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Abstract

Assortativity is a network-level measure which quantifies the
tendency of nodes to mix with similar nodes in a network. Lo-
cal assortativity has been introduced as a measure to analyse
the contribution of individual nodes to network assortativity.
In this paper we argue that there is a bias in the formulation of
local assortativity which favours low-degree nodes. We show
that, after the bias is removed, local assortativity of a node
can be interpreted as a scaled difference between the average
excess degree of the node neighbours and the expected excess
degree of the network as a whole. Finally, we study the local
assortativity profiles of a number of model and real world net-
works, demonstrating that four classes of complex networks
exist: (i) assortative networks with disassortative hubs, (ii)
assortative networks with assortative hubs, (iii) disassortative
networks with disassortative hubs, and (iv) disassortative net-
works with assortative hubs.

Introduction
Many complex systems are amenable to be described as
networks, with a given number of nodes and connecting
edges. These include ecological systems, author collab-
orations, metabolism of biological species, and interac-
tion of autonomous systems in the Internet, among others
(Soĺe and Valverde, 2004; Albert and Barabasi, 2002; Al-
bert et al., 1999; Newman, 2003; Faloutsos et al., 1999). It
has been a recent trend to study common topological fea-
tures of such networks. Network diameter, clustering co-
efficients, modularity and community structure, informa-
tion content are some features analysed in recent literature
in this regard (Faloutsos et al., 1999; Alon, 2007; Lizier
et al., 2009; Prokopenko et al., 2009). One such measure
which has been analysed extensively is assortativity (Solé
and Valverde, 2004; Newman, 2002; Albert and Barabasi,
2002; Newman, 2003; Callaway et al., 2001; Palsson, 2006;
Maslov and Sneppen, 2002; Zhou et al., 2008; Bagler and
Sinha, 2007; V́azquez, 2003). Having originated in eco-
logical and epidemiological literature (Albert and Barabasi,
2002), the term ‘assortativity’ refers to the correlation be-
tween the properties of adjacent network nodes.

While similarity between adjacent nodes can be measured
in a number of ways, the property that is of interest to us is

node degree. Based on degree-degree correlations, assor-
tativity has been defined as a correlation function, and the
level of assortative mixing has been measured quantitatively
for a number of networks, including social, biological and
technical networks (Solé and Valverde, 2004). The networks
that have a positive correlation coefficient are called assor-
tative: similar nodes tend to mix with each other in such
networks. The networks characterised by a negative corre-
lation coefficient are called disassortative: dissimilar nodes
tend to connect predominantly in these networks. The pre-
cise local contribution of each node to the global level of
assortative mixing can also be quantified (Piraveenan et al.,
2008, 2009b, 2010). This quantity has been called “local as-
sortativity”. Local assortativity measures the local contribu-
tion of each node to the global correlation coefficient which
is the network assortativity. Local assortativity profiles(as
distributions of local assortativity over nodes’ degrees)can
also be constructed for various networks, and these profiles,
in turn, can be used to classify networks (Piraveenan et al.,
2008, 2009a). Two such classes of disassortative networks
have been proposed in Piraveenan et al. (2008).

In this paper, we demonstrate that the formulation pro-
posed for local assortativity in Piraveenan et al. (2008) has
a bias, which favours low-degree nodes over hubs. This bias
needs to be removed before networks can be analysed in
terms of local assortativity. Therefore, our objective is two-
fold: (i) to propose an unbiased formulation of local assorta-
tivity, and (ii) to characterise classes of networks in terms of
this unbiased formulation. After presenting the unbiased for-
mulation for local assortativity, we show that the classifica-
tion of disassortative real-world networks that was proposed
in Piraveenan et al. (2008) still holds, and in addition, there
are two similar classes among assortative networks as well.
The unbiased formulation also provides a clearer interpreta-
tion of what it means for a node to be locally assortative.

