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Abstract

Traditional ecological models assume well-mixed popula-
tions, where all members are equally likely to interact with
one another. These models have been used successfully to ex-
plain competitive interactions; however, positive interactions
such as intraspecific cooperation and interspecific facilitation
cannot readily be captured. Previous work has highlighted
the importance of spatial structure in explaining these behav-
iors as well as its role in maintaining biodiversity. These spa-
tial structures have frequently been modeled using lattices,
where all organisms have an equal number of interactions.
Although these models capture the spatiality of interactions,
natural populations are unlikely to follow such rigid patterns.
There has been little work investigating the dynamics of pop-
ulations with levels of social interactions that occur between
these two extremes.

In this work, we investigate the dynamics of a 3-strategy non-
transitive system in populations with different social struc-
tures. We first describe how extending the neighborhood of
interactions in traditional lattice models diminishes a popu-
lation’s ability to maintain diversity. Populations are then
moved to graphs where interactions are limited to cells within
a defined distance of each other in Cartesian space. This
method allows for a more fine-grained examination of the
effects that increasing interactions have on maintaining di-
versity. Finally, we examine small world topologies and find
that the introduction of random edges into the graph quickly
disrupts the maintenance of diversity.

Introduction
The maintenance of biodiversity has long bemused ecolo-
gists. Under most models, the number of species that can
coexist within a given ecosystem is significantly less than
that observed in nature. Traditional differential-equation-
based models, which assume well-mixed populations, often
lead to the single species with the fastest growth outcom-
peting all others, as demonstrated in Kerr (2007). Further,
these models have difficulty capturing cooperative interac-
tions among organisms, as these behaviors have associated
fitness costs, which slow growth rates and hinder a species’
ability to compete.

Ecological models that incorporate spatial structure and
local interactions, such as that developed by Durrett and

Levin (1994), have been shown to more accurately describe
the interactions of organisms. In these models, spatial struc-
ture is imposed by limiting the interactions of an organism to
its surrounding neighbors instead of all organisms in the sys-
tem. This can enable rare mutations to persist, especially if
a number of these mutants exist together in close proximity.
Further, if costly but beneficial behaviors are localized, the
benefits of these interactions on its recipients may outweigh
their costs, allowing them to spread in the population.

Allelopathic bacteria are a natural system that is fre-
quently used to study the effects of spatial structure and
cooperation, and localized interactions have been shown to
contribute significantly to the coexistence of multiple strains
(Kerr et al. (2002); Iwasa et al. (1998); Czárán et al. (2002)).
In these systems, bacteria produce toxins called bacteri-
ocins, which cause surrounding cells that do not express
resistance to lyse. In the process, the toxin producer is
killed. However, this act makes the newly-freed space and
resources available to neighboring cells (ideally, the kin of
the producer). Toxin production is genetically linked to re-
sistance, so producer strains are also resistant to the toxin
they produce. It is possible, however, to evolve resistance
independent of production. Because such resistant strains
do not pay the cost associated with production, they are able
to grow faster than producer strains, while still maintain-
ing their immunity. These strains, however, still grow more
slowly than a susceptible strain that neither produces toxin
nor is resistant. Therefore, in the absence of toxin, a resistant
strain will be outcompeted by a susceptible strain. This com-
bination of three strategies is considered a non-transitive
system, where each strain dominates another strain, but is
dominated by a third. These dynamics are captured in the
classic rock-paper-scissors (RPS) game, where rock crushes
scissors, scissors cuts paper, and paper covers rock.

Traditionally, spatial models of such systems have used
lattices containing a fixed number of vertices, or cells, dis-
tributed uniformly in space. A cell is typically connected
to its eight nearest cells (Moore neighborhood) by an undi-
rected edge. To prevent boundary effects, periodic bound-
aries are often used, which form a toroidal grid by creat-
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ing edges between cells on the periphery of the graph. This
results in regular graphs in which each cell has the same
number of neighbors, and the distance between any cell and
its farthest neighbor is the same for all cells. This regular-
ity indicates that any cell in the grid interacts with as many
other cells as any other cell. Further, this distance property
indicates that no matter where a dominant strategy begins,
it must interact with the same minimum number of cells in
order to spread throughout the population.

