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1. Introduction. We consider in the plane the class of all convex curves into
which a given convex curve can be affinely transformed, and seek the minimum
of L2/A, where L denotes perimeter and A the area. This amounts to finding the
minimum length for a fixed area, or, what is the same thing, to finding the mini-
mum length under area-preserving affine transformations. In $ 2 are found neces-
sary conditions on the supporting function that a given curve yield the minimum
of L2/A, and in § 3 these are shown to be sufficient. In §4 is derived a proper-
ty of the minimizing curves; namely that if they are sufficiently swooth, they
have at least six vertices. In $5 is derived an integral representation of the
supporting function of a convex curve, and another lemma to be used in $6. In
6 we study the problem of finding the maximum, over all convex curves, of the
minimum over affine transformations of L2/4; in other words, we seek that curve
of given area, which when affinely transformed so as to minimize its length,
gives the greatest length. We show that the extreme curve is a polygon of not
more than five sides, but fail to show what is extremely likely, that the solution

is a triangle.

For general facts about convex figures and their supporting functions which

are used, see [ 3].

2. Necessary conditions. Consider a convex curve K and its area-preserving
affine transforms. Since rigid motions can be ignored, any transformation in which

we are interested can be written in the form

(1) T:

y=pa+ eyl
The length L (A, ) of the transformed curve K (A, 1) is a continuous function
of A and y, and tends to o as (A2 +;12)1/2 becomes large. Thus L (A, p) has

a minimum value, which we take for the moment to be at A = p = 0.
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In order to find L (X, ) we need the supporting function p (A, u; ) of K (A, u).

If p(6)=p(0, 0, @) is the supporting function of K, then a supporting line to
K is

(2) x cos @ + y sin 0 = p(9).
The transformation (1) carries (2) into
(3) x’( et cosG+,usin6)+y'e~)‘ sin 6 = p(6),

which is a supporting line to K(A, u).

To convert (3) into normal form we set

A

e” cos 0 + p sinf =k cos ¢,

(4) -
e sin 0 = k sin ¢,

or

cot ¢ 62)\ cot6+ue’\,

E? = (eA cos 0 + u sin 0)? + e™2M sin? g.

(5)

The normal form of (3) is then
x° cos¢p + vy sing = p(0)/k,
and so
p(A p ) =p(0)/k.
From (5) and (4) we see that
csc?p dp = e2* csc? 0 d6, e k? sin?¢ = sin®0,

and so d¢p = d0/k% Thus’

(6) LOww = [pO i #) dg = p(@)%.
Now let A and p be functions of a parameter ¢, with A(0) = p(0) = 0. Then
L(A(e), p(2)) = L(¢),
and direct computation from (6) results in

L All integrals go from 0 to 27 unless otherwise noted.
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-L"(0) . 1,
(7) _T = fp(@)[)\o 00526+E#0 sin26¢1 d9 = 0.

Since A7 and p’ may be taken at pleasure, it is clear that in order for ¢ = 0 to

yield a minimum, we must have

(8) fp(e) cos 20 do = fpw) sin 20 d6 = 0.

In other words, a necessary condition that K give a minimum length is that the

second Fourier coefficients of p be zero.

3. Sufficiency. Suppose now that A = u = 0 is a critical value of L (X, p), not

necessarily the minimum. Then, as in § 2, we see that

fp cos20d9=/p sin26 d6 = 0.

Futher differentiation of (6), with the use of (8) and certain trigonometric i-

dentities, results in
' 3 )
(9)L (0) =§fp(6){x (1+5 cos46)+ 10xy sin 40 + y*(1 - 5 cos 40) }d9,
where x = A7, 2y = p/. Setting
1 2 1
(10) K(9) = x2(1~-3— cos 460) — gxy sin460 + y2(1+ 3 cos 46),
we may rewrite (9) as
’” 3 4
(11) L (O)=E/p(9)§K+K | do.

Suppose now that p is twice differentiable, and integrate the K™ term in (11)
by parts twice. We get

’’ 3
L = — “Yy K d6.
(12) (0) = = f(p+p ) K do

The discriminant of the quadratic form (10) is equal to —32/9, and the form is
positive definite. Let M be its minimum value for x? + y2 = 1, and all 6. The

quantity p + p” is the radius of curvature, ds/d 8, of K, and so

rld 3 3
L 0>——fMds=-—ML.
(13) (0) 2 3
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If p is not twice differentiable, we approximate it uniformly by supporting func-
tions which are. The right member of (9), for these approximating functions, is
at least 3ML/2, where L is computed for the approximating function; thus,

passing to the limit, we see that (13) is satisfied in this case also.