Definitions and Terminology

We need to introduce a number of definitions before remov-
ing the bias from the formulation of local assortativity. Con-
sider a network withN nodes andM links. Assortativity for
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such a network has been defined as a correlation function
(Newman, 2002), in terms of the network’s excess degree
distributionq(k), and link distributionej,k. The excess de-
gree is the number of remaining links encountered when one
reaches a node by traversing a link. The link distribution of
the network is the joint probability distribution of the excess
degrees of the two nodes at either end of a randomly chosen
link. The formal definition of network assortativity is given
by:

r =
1

σ2
q





∑

jk

jk (ej,k − q (j) q (k))



 (1)

whereej,k is the link distribution of the network andσq is
the standard deviation of the excess degree distribution of
the network,q(k).

Since the expectation of the distributionq(k) is given by
∑

k

kq(k), the assortativity of a network can also be written

as:

r =
1

σ2
q









∑

jk

jkej,k



− µ2

q



 (2)

whereµq is the expectation of the distribution.
Local assortativity was motivated in Piraveenan et al.

(2008) by calculating the contribution of each node to the
above correlation coefficient. Therefore, the sum over all
nodes is equal to network assortativity. Formally, local as-
sortativity of a given nodev was derived in Piraveenan et al.
(2008) to be:

ρv =
αv − βv

σ2
q

=
(j + 1)

(

jk − µ2

q

)

2Mσ2
q

(3)

wherej is the node’s excess degree;k is the average excess
degree of its neighbours,σq 6= 0; the contributionαv of the
nodev to the first term in (2), that is, to the sum

∑

jk

jkej,k is

αv = (j + 1)
jk

2M
(4)

and the contributionβv of the nodev to the second term in
(2), that is, toµ2

q is

βv = (j + 1)
µ2

q

2M
(5)

It can be shown that local assortativity satisfies the summa-
tion property:

r =

N
∑

v=1

ρv (6)

In particular,

∑

jk

jkej,k =

N
∑

v=1

αv and µ2

q =

N
∑

v=1

βv (7)

While the componentαv captures the precise contribution
of each node to the term

∑

jk

jkej,k, the componentβv

represents the contribution of each node to the termµ2

q

with an imprecise scaling. Specifically, the scaling factor
(j + 1)/2M in (5) is the correct scaling factor forµq, rather
thanµ2

q, and hence,βv has a bias towards low-degree nodes
(Piraveenan et al., 2010).

Unbiased local assortativity
The derivation of the correctly scaled (and hence, unbiased)
contribution,β̂v, of a given nodev to the termµ2

q is shown
in Appendix A, yielding

β̂v = (j + 1)
jµq

2M
(8)

wherej is the node’s excess degree, as before. Hence, the
unbiased representation of local assortativity is given by

ρ̂v =
αv − β̂v

σ2
q

=
j (j + 1)

(

k − µq

)

2Mσ2
q

(9)

Let us compare the unbiased local assortativityρ̂v with that
defined by (3). Specifically, the sign of the local assortativ-
ity (positive or negative) is determined by the difference be-
tween the average excess degree (k) of the neighbours and
the global average excess degree (µq). If the neighbours’
average is higher, then the node is assortative. If the global
average is higher, the node is disassortative. Therefore, the
local assortativity can also be defined as a scaled difference
between the average excess degree of the node’s neighbours
and the global average excess degree (the scale factor is pro-
portional to the product of the node’s degree and excess de-
gree). In other words, a node tends to be locally assortative
if it is surrounded by nodes with comparatively high degrees
— hence, even though local assortativity is a property of a
node, it is influenced by a node’s ‘locality’, or neighbour-
hood.

The only difference betweenβv defined by (5) and the
unbiasedβ̂v defined by (8) is that the network’s meanµq,
which is constant across nodes, is replaced byj, the node’s
excess degree. This means that there is a bias in the term (3)
which favours low-degree nodes (with smallerj) and dis-
favours hubs (with largerj). In summary,

1. both theβv proposed in Piraveenan et al. (2008) andβ̂v

corrected in Piraveenan et al. (2010) adhere to summation
rule

∑

βv =
∑

β̂v = µ2

q.

