for n ≥ 3 . The case n = 5 is shown. For other 
values of n, adjust the height of the “chimney” on the right.

Figure 10.   A 4 × 2 grid of squares with every pair of bound-
ary points joined by a chord. The graph has 213 vertices and 
296 cells. The cells are color-coded to distinguish triangles 
(red), quadrilaterals (yellow), and pentagons (blue).

6There is no fee for downloading images from the OEIS, but if you use any of them, please credit the source!

https://oeis.org/A337663
https://oeis.org/A006561
https://oeis.org/A007678
https://oeis.org/A331452
https://oeis.org/A331763
https://oeis.org/A331766
https://oeis.org/A331449
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and A255011 give the numbers of vertices and cells 
for n ≤ 42 . Sequence A334699 enumerates the cells by 
number of sides.

In the summer of 2022, Scott Shannon and I consid-
ered several other families of planar graphs. I cannot resist 
showing one of Shannon’s graphs, a 16 × 16 grid, illustrat-
ing the 16th term of A355798 (Figure 12). There are 61,408 
cells. Although Shannon has calculated 40 terms of this 
sequence, again no formula is known.

Other Sequences I Would Have Liked to Include
It is getting late, so I had better stop. Another time, I’ll tell 
you about some very interesting sequences, such as those 
arising from the problem of dissecting a square to get a 

regular n-gon (A110312); from gerrymandering (A341578, 
A348453, and many others); counting the ways in which 
circles can overlap (A250001); the inventory sequence 
(A342585); Kaprekar’s junction numbers (A006064, [1]); the 
kissing number problem (A001116, A257479); the neural 
network problem that started it all (A000435); and the 
squares in the plane problem (A051602). And perhaps also 
metasequences such as A051070 (a(n) is the nth term of An ) 
and A107357 (the nth term is 1+ the nth term of An).

A final comment: there are many videos in the internet 
of talks I have given about sequences, including several 
that Brady Haran has made for the Youtube Numberphile 
channel (which have been viewed over eight million times). 
See, for example, “Terri​fic Tooth​pick Patte​rns.​”

Figure 11.   A 6 × 6 grid with every pair of boundary points joined by a chord. There are 4825 vertices and 6264 cells.

https://oeis.org/A255011
https://oeis.org/A334699
https://oeis.org/A355798
https://oeis.org/A110312
https://oeis.org/A341578
https://oeis.org/A348453
https://oeis.org/A250001
https://oeis.org/A342585
https://oeis.org/A006064
https://oeis.org/A001116
https://oeis.org/A257479
https://oeis.org/A000435
https://oeis.org/A051602
https://oeis.org/A051070
https://oeis.org/A107357
https://www.youtube.com/watch?v=_UtCli1SgjI
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