In this paper, we examine the role social structure plays
in the maintenance of biodiversity by studying the above
non-transitive system on graphs with differing vertex de-
grees, and hence different patterns of social interactions. We
use the terms spatial- and social structure interchangably, as
an organism’s potential social interactions are limited to its
neighbors. Our intent is to observe the dynamics of pop-
ulations in the space between the regular graphs used in
lattice models and well-mixed populations to determine at
what point diversity breaks down. To accomplish this, we
describe three models. First, we adopt the use of lattices, and
the number of interactions is increased by expanding the ra-
dius of interactions surrounding each cell. This model gives
us a high-level overview of the social structures in which di-
versity can be maintained. To achieve a more fine-grained
control over a cell’s interactions, we develop a method for
creating graphs from a set of points in Cartesian space. Fi-
nally, we examine diversity on small world graphs, where in-
teractions are primarily localized with the exception of some
potential long-range interactions.

The spread of a two-strategy system on graphs with dif-
ferent properties was previously studied by Ohtsuki et al.
(2006), who formulated a simple rule for the maintenance
of diversity. Our work differs in that we are using a three-
strategy system, and the benefits of a particular strategy are
not fixed, but rather depend on the composition of each cell’s
neighborhood. More similar to our work, Károlyi et al.
(2005) studied increases in social interactions through im-
perfect mixing of the spatial structure on a lattice. The
primary difference is that their work used some measure
of mixing, while the work presented here maintains fixed
neighborhoods while differing the number of potential in-
teractions. Finally, Buckley and Bullock (2007) used an in-
formation theoretic approach to investigate how space con-
tributes to the complexity of a system. Although the focus
of their work was different, complexity can play a large role
on a population’s ability to maintain diversity.

Methods
To study the effects of social structure on biodiversity, we
developed a model based on graphs. This model consisted
of cells, which were connected to each other by undirected
edges, making both cells neighbors of each other. Inter-
actions in this system were limited to a cell and each of
its neighbors. In all experiments, populations consisted of

90 000 cells. Each cell exhibited one of four possible strate-
gies:

1. Susceptible cells produced no toxin, nor were they resis-
tant to toxin production by neighboring cells. Because
susceptible cells did not pay any cost to maintain such be-
haviors, their growth was faster than other strategies.

2. Producer cells produced toxin which could kill neighbor-
ing susceptible cells. Additionally, since resistance is a
trait that is genetically linked with production, producer
cells were also resistant to toxin produced by neighboring
producer cells.

3. Resistant cells can be viewed as producers that cheat.
They reaped the benefits provided by adjacent producer
cells without themselves paying the costs of toxin produc-
tion. As such, they exhibited faster growth than producer
cells, but slower growth than susceptible cells due to the
added cost of resistance.

4. Empty cells had no effect on their neighbors. When cho-
sen, an empty cell adopted the strategy of a randomly-
selected neighbor.

We refer to these different cell types as “strategies”, how-
ever they can easily be viewed as species, strains, or sub-
species. At the beginning of each experiment, cells were
randomly assigned one of these strategies.

Importantly, the growth of each strain was controlled by
its rate of mortality. All strategies shared an intrinsic death
rate, and the costs associated with resistance and toxin pro-
duction manifested themselves as increases in death rate.
This means that at any given time, a producer cell was more
likely to die than a resistant cell, and a resistant cell was
more likely to die than a susceptible cell. When a cell died,
it became empty. For a cell to change from one strategy to
another, it had to first die and then later adopt a neighboring
strategy.

Populations were run for 10 000 epochs. During each
epoch, 90 000 cells were chosen at random, and their states
were updated asynchronously according to the rules de-
scribed below. Following Kerr (2007), the probabilities of
a resistant or producer cell dying during one of these up-
dates were 0.312 and 0.333, respectively. Because the fate
of a susceptible cell was tied to the presence of neighboring
producer cells, its chance of death was modeled according to
Equation 1, where ∆0

S is the intrinsic death rate for suscep-
tible cells (0.250 in this work), τ is the toxicity of producers
(0.65), and fp is the fraction of producers in the cell’s neigh-
borhood.