2. β̂v is higher for hubs and lower for low-degree nodes com-
pared toβv.

We will utilise average local assortativity plotted against
degree. Average local assortativityρ(d) can be calculated
by averaging local assortativity quantities of all nodes with a
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given degreed. For example, the difference between biased
local assortativity profileρ(d) and unbiased local assortativ-
ity ρ̂(d) for H. pylori Protein Protein Interaction network is
shown in the Appendix B.

We point out that local assortativity is a quantity that in-
volves both degree and average (neighbour) degree, and as a
result, the local assortativity profiles clearly differ from aver-
age degree profiles. In particular, an average degree profile
always contains positive values that increase with the de-
gree, while local assortativity profiles may contain both pos-
itive or negative values, increasing or decreasing with the
degree.

Local assortativity in canonical networks

Regular lattice
For a lattice network each node has the same degree and

excess degree, therefore the variance of the excess degree
distribution is0. Since there is only one type of nodes, the
network is perfectly assortative (r = 1) and the local assor-
tativity of all nodes is1/N , as shown in Figure 1.
Star network

A star graph is another extreme example of complex net-
works in terms of topology. In a pure star graph, any given
link has a degree-one node at one end, with the excess degree
zero. It can be shown that a star graph is perfectly disassor-
tative (r = −1). Furthermore, any node in the star graph
has either its excess degree as zero, or all of its neighbours’
excess degrees as zero. It is easy to see that the term repre-
sented by equation (4) reduces to zero in all cases. Thus, the
local assortativity reduces to

ρ = −
j + 1

2M

µq

σ2
q

(10)
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Figure 1: Local assortativity distribution,ρ(k) vs k, of
a regular lattice with four nodes connecting to each node
(squares), and of a star graph (stars). Network size in both
cases isN = 20.

Figure 1 shows the local assortativity distribution for a
pure star graph: the central node is much more locally-
disassortative, as it connects with many dissimilar nodes,
whereas the low-degree nodes are less locally-disassortative
since they connect to only one dissimilar node.
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Figure 2: Local assortativity profile of scale-free networks
(N = 1000 andγ = 2.1) with r = 1.0 (‘♦’), r = 0.5 (‘+’) ,
r = −0.5 (‘×’) and r = −1.0 (‘�’).

Classification of networks using unbiased local
assortativity profiles

In this section we aim to classify both model and real-world
networks using the unbiased local assortativity. Since lo-
cal assortativity is a property of a node, it is possible to
construct local assortativity distributions of networks (Pi-
raveenan et al., 2008).

We begin the analysis by constructing model Barabási–
Albert scale-free networks (Albert and Barabasi, 2002) of
various assortativity levels and observing their local assor-
tativity profiles. Specifically, we use the Assortative Pref-
erential Attachment method (APA) (Piraveenan et al., 2007)
to control the level of assortativity. Some of the results are
shown in Figure 2 for network sizeN = 1000 and power
law exponentγ = 2.1.

We could observe from Figure 2 that the profiles are sym-
metric with respect to the degree axis when assortativity is
varied fromr = 1.0 to r = −1.0 while other network pa-
rameters are kept constant. We also note that (i) globally as-
sortative networks have assortative hubs and disassortative
low-degree nodes, and (ii) globally disassortative networks
have disassortative hubs and assortative low-degree nodes.
That is, the overall assortativity of the network is matchedby
that of the hubs. Thus, we are able classify the constructed
model networks as either (i) assortative networks with as-
sortative hubs, or (ii) disassortative networks with disassor-
tative hubs. This is not surprising. However, one may ask
whether there are also any disassortative networks with as-
sortative hubs, as proposed in Piraveenan et al. (2008). To



Proc. of the Alife XII Conference, Odense, Denmark, 2010 332

Figure 3: Example of an assortative network with assortative
hubs. H. sapiens metabolic network;N = 1288, γ ≈ 2.32,
r = 0.382.

