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Abstract 
We argue that the networks that can be constructed to represent 
ecosystems may inform us about the open-endedness of the 
evolutionary systems that underlie their dynamics. By adopting 
this approach we circumvent problems that arise from looking 
for open-endedness at the level of the organism, the more usual 
approach. We then examine various measures of ecosystem 
(niche web) complexity and propose a new information-
theoretic approach, Shannon Web Complexity. We compare its 
behaviour to that of the more common measures in ecology, in 
the light of common intuitions about complexity over a set of 
test networks and real ecosystem trophic webs. We show that 
our measure better accommodates intuitions about the 
complexity of these networks. 

Introduction 
The search for open-ended evolutionary simulations is 
compelling and has driven a sub-community of Artificial Life 
researchers to join philosophers and theoretical biologists in 
pondering the manner in which biological evolution is open-
ended. This has resulted in various simulation environments 
that attempt to replicate the behaviour of real ecosystems (e.g. 
see the review in (Dorin, Korb et al. 2008)) and open 
problems such as the call to, “Create a formal framework for 
synthesizing dynamical hierarchies at all scales” (Bedau, 
McCaskill et al. 2000). 
 
To achieve the goal of open-ended evolutionary software, we 
must first unambiguously identify open-ended complexity 
increase when we see it – we require a measure. Typically, as 
we show below, the search has focused on the increasing 
complexity of organisms, their structure and behaviour. For 
reasons we outline, we believe this to be wrong-headed and 
the source of much confusion. Instead, we propose to measure 
the complexity of the ecosystems of which organisms are a 
part, and to show that these do increase in complexity over 
evolutionary time periods. We achieve this by looking at 
ecosystem networks. 

Ecosystem networks 
Biological evolution operates within ecosystems on changing 
populations that define for themselves new ways of 
accumulating and consuming energy and matter to be 
employed for reproduction. Through feedback loops, 
organisms construct their own niches, passively and actively 

organising their environment, modifying the selection 
pressures acting on themselves, their progeny, and their 
cohabiters (Odling-Smee, Laland et al. 2003). The moulding 
of self-selection pressures by a population shifts the 
constraints within which future generations are introduced. 
Ecosystems can be described by a variety of networks linking 
these biotic and abiotic physical, chemical and behavioural 
relationships. We, like many ecologists, focus our attention on 
such networks as a way of understanding the global properties 
of the systems they represent (Watts and Strogatz 1998; Barrat 
and Weigt 2000; Dunne, Williams et al. 2002; Proulx, 
Promislow et al. 2005; Blüthgen, Fründ et al. 2008). 
 
We examine several techniques employed in the ecological 
and other literature for measuring the properties of ecosystem 
food webs and networks, describing also the Shannon web 
complexity based on information theory (Boulton and Wallace 
1969). We then assess how these measures stack up against 
one another and against our intuitions about the complexity of 
ecosystem networks in a set of examples. 

Open-Ended Complexity Increase 
A common opinion about evolution has been that it swims 
against the tide of entropy and in particular that evolution over 
time constructs more and more complex organisms (e.g., see 
(Bronowski 1970)). This idea of creative complexity increase 
equates at its most extreme, to the view that evolution is 
progressing from bacteria to invertebrates and thence to 
vertebrates and mammals and, finally, to the pinnacle of life 
forms, us.1 Such a view of Progress, however, ignores some 
quite basic features of evolution. For example, that the 
bacteria being “progressed from” still exist today and, indeed, 
have exactly as long an evolutionary history as we do, since 
we all have common ancestry. So, progress can hardly be 
characterized by endurance. Instead, progress has been recast 
as complexity, and complexity itself has been cast in terms 
favorable to ourselves; for example, as owning complex 
neural organizations — an account that fails to address the 
vast majority of earth’s life (Maynard-Smith and Szathmáry 
                                                             
1 For a skeptical review of this consensus opinion, identifying 
culprits, see McShea, D. W. (1991). "Complexity and evolution: 
what everybody knows." Biology and Philosophy 6(3): 303-324.
  