∆S = ∆0
S + τfp (1)

Studies examining the maintenance of cooperative behav-
iors often compare the fitness cost of a strategy with the ben-
efits it provides (e.g., Axelrod and Hamilton (1981); Ohtsuki
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et al. (2006)). In most game theoretic models, these costs
and benefits are explicitly defined in payoff matrices. In our
model, the costs can be viewed as the increase in mortality
seen by resistant and producer cells. In this sense, the cost
of each strategy is fixed and continually incurred. However,
due to the spatial nature of this and most other biological
systems, the benefits depend on the current distribution of
strategies in a cell’s neighborhood. For example, toxin pro-
duction may be highly beneficial when surrounded by sus-
ceptible cells, but have no benefit when all neighbors are
producers. Likewise, resistance is beneficial in the presence
of producer cells, but not in the presence of susceptible or
resistant cells.

Lattice Models with Increasing Interactions
To examine the effects of increasing social interactions in
populations, we began by adopting the lattice model as used
in previous work (e.g., Iwasa et al. (1998); Czárán et al.
(2002); Kerr (2007)). In these models, 90 000 cells were
arranged in a 300x300 grid, with each cell interacting with
its 8 surrounding neighbors. Periodic boundary conditions
were used in order to prevent edge effects, producing 8-
regular graphs.

As a simple method for expanding a cell’s interactions, we
first used lattices with increasing radii of interactions. That
is, with radius 1, a cell was connected to its 8 surrounding
neighbors. With radius 2, a cell’s neighbors were the 24
cells within a 2-hop radius. This process continued with in-
creasing radii until diversity was no longer maintained in the
populations.

Cartesian Topology
Lattice models are well suited for studying spatial effects,
but the geometric growth of neighborhood size is too fast
and not necessarily representative of natural systems. In
order to investigate the effects of increased neighborhood
size on a finer scale, we moved from using lattice models to
randomly-generated graphs that still accounted for the spa-
tial relationships among cells.

To build these graphs, we uniformly placed 90 000 points
in a unit Cartesian plane. Each point in this plane repre-
sented a cell in the world, and its neighbors consisted of the
other points that fell within a circle of specified radius. Since
a unit plane was used, the area of the circle was proportional
to the expected number of points that it encompassed. That
is, the area of a particular circle divided by the area of the
plane represented the proportion of points which should, on
average, fall within the circle. This construction was similar
to that reported by Barnett et al. (2007), who examined how
embedding space on random graphs affected various graph
properties.
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Figure 1: Unit Cartesian plane split into bins. Circles show
the area where neighbors may fall, and the shaded region is
the Moore neighborhood of the central bin.

In Equation 2, a is the area of a circle, 1 in the left-hand
denominator represents the area of a unit plane, K is the ex-
pected average number of points within the circle (expected
neighborhood size plus one for the cell the circle is cen-
tered on), and |V | is the number of cells in the world, where
|V | − 1 is the number of potential neighbors for a particular
cell. Since a is the area of a circle with radius r, we can solve
for the particular radius that will, on average, encompass K
cells, as shown in Equation 3.

r =

√
K

π(|V | − 1)
(3)

This treatment also used periodic boundaries, which are
achieved by allowing this circle to wrap around the edges
of the plane. To reduce the running time for distance cal-
culations, we partitioned the plane using a grid of two-
dimensional bins, where each bin contained points that fell
within a square area with side length r. Since the bins were
r∗r sized, any point that may have fallen in a circle of radius
r around a single point could not be outside of the immedi-
ate eight bin neighbors. Figure 1 shows the bin structure
overlaying the Cartesian plane and several of the extreme
circles with radius r, illustrating the fact that all neighbor-
ing points must fall within the Moore neighborhood of the
bin. This method dramatically reduced the number of points
considered as potential neighbors. Additionally, since edges
were undirected and the neighbor relation was reciprocal,
once the neighbors of a point had been found, that point no
longer needed to be considered. This property allowed us to
proceed bin-by-bin, eliminating all points contained within
the bin from further consideration after exhausting it.