Figure 4: Example of an assortative network with disassor-
tative hubs. H. sapiens Protein Protein Interaction network;
N = 1529, γ ≈ 2.1, r = 0.075.

answer this question, let us look at the model network given
in Figure 5. This network is made up of a number of in-
terconnected star-like subnetworks. Each subnetwork has a
core of hubs that are densely connected to one another: this
is the ‘rich club phenomenon’ (Zhou and Mondragón, 2004;
Colizza et al., 2006). The rest of the subnetwork seems to
have mostly disassortative connections. The subnetworks
are then linked together with hub-to-hub connections, fur-
ther reinforcing the rich-club phenomenon. The overall as-
sortativity of the network isr = −0.109. However, as
shown in Figure 9, the hubs are assortative. The embed-
ded subnetworks pattern can be repeated on larger scales, re-
taining the assortative hubs with higher and higher degrees,
while keeping the overall disassortativity. This example rep-
resents a third class, demonstrating that it is possible to have
disassortative networks with assortative hubs.

The real-world networks we studied included most recent
metabolic networks (KEGG database), citation networks,
Protein-Protein Interaction (PPI) networks, food-webs, and
Internet AS level networks among others. A list of the net-
works we analysed is shown in Table 1. We were able to

Figure 5: Example of a disassortative network with assorta-
tive hubs. A model network withN = 150, r = −0.109.

Figure 6: Example of a disassortative network with disassor-
tative hubs. Crystal River D foodweb,N = 24, r = −0.467.

observe the following from our analysis.
Firstly, as in the case of model APA networks, some real-

world assortative networks have assortative hubs (e.g., Fig-
ure 7; most other metabolic networks showed similar pro-
files). Also many real-world disassortative networks have
disassortative hubs, e.g., one such food-web is shown in Fig-
ure 10. However, other assortative networks exhibit disas-
sortative hubs, such as the PPI networks of H. sapiens shown
in Figure 8. A number of other PPI networks displayed a
similar profile. These networks represent the fourth class,
namely the assortative networks with disassortative hubs.

Therefore, we can identify four classes of complex net-
works, namely: (i) assortative networks with assortative
hubs, (ii) assortative networks with disassortative hubs,(iii)
disassortative networks with disassortative hubs, (iv) disas-
sortative networks with assortative hubs.

There are several examples of real-world networks for
each of the first three cases, and we have shown represen-
tative examples in Figures 7, 8, and 10 respectively . We did
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Network assortativityr class

Human metabolic (KEG, 2009) 0.382 assortative with assortative hubs

Chimpanzee metabolic (KEG, 2009) 0.398 assortative with assortative hubs

Rhesus monkey metabolic (KEG, 2009) 0.363 assortative with assortative hubs

Astro physics citation (Newman, 2009) 0.276 assortative with assortative hubs

Cond. mat. 2003 citation (Newman, 2009) 0.178 assortative with assortative hubs

Cond. mat. 2005 citation (Newman, 2009) 0.186 assortative with assortative hubs

Hep theory citation (Newman, 2009) 0.293 assortative with disassortative hubs

Net science citation (Newman, 2009) 0.46 assortative with disassortative hubs

H. sapiens PPI (PPI, 2009) 0.075 assortative with disassortative hubs

E. coli PPI (PPI, 2009) 0.056 assortative with disassortative hubs

Internet AS 1998 (CAI, 2009) -0.198 disassortative with disassortative hubs

Internet AS 2008 (CAI, 2009) -0.198 disassortative with disassortative hubs

Fruitfly PPI (PPI, 2009) -0.21 disassortative with disassortative hubs

H. pylori PPI (PPI, 2009) -0.235 disassortative with disassortative hubs

Mouse PPI (PPI, 2009) -0.057 disassortative with disassortative hubs

Crystal River C (Batagelj and Mrvar, 2006) -0.334 disassortative with disassortative hubs

Crystal River D (Batagelj and Mrvar, 2006) -0.467 disassortative with disassortative hubs

Lower Chesapeake (Batagelj and Mrvar, 2006) -0.391 disassortative with disassortative hubs

Scimet collaboration (Batagelj and Mrvar, 2006) -0.03 disassortative with disassortative hubs

Smart grid collaboration (Batagelj and Mrvar, 2006) -0.193 disassortative with disassortative hubs

Table 1: The networks studied and their classification.

not find any example of the fourth case among the networks
we studied, however we have demonstrated that in theory
such networks could exist, as shown in the profile in Figure
9, and real-world examples may yet be found as the range of
networks studied is expanded.