Proc. of the Alife XII Conference, Odense, Denmark, 2010 324

1995). An infatuation with ourselves is also behind the “C-
value paradox” — our chromosomes appear no more complex 
than those of other mammals and less complex than those of 
some plants. The two long-standing antagonists Dawkins and 
Gould have together, and quite rightly, castigated this view as 
human chauvinism in an exchange in Evolution (Dawkins, 
1997; Gould, 1997). Gould preferred to see in every attempt 
to characterize complexity and attribute its increase to 
evolutionary processes this hidden agenda of congratulating 
ourselves on our own unique wonderfulness. Dawkins, on the 
other hand, considers the evolutionary increase in complexity 
to be not just compatible with evolution, but intrinsic to it. 
Evolution climbs “Mount Improbable” (Dawkins, 1996). 
Dawkins’ line of defence for ongoing complexity increase is 
to suggest that, whereas adaptive processes responding to the 
abiotic environment may just track meandering changes in the 
climate, coevolutionary processes acting between species 
work to develop coadaptations in trajectories that can be 
regarded as progressive in an engineering sense. Arms races 
lead to better weaponry and better defences, including better 
speed, flight, hearing and vision, for example. 
In the Artificial Life literature, Bedau takes up the debate, 
offering his evolutionary activity statistics to assess whether 
or not an evolutionary system is evolving in an open-ended 
fashion (Bedau, Snyder et al. 1998) and an Arrow of 
Complexity Hypothesis that evolutionary systems show a 
systematic tendency to increase the complexity of organisms 
over time (Bedau 2006). Some Artificial Life researchers, 
notably (Ray 1990), have attempted to replicate this apparent 
evolutionary complexity increase in software, thus far, 
without any consensus of success, although some claim a 
limited success whilst improving Bedau et al’s measures of 
open-endedness (Channon 2006). The fundamental problem 
we have with the activity statistics, however, is that whatever 
they measure is not what we want to measure: they make no 
attempt to assess the complexity of organisms or ecosystems, 
but only the volume of new, adaptive "components" within an 
evolutionary system. 
An attempt to dismiss complexity increases in species' 
organisation and behaviour over evolutionary time periods 
invokes a metaphoric “passive diffusion” (McShea 1994) 
through species design space, rather than a directed drive 
towards greater complexity. While diffusion may well 
contribute to increases in species complexity, it is unlikely to 
explain it entirely (Korb and Dorin 2010). In any case, we 
prefer to sidestep the issue and focus on complexity at a 
higher level: in the organization of niches in the ecosystem. 
Niche web complexity is not subject to the diffusion effects 
cited by McShea and others; furthermore, it, and its correlate 
species biodiversity, relatively non-controversially have 
shown sustained increases over geological time. Indeed, it is 
arguable that niche web complexity exhibits an exponential 
trajectory over evolutionary time periods, which we call the 
Arrow of Niche Complexity Hypothesis (Korb and Dorin 
2010): with complexity interpreted simply as the number of 
niches, this hypothesis states that any ecosystem acting 
beneath the ceiling of its capacity constraints whilst 
maintaining its stability will robustly tend to produce new 
niches, at an exponential growth rate – every species, without 

exception, creates multiple new niches by its waste products, 
its impact as an ecosystem engineer (the existence of its body 
as habitat, for instance), its availability as food for other 
organisms, and its removal of resources from the environment 
changing their relative abundance and distribution. Elsewhere 
we offer a simulation that demonstrates the effect of an 
exponentially increasing number of niches (Korb and Dorin 
2009). Furthermore, the network of dependence of species (in 
niches) to other species (in other niches) also increases in 
complexity. In order to argue that the latter increases are 
exponential and, in general, to assess changes in niche web 
complexity, we require a principled way of measuring such 
complexity. 