Figure 2 shows the average distribution of neighborhood
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Figure 2: Histogram of the average neighborhood sizes from
20 replicates for different radii yielding expected neighbor-
hoods from 10 to 70 cells in increments of 10

sizes when varying the expected number of neighbors from
10 to 70. The mean number of neighbors for each treat-
ment was equal to the expected neighborhood size calcu-
lated. This method provides fine-grained control over neigh-
borhood size while maintaining spatial interactions similar
to those of lattices. Random graphs created in this way are
arguably more representative of biological systems than lat-
tice models, since the number of interactions for each or-
ganism in a population is not likely to be regular, even with
explicit spatial structuring. This model allows for a distri-
bution of neighborhood sizes around a specified expected
value, as opposed to a fixed uniform neighborhood. We used
this Cartesian method to generate random worlds with ex-
pected neighborhood sizes from 10 to 70 neighbors.

Biodiversity in Small World Networks
Finally, we examine the stability of these strategies in small
world networks, which consist primarily of localized inter-
actions with some long-range interactions, as defined by
Watts and Strogatz (1998). These interactions often result
in graphs where the number of interactions separating any
two cells is surprisingly small. This property is familiar to
those who have played the “Six Degrees of Kevin Bacon”
game, where players are able to connect any person to ac-
tor Kevin Bacon through at most six social interactions, as
described in Collins and Chow (1998). Although these net-
works likely do not capture the highly-localized interactions
of microbial populations, they have been observed to cap-
ture several natural phenomena and may offer some insight
into the maintenance of biodiversity in the presence of gene
flow through these long-range interactions.

To construct these graphs, 90 000 cells were arranged on

a ring, and each cell was connected to its nearest 8 neigh-
bors. For each cell, additional interactions were created by
probabilistically adding an edge to a randomly-chosen cell.
At probability 0, these graphs were regular and had a di-
ameter equal to the number of cells divided by the neigh-
borhood size. At probability 1, the resulting graphs become
random, mimicking interactions in well-mixed populations.
For this work, we examine the effect that long-range inter-
actions have on maintaining the biodiversity of this system.

Graph Metrics
In order to compare the structure of the different graphs used
in this work, their clustering coefficients and diameters were
calculated using the NetworkX package from Hagberg et al.
(2008). The local clustering coefficient of a particular cell,
defined by Watts and Strogatz (1998), measures how well
connected that cell is in its particular network, and is defined
in Equation 4, where i is the vertex (cell) in question, ki is
the number of neighbors of i, Ni is the set of i’s neighbors,
and E is the set of edges.

Ci =
2|{ejk}|

ki(ki − 1)
: vj , vk ∈ Ni, ejk ∈ E (4)

A clustering coefficient of 0 indicates that none of a cell’s
neighbors are connected to each other, while a clustering
coefficient of 1 indicates that all of a neighbor’s cells are
connected to one another. The graph’s clustering coefficient
is defined as the average of the clustering coefficients of its
cells. This property is important in this system, as an area
with a higher clustering coefficient allows for indirect inter-
actions such as “the enemy of my enemy is my friend”. The
diameter of a graph is defined as the longest shortest path
between any two cells. The diameter therefore provides an
indication of how long it would take for a dominant strategy
to spread to all cells in the graph.

For each of the treatments described above, 20 replicate
populations were studied. Each replicate started with a dif-
ferent random seed, which led to differences in the structure
of the graphs used in the Cartesian and small world treat-
ments, the initial distributions of strategies, the stochastic
processes of cell death, and the selection of random replace-
ments for empty cells. These differences allowed popula-
tions to follow different trajectories.

Results
In all treatments, we found that diversity quickly declined
with increasing neighborhood size. Increasing the radius
of interactions in Moore graphs allowed us to observe this,
however at a coarse granularity. The generated Cartesian
graphs provided more insight into the maintenance of di-
versity, most importantly in intermediate ranges. Finally,
small world graphs highlighted the significant effect that
long-range interactions can have in these systems. Next, we
discuss each of these results in detail.
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Expanded Radius of Interaction on Lattices
As the radius of interaction was increased in lattices, diver-
sity quickly diminished. As Figure 3 shows, at radius 3, sev-
eral populations were unable to maintain all three strategies,
while at radius 4, none did.

Due to the nature of this system, the loss of one strategy
will break the non-transitivity of the system, which quickly
leads to the loss of a second strategy. As an example in rock
paper scissors, if no paper remained, rock would outcompete
scissors, as rock no longer faced competition. Alternatively,
if scissors were lost, paper would dominate rock.