We show the corresponding networks for each example in
Figures 3, 4, 5, and 6 respectively. Note that the networks
with assortative hubs and disassortative hubs are not always
visually distinguishable, however, the local assortativity pro-
files are able to highlight an important topological difference
in them.

While a detailed analysis of the classification results in the
context of biological networks is out of scope for the paper,
we briefly mention some possibilities. Assortative metabolic
networks may have assortative hubs due to optimality in flux
balance (Varma and Palsson, 1994): most metabolic reac-
tions form chains ending with a regulatory decision in a hub,
and the connections between hubs may optimise metabolic
requirements for growth, utilising different pathways.

The hubs in food-webs could be disassortative because the
separation between hubs plays an evolutionary role, main-
taining sustainable food chains.

It is somewhat more complicated why the PPI networks
that are assortative overall have disassortative hubs. On
the one hand, many individual proteins may form a multi-

protein complex, and some of the proteins can participate
in the formation of a variety of different protein complexes.
Such high-interacting proteins are likely to be locally assor-
tative. On the other hand, the anticorrelation in the node de-
gree of connected nodes, i.e., the tendency of highly interact-
ing nodes to be connected to low-interacting ones, has been
reported previously (Maslov and Sneppen, 2002; Spirin and
Mirny, 2003). In particular, Maslov and Sneppen argued that
“this effect decreases the likelihood of cross talk between
different functional modules of the cell and increases the
overall robustness of a network by localizing effects of dele-
terious perturbations” (Maslov and Sneppen, 2002). These
two alternatives are related to the distinction between pro-
tein complexes and functional modules (Spirin and Mirny,
2003): protein complexes are groups of proteins that interact
with each other at the same time and place, forming a sin-
gle multimolecular machine, while functional modules con-
sist of proteins that participate in a particular cellular pro-
cess while binding each other at a different time and place.
Disassortative hubs are likely to be the proteins within func-
tional modules. In addition, one may point out that there are
artefacts of the high-throughput methods used to discover
the interactions that may lead to low interaction coverage of
certain protein types and obscure local assortativity profiles
(Shoemaker and Panchenko, 2007a,b).
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Figure 7: Local assortativity profile of H. sapiens metabolic
network;N = 1288, γ ≈ 2.32, r = 0.382.

Conclusions
We proposed an unbiased formulation for local assortativ-
ity in complex networks, and analysed the local assortativity
profiles of some model and real-world networks in terms of
this new formulation. We showed that a node’s local assor-
tativity is proportional to the difference between the average
excess degree of its neighbours and the network’s overall
average excess degree. Specifically, a node is locally assor-
tative if its neighbours have comparatively (i.e., compared
with all nodes in the network) higher degrees. It is important
to realise that the nodes with the highest local assortativity
differ in general from the largest hubs (the nodes with the
highest degrees).

Analyzing a range of model and real-world networks,
we observed four classes of networks, namely: (i) assor-
tative networks with assortative hubs, (ii) assortative net-
works with disassortative hubs, (iii) disassortative networks
with disassortative hubs, and (iv) disassortative networks
with assortative hubs. Real-world examples for the first
three classes were identified, and a model network was con-
structed as an example for the fourth class.