Because of (13), we now see that if A = 4 = 0 is a critical point for L (), ),
then it is a proper relative minimum. Consider now any transformation 7,, corre-

sponding to parameters Ay, pg, which yields a
K, = K(Xps p1y)

for which the second Fourier coefficients of the supporting function vanish. We
may write T in the form (TTy') Ty; that is, in studying the length of the trans-
forms of K as function of T, we may study instead the length of the transforms of

K, as function of TT;!. We may write

x = e TAg) 4 = ef %’
TT;l: y = (#e')‘o - ;Loe")‘) Y nx’ + e_§Y',
where
E=A-h,
(14) = pe o~ e,
Now

L(x, ﬂ) = 8(5’ 1),

and, by the foregoing analysis, 2 (&, n) has a proper relative minimum at { =7 =
0. But the transformation (14) is nonsingular, and so L (A, p) has a proper rel-
ative minimum at Ay, po. Thus every critical point of L (A, ) is a proper relative
minimum. But an (analytic) function in the plane which has only minima for
critical points and which tends to co at great distance can have only one critical
point [6]. Thus L (A, i) has only one critical point, and this must be at the

minimum.

THEOREM 1. A necessary and sufficient condition that K have the least
length of all curves into which it can be transformed by an area-preserving affine

trans formation is that

fp cos 20 d@:fp sin 26 4§ = 0.

Henceforth we shall refer to such K as extreme curves.



LENGTH AND AREA OF A CONVEX CURVE 397

4. A six-vertex theorem. A vertex on a convex curve is a point where the
radius of curvature has an extremum. [t is a theorem of Kneser (see for example
[1, p.1601) that every convex curve, if sufficiently smooth, has at least four

vertices.

THEOREM 2. Each extreme curve with a continuous radius of curvature has

at least six vertices.?

The radius of curvature p is given in terms of the supporting function by

p=p+p”. Now

ds
fp cos@d@:fd—e cos@d@:/cos@ds:%dyno,

and similarly for [ p sin 6 d6. Also

fp cos 26 d0=f(p+p”) cos 20 d0 = 0,

by two integrations by parts. Thus we see that

L (o<}

(15) p’“;;ntZ(an cos nf + bn sin n@).
3

It has been known since Liouville ([ 5, p.264]) that (15) implies that p — L/27

has at least six alternations in signs, and hence p six extrema.

In a very similar manner one can prove the following theorem, which however,
will only be stated.

THEOREM 3. Each extreme curve intersects a certain circle, of radius L/2x,

at least six times.

5. Some lemmas. If //(&, p) is the Minkowski Stiitzfunktion of a convex
curve, then

p(8) = H(cos 8, sin 6).

Now /I is a convex function of & n; p(6)is not convex, but has the somewhat

2 Blaschke [ 2] has already shown that a convex curve K may be affinely transformed
until its radius of curvature is in the form (15), and thus that it has six vertices. How-
ever, the vanishing of the coefficients a, and b, was attained in an entirely different way.
Namely, he found that ellipse K|, of area equal to that of K, whose mixed volume with K
is a minimum. Transforming affinely so that K, becomes a circle, we see that K becomes
a curve satisfying (15). We have not been able to discover that Blaschke or others made
any application of this result to the present problem.
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analogous property of being sub-sine. A function f(§) is sub-sine if, provided
f(9) = A cos 0 + B sin g at 0, and 6, where 0,<0,<0 +m,
then
f(6) <A cos@ + B singfor 9 <6<9,.

A necessary and sufficient condition [ 4] that a periodic function p(6) be the
supporting function of a convex curve is that it be sub-sine, or, if it is of class
C’ thatp+p” > 0.

LemMA 1. A necessary and sufficient condition that a function p(60) of peri-
od 27 be the supporting function of a convex curve is that it be expressible.in
the form

(16) p(G):/: sin (0—t) da(t) + A cos @ + B sin 9,

0

where a is a nondecreasing function.
First let a supporting function p C C*; then
p+p”=g(0)>0.
The solution of the differential equation p + p”* = g(6) is readily verified to be

(17) p(8) = ./6.79 sin (0 ~¢) g(¢) dt + p(@o) cos (0-0)

o
+p’( 90) sin (9 = 00),
which is of the form (16) with

a(f) = '/: g(t) dt.
0

Note that
a(f,) =0 and a(6, +27) =f(p +p”)do=1L.

Now if p ¢ C”’, it is the uniform limit of supporting functions p, which are. We
put each p, in the representation (17), and apply the Helly selection theorem
and the Bray-Helly theorem ([ 7, p.29-31]) to obtain the result immediately.

The factors p,;,(6,) offer no difficulty, since one easily shows that they are
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bounded for all n.

The converse is proved similarly. If a periodic p is given by (16), we can
approximate @ by a sequence of smooth monotone functions a, which give peri-

odic functions p,; these p, are sub-sine since they satisfy
Pp * Py = ar’z 2 0.

Again using the Bray-Helly theorem, we have that p = lim p,; that is, p is a limit

of sub-sine functions, and so is sub-sine.