As is common in this type of system, in cases where all
three strategies were able to coexist, the strategies remained
in patches, as is shown in Figure 4.

Figure 4: Spatial patterns observed in typical populations.
When diversity is present, strategies exist in clusters. Sensi-
tive cells are colored blue, resistant are green, and producer
cells are red.

Although these experiments allowed us to investigate the
role that the number of interactions has on diversity, the ge-
ometric increases in neighborhood size prohibited studying
these features in detail. Table 1 highlights the effects that in-
creasing the radius of interactions in a Moore neighborhood
has on the structure of the resulting graphs. The sharp de-
crease in diameter allows a faster-growing strategy to spread
quickly, outcompeting competitors regardless of their capa-
bilities. This corresponds with Figure 3(d), where the sensi-
tive strategy quickly eliminates the other strategies.

Increasing Interactions in Cartesian Space
The Moore topology provided only one treatment in which
some runs maintained all three strategies while others col-
lapsed to a single strategy, and the spread between condi-
tions did not allow us to more closely examine the rate at

Table 1: Properties of Lattice Graphs Studied

Neighbors Diameter Clustering Coefficient
8 (r=1) 150 0.429
24 (r=2) 75 0.522
48 (r=3) 50 0.543
80 (r=4) 38 0.551
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Figure 5: Fraction of runs (out of 20 replicates) that col-
lapsed to a single strategy across different expected neigh-
borhood sizes - F value 247.62 (p � 0.001), adjusted R2

0.985

which biodiversity was lost. With just these data points, any
number of possible curves could be drawn with equally good
fit. The Cartesian topology allowed us to more closely in-
vestigate the effect of neighborhood size on the proportion
of populations that lost biodiversity. The properties of the
resulting graphs are listed in Table 2. It should be noted that
several of the graphs generated with expected neighbor size
of 10 were disconnected, as one might expect in a natural
population with limited interactions. Figure 5 plots these
proportions for a range of neighborhood sizes, where we fo-
cused on the range that produced intermediate loss of bio-
diversity. The logistic curve of best fit is highly significant,
with an F statistic of 247.62 (p � 0.001), and an adjusted
R2 of 0.985.

The cell count plots for varying radii of this topology look
similar to those in Figure 3, thus they are not included. In-
stead, we provide simplex phase planes for runs with differ-
ent radii. A simplex phase plane depicts the proportion of
strategies that were in the population at a given time and the
trajectory the population took over all. The three corners of
the triangle represent the three strategies, producer (P), sen-
sitive (S), resistant (R), and the relative distance from each
corner depict the proportion of the population the strategies
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(b) radius = 2
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Figure 3: Strategy counts over time for different neighborhood sizes from sample runs. All three strategies remain in all
replicates when neighborhood radius is 1 (a) or 2 (b). At radius 3 (c), diversity was maintained in 13/20 replicates, while
diversity did not persist at radius 4 (d).

Table 2: Properties of Cartesian Graphs Studied

Expected Neighbors Diameter Clustering Coefficient
10* 45.5 0.585
20 83.25 0.587
30 57.25 0.588
40 51.5 0.589
50 59.0 0.588
60 53.0 0.586
70 49.0 0.587
80 45.0 0.587
90 38.0 0.591

comprise. Thus, a point in the center of the simplex would
have equal frequency of each strategy, and a point at the
P corner of the triangle would represent a population com-
pletely composed of producers.

Figure 6 depicts four simplex phase planes for different
neighborhood sizes roughly corresponding to those from the
Moore topology. The oscillatory dynamics observed in Fig-
ure 3 are also present in this topology, and are distinguish-
able by the circular path within the phase plane in Figure
6(a). Similarly, the large swings in cell counts with in-
creased neighborhood sizes form the larger circular paths
depicted in Figure 6(b) and 6(c).

Several runs that maintained biodiversity despite having
larger neighborhood sizes (such as in Figure 6(c)) exhibited
drastic transient dynamics, where the population of one or
more strategies came dangerously close to being eliminated.
It is these initial transient dynamics that stochastically led
to population collapse as the mean neighborhood size in-
creases. That is, in those runs that survive the transient dy-
namics, the population ends up in a safer region of phase
space, one that is less susceptible to stochastic extinction.
Of course, as the neighborhood size continues to increase, so
does the magnitude of oscillations, and eventually all pop-
ulations will collapse to a single strategy as the others are
driven to extinction, as is shown in 6(d).