The local assortativity profiles provide an additional
quantitative tool for network analysis. These profiles high-
light important topological differences in otherwise seem-
ingly indistinguishable networks. This may help in studying
diverse network properties and dynamics: e.g., (a) network
growth may be modelled in such a way that the grown net-
works not only satisfy global characteristics, but also agree
with required local assortativity profiles (Piraveenan et al.,
2009b); (b) network robustness may be analysed in terms of
an attack targeting the nodes with higher local assortativity;
(c) motifs within networks can be studied via their average
local assortativity, etc. One avenue for future work is to de-
fine local assortativity in directed networks, and apply this
definition to directed biological networks, studying the role
of the nodes with the highest local assortativity in regulatory
processes (e.g., reaction cascades).
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Figure 8: Local assortativity profile of H. sapiens Protein-
Protein Interaction network;N = 1529, γ ≈ 2.1, r =
0.075.
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Figure 9: Local assortativity profile of the network shown in
Figure 5;N = 150, r = −0.109.
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Figure 10: Local assortativity profile Chrystal River D food-
web;N = 24, r = −0.467.
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Appendix A
To derive the contribution of each node toµ2

q we first look at
the following equivalent definitions ofµq:

µq =
1

2M

M
∑

m=1

km (11)

µq =
1

2M

N
∑

v=1

kv(1 + kv) (12)

wherek is excess degree,m is a given edge andv is a given
node of the network. We are especially interested in the lat-
ter form (12) since it makes it obvious what each node con-
tributes to the termµq. It follows that

µq =
1

2M

(

N
∑

v=1

kv +
N
∑

v=1

kv
2

)

(13)

yielding

µ2

q =
1

4M2

(

(

N
∑

v=1

kv)2 + (

N
∑

v=1

kv
2)2 + 2

N
∑

v=1

kv

N
∑

v=1

kv
2

)

(14)
Now, let us consider a single node (without loss of gen-

erality, let it be the node 1 with excess degreek1), and its
contribution to each of the three summation terms in the ex-
pression above. Considering the first summation term, ex-
cess degreek1 contributes to it as follows:

k1
2 + 2(k1k2 + k1k3 + ........... + k1kN ) (15)

Among these, terms such as2k1kj have to be ‘divided’ be-
tween node 1 and nodej respectively. These are multiplica-
tion terms, and we assume that an equal division is appro-
priate. Therefore, the contribution of node 1 is:

k1
2 + (k1k2 + k1k3 + .... + k1kN ) = k1

N
∑

j=1

kj (16)

Considering the second summation term in (14), we observe

that the contribution of node 1 isk1
2

N
∑

j=1

kj
2. Let us analyse

the contribution of node 1 to the third summation term in
(14). The third summation term is given by

2

N
∑

i=1

ki

N
∑

j=1

kj
2 = 2

(

k1 +

N
∑

i=2

ki

)



k2

1
+

N
∑

j=2

kj
2





(17)

wherei, j are node indices. The contribution of node 1 to
the third term is obtained by dividing terms such as2k1kj

between node 1 and nodej respectively:

2k3

1
+k2

1

N
∑

i=2

ki+k1

N
∑

j=2

kj
2 = k1

N
∑

j=1

kj
2+k1

2

N
∑

j=1

kj (18)

Therefore, the total contribution of node 1,β1, to µ2

q is:

β1 =

k1

N
∑

j=1

kj + k1
2

N
∑

j=1

kj
2 + k1

N
∑

j=1

kj
2 + k1

2
N
∑

j=1

kj

4M2

(19)
This can be further regrouped as

β1 =
k1 + k1

2

4M2





N
∑

j=1

kj +
N
∑

j=1

kj
2



 (20)

Using equation (13) forµq, this can be reduced to:

β1 =
k1 + k1

2

2M
µq (21)

Hence, the contribution of a nodev to µ2

q is given by:

β̂v = (j + 1)
jµq

2M
(22)

wherej is the excess degree of the nodev. Thus, local as-
sortativity is given by

ρ̂v =
αv − β̂v

σ2
q

=
j (j + 1)

(

k − µq

)

2Mσ2
q

(23)

Appendix B
The difference between the biased local assortativity pro-
file ρ(d), defined by (3), and the unbiased local assortativity
ρ̂(d), defined by (9), for H. pylori Protein Protein Interaction
network is shown in Figure 11. It is evident thatρ̂(d) < ρ(d)
for the hubs, and more importantly, the hubs are now locally
disassortative.
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