Complexity Measures for Ecosystems 
We require a measure for the complexity of (virtual or real) 
ecosystems in order to assess whether or not our Arrow of 
Niche Complexity hypothesis holds true under some 
circumstances. This measure must correspond to our 
(educated) intuitions about what constitutes the complexity of 
a network (such as a food web). A few useful intuitions are 
listed next. We then present some measures of network 
properties that have been employed in the literature and our 
own suggestion. 

Intuitions about network complexity 
Intuition 1 (simple): A network with a regular, repeating 
structure is simple (e.g. a lattice or a fully-connected 
network). 
Intuition 2 (simple): Networks with few links are simple (e.g. 
a single long chain or a fully disconnected network). 
Intuition 3 (simple): A random network is simple (with a 
high probably; but since random processes can produce any 
structure, such a net will sometimes accidentally be 
complex!). 
Intuition 4 (simple): Small world networks − those with low 
"degrees of separation" − are simple.  
Intuition 5 (complex): A complex network has organisation 
(e.g. clusters, loops) at multiple scales. 
Intuition 6 (complex): A complex network has organisation 
(clusters, loops) of multiple sizes. 
Intuition 7 (complex): A bigger network is more complex 
than a small one. 
These intuitions, while widely commented upon in the 
ecological literature, are not universal; nor are they 
unambiguous. For one thing, they only make sense with 
ceteris paribus clauses − other things remaining equal. And 
there are potential interactions between some of them. For 
example, Intuition 7 may be undermined by increasing the 
size of the network while simultaneously deleting arcs and 
bringing in Intuition 2. They work perhaps as heuristic guides 
to assessing networks and their complexity measures.  
Intuitions 5 and 6 are likely to capture some aspects of the 
major transitions in evolution, which can lead to tightly 
organized groups of niches. 
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Intuitions 1 and 2 have an interesting joint consequence which 
we will make use of later: networks of low density are simple, 
but so too are networks of high density (fully connected or 
worse). We infer that there may well be some kind of 
"Goldilocks effect", i.e., that there is a maximum of network 
complexity achieved at some middle level of density, which 
tapers off when there is either too many or too few arcs. The 
same effect applies to Intuition 4 as well: very small worlds 
mean very high interconnection, while very large worlds 
imply very low interconnection. 
 
Measures of network properties 
Networks have been widely studied in biology and several 
measures have been used to inform us about their properties in 
general (Watts and Strogatz 1998; Dunne, Williams et al. 
2002; Proulx, Promislow et al. 2005; Neutel, Heesterbeek et 
al. 2007; Blüthgen, Fründ et al. 2008). Here we list some of 
relevance,2 gauging the extent to which each informs us about 
network complexity. We conclude this list by introducing our 
own proposal. 
 
Number of nodes: n 
Ceteris paribus, smaller networks are simpler networks (cf. 
Intuition 7). 
Number of edges: e 
Having fewer edges is another way in which networks can be 
smaller and therefore simpler (Intuition 2). 
Density: D = e / n2 
Given that there are n2 potential directed arcs in a network 
(where a node may have an arc directed back to itself), this is 
the frequency of arcs (relevant to Intuitions 1, 2, 4, 5 and 6). 
Density-Mass: D × n = e / n 
This combines Intuitions 2 and 7. Given that denser networks 
are more complex (other things being held equal and up to a 
point of diminishing returns) and larger networks are more 
complex, it’s reasonable to suppose that a measure of 
complexity might be proportional to both simultaneously, so 
we multiply the two measures. 
Characteristic path length (CPL):  

CPL =

€ 

sij
pi=1

n

∑
j=1

n

∑  

where sij is the shortest path between nodes i and j (0 in case 
the shortest path is infinite) and p is the number of finite 
shortest paths between two nodes in the network (i.e. p < n2 
just in case some shortest paths are infinite). Thus, CPL is the 
average shortest path length (“degree of separation”) between 
nodes. Low values would normally indicate a highly 
connected network, i.e., high edge density, or perhaps 
strategically placed edges allowing for shortcuts, 
corresponding to Intuitions 1 and 4. 
                                                             
2 The literature contains many measures and variations. We focus 
on a few popular unweighted measures. Measures such as the 
maximum omnivourous loop weight (Neutel, Heesterbeek, et al. 
2007) are useful in some ecological applications but obviously 
not applicable to networks with unweighted edges. 