These transient dynamics are due to initial conditions
where each cell strategy (including empty cells) is uniformly
distributed throughout the world. As depicted in Figure 4,
clusters of strategies emerge, and it is during the transition
between the initial and self-organized states that populations
often collapse. Essentially, we are starting the population in
a random state with respect to clusters of strategies. While
this approach biases the population towards larger cycles, it
means our estimates for the collapse of biodiversity are con-
servative.
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(a) 10 neighbors (b) 30 neighbors

(c) 50 neighbors (d) 80 neighbors

Figure 6: Simplex phase planes for Cartesian topology runs
with increasing number of neighbors. The initial distribution
of strategies is indicated with a dot.

Interactions in Small World Graphs
Finally, we evaluated the effect of long-range interactions on
diversity. As shown in Figure 7, even a small probability of
such interactions had a dramatic effect on the system. We
found that diversity quickly waned when the probability of
adding these interactions was between 1% and 2%, which
resulted in an additional 900 and 1800 pairs of interactions,
respectively, on average. These additional interactions de-
creased the diameter of the resulting graphs to an average of
54.5 when the probability was 1% and 32.3 when the prob-
ability was 2%. The clustering coefficients for these config-
urations were uniformly 0.631 and 0.620, respectively. The
difference in dynamics between systems at 1% and 2% edge
creation possibility is shown in Figure 8.

Considering the small diameters typical of small world
graphs, it is perhaps not surprising that diversity is quickly
lost when long-range interactions are added. In the ab-
sence of these long-range interactions, the diameter of these
graphs is 11 250. Adding additional edges with probabil-
ities between 1% and 2% quickly shrank the diameters in
these environments, which made the formation of clusters of
strategies difficult. Nonetheless, these experiments provide
a dramatic insight into how small increases in interactions
can hinder diversity.

Conclusions
Understanding how the interactions among organisms af-
fects biodiversity is critical to building a more complete
picture of the forces that shape ecosystems. As such,
this knowledge can inform conservation efforts and help to
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Figure 7: Fraction of runs (out of 20 replicates) that col-
lapsed to a single strategy in small world networks with in-
creasing probabilities additional random interactions

understand the ramifications of living in an increasingly-
connected world.

This work has demonstrated the strong effect social struc-
ture has on the maintenance of biodiversity in a model non-
transitive system. Specifically, we have seen in three differ-
ent models that as the number of interactions among cells
increases, the magnitude of oscillations between the differ-
ent strategies increases and quickly leads to the loss of diver-
sity. Further, we have observed in small world networks that
when a small number of long-range interactions are added,
diversity is quickly lost, perhaps necessitating the use of kin
discrimination or other mechanisms to promote the mainte-
nance of diversity and cooperative behaviors in higher-order
species.

Extending this model to include independent subpopula-
tions and migration between them would allow the effects of
gene flow to be examined, which could significantly change
the dynamics of these populations. For example, this flow
could enable the persistence of so-called “fugitive” species,
which are not able to outcompete other species, but are able
to persist through quick reproduction and constant migra-
tion. Although we claim that the long-range links in the
small world networks studied in this work could represent
gene flow between clusters of cells, this feature does not
necessarily capture the effects of having multiple indepen-
dent subpopulations.

It is worth noting that this work examined the main-
tenance of biodiversity from a purely ecological perspec-
tive. Allowing cells to mutate and change their strategies
through the evolutionary process can have significant ef-
fects on a population’s diversity. Previous work has exam-
ined the effects on populations when mutations allow a cell
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Figure 8: Strategy densities over time in small world net-
works. (a) At 1% probability of creating a random edge,
biodiversity is maintained. (b) At 2%, diversity is lost.

to change its investment in a particular strategy (Prado and
Kerr (2008),Czárán and Hoekstra (2009)) or to change its
strategy completely (Mobilia (2010)). These works exam-
ined biodiversity in regular and well-mixed populations, re-
spectively. Variations to social structure, as presented in this
paper, could present different dynamics in evolutionary stud-
ies, and therefore lends itself to investigation in the presence
of evolution.
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