LEmMa 2. If p(0) is a supporting function, and if there exist at least six
disjoint intervals in 0 < 6 < 27, interior to each of which p is not identically of
the form A cos O + B sin 6, then there éxists a function n(0) with the following
properties:

(a) p + Ay is a supporting function for small ||,

(b) {7 dO = [ncos20d0 = [ysin20d6 =0,

(c) n # Acos @ + B sing.

Let Il-: a; <0< bj, j=1, 2, +++, 6, be the disjoint intervals mentioned, and
let p be given by (16). We may assume that a () is continuous at a; and bj.

Define

a(a}.) for 0§0<a].,
(18) Bj(9)= a(8) for a]. <6< b].,
a(b].) for b].§6§277.

while outside (0, 27 ) we make dBj periodic. Set
B = Z)xj B]., where l}\jl < 1.

Then a (6) + AB () is nondecreasing if | A| < 1, as simple computation reveals.
We set

1%
N, =f sin (6 ~¢) dB,(t) and ¢ = Z)\. N,
i J i i

Then p + Ay is of the form (16), with a+ A8 in place of a. In order that n have
period 27, and thus that (a) be satisfied, we demand that

(19) Z}\jfsinedﬁj((?)-: ijfcose 48,(8) = 0.
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To satisfy conditions (b) of the lemma, we set

(20) Zx].fnj do = ZA}. fn,- cos 20 d6 = Z’\ifm- sin 260 d6 = 0.

Equations (19) and (20) comprise five homogeneous equations in the six un-
knowns ;. They always have a nontrivial solution, which we employ for the con-
struction of 8. If A\j # 0, then 7 is equal in I to a nonzero multiple of p(8),
plus sine and cosine terms, and this by hypothesis is not of the form 4 cos 6 +

B sin (. Thus ( c) is satisfied, and the lemma is proved.

6. The minimax problem. We now restrict our attention to extreme curves, and
seek the maximum m of L%/A4. A crude estimate of m can be obtained as follows.
If K is any convex curve of area 1, inscribe in K a triangle A of maximum area,
A(A). Then at each vertex of A, K must have a supporting line parallel to the
opposite side of A, and these three supporting lines form a triangle A,. Trans-
form the plane in an area-preserving affine way so that A and A, are carried into,
equilateral triangles A’ and A{, and K into K’. The perimeter L(A") of A’ is
given by

L(AY) =6 JA(A)N3.

Then
L(K) < L(AY) = 2L(A") = 12/ A(AOATE < 12/43.
Thus for the transform K’ of K, we have
L%/4 < 48 /3, and so m < 48/3.
On the other hand, the equilateral triangle gives
L?/4 =12 3, andso m > 12 /3.

We now normalize our problem by considering extreme curves of length 1, and
try to minimize the area. By the usual compactness argument ([ 2, p.62]), there
does exist a minimizing curve K. Let p be the supporting function of K. Suppose
there exists a function 7 (@) satisfying conditions (a), (b) of Lemma 2. Con-
sider the area 4(A) of the extreme curve, of unit length, whose supporting func-
tion is p + An. We have
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(21) 24 ()) =f§(p+z\n)2 —(p?An)2} dO
= 24(0) + 2) f(pn —pp?) do + A2 f(nz - 5’%) do.

Because of the extreme nature of K, the term [(py —p“n”) 46 =0. Because of

conditions (b) of LLemma 2, the Fourier series of  will be as follows.

n=a, cose+bl sin 0 + Z (a]. cosj0+b]. sin j6),
3

and by Parseval’s relation,
i 2d6_(a2 b2) i ( 2 bZ)
- ] = (ai+ b7) + a; + b?).
3

Similarly (5 being bounded ),

1

1 o
e R RIS ST I
3
and so
(22) f(nz—n'z)der- 7 2 (1-j%) (a}+ b?).
3

Since A(A) > A(0), we see from (21) and (22) that aj=b;=0 for j > 2, so that
n=a, cos 0+ b, sin 6. Thus it is not possible to satisfy (a), (b), and (c)

simultaneously.

Now if K is a polygon, p is piecewise of the form 4 cos § + B sin 6, and con-
versely. If K is not a polygon it is clear that one can find as many intervals as
desired in each of which p is not of that form, and L.emma 2 applies. Lemma 2
also applies if K is a polygon of six or more sides. Thus it is not possible for

K to be other than a polygon of five or fewer sides.

It appears very likely that K is an equilateral triangle and that m = 12/3.
To eliminate the cases of four and five sides is just a problem in the calculus,
but possibly a very difficult one. In these cases there are not enough sides to
construct the variations used above, which consist of sliding sides in and out
parallel to themselves, so if a variational method is to be used, a different kind

of variation, involving changing the angles, must be found.
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