Clustering Coefficient (CC): 
 

CC = 

€ 

1
n

Si
Nii

∑  

where Ni is the number of i’s neighbors and Si is the number 
of shared neighbors, i.e., neighbors which are also neighbors 
of neighbors. This measures, on average, how “cliquey” the 
neighbors are across a network. 
In a niche web a high clustering coefficient shows the 
presence of tightly coupled clusters of niche-dependencies. 
So, this is a partial indicator of the clusters and loops of 
Intuitions 5 and 6.  
Shannon web complexity (SWC). 
This is a new use of a prior information-theoretic complexity 
measure, measuring niche web complexity by the number of 
bits needed to efficiently encode a network with n nodes, 
where the web may be any directed graph between the nodes. 
The code should be Shannon efficient for specifying the 
network structure to a receiver. In this first version of SWC 
we make the simplifying assumption that the density of arcs in 
the network is uniform; i.e., the number of arcs in any two 
subgraphs of the same size is approximately the same. This 
assumption admittedly will be untrue for many networks, 
when the measure will no longer be Shannon efficient; 
however, SWC can be refined in the future to deal with such 
networks. As it stands, this measure will still be useful for a 
very large range of networks. 
 
First, we need to identify (label, number) all the nodes. We 
can do this simply by specifying how many there are, i.e., 
coding the number n, assuming the labels will be 1, 2, …, n. 

log2 n 

Now we need to specify all arcs. We can do this in two steps. 
First we encode an estimate p of the probability that an arc 
exists between any two nodes; call this code length M(p). 
Given knowledge of p, specifying an existing arc takes  
−log2 p bits and specifying the absence of an arc takes  
−log2 (1 − p) bits. The number of possible arcs (going in either 
direction between nodes) is n2 (since nodes may be parents of 
themselves), so 

p = e / n2 

where e is the number of arcs in the graph (i.e., this is the 
density measure from above). 
Hence, we can identify the arc structure in the following 
number of bits: 

e (−log2 p) + [n2 − e] (−log2 (1 − p)) 

The first summand is the bit cost of specifying e arcs; the 
second is the bit cost of specifying all other potential arcs are 
missing. So, our final measure is: 

M(p) + log2 n + e (– log2 p) + [n2 – e] (– log2 (1 – p)) 

This has the reasonable Goldlilocks property above: a low 
density web is counted as simple; complexity increases as the 
number of arcs increase; but as the web becomes very dense – 
as, for example, an ecosystem turns into an indiscriminate 
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mush – it starts losing complexity. Maximal complexity is 
reached when p ≈ 0.5. This measure is shown by (Boulton and 
Wallace 1969) to be effectively the same as the following 
adaptive code, which is simpler to compute (meaning, e.g., we 
don’t actually have to measure M(p)): 

€ 

log2
(n2 +1)!
e!(n2 − e)!

 

This measure doesn’t respond directly to the Intuitions that 
loopiness implies complexity (5 and 6), however as the arc 
density goes from low towards 0.5, loopiness is inevitable. 
Loopiness is improbable at low arc densities, while in some 
way meaningless at very high arc densities. 

Testing Our Measures 

Sample graphs. 
Figure 1 shows four test graphs C1… 4 that we have designed 
with a constant number of nodes but increasing number of 
edges to highlight the behaviour of the network measures. 
 

 
 
Figure 1. Graphs of five nodes with increasing number of edges. 
 
Figure 2 is a set of networks showing successional stages of a 
subterranean food web redrawn from (Neutel, Heesterbeek et 
al. 2007). To the authors of that paper and this alike, these 
networks appear to be of increasing complexity3. In the 
following section we present the results of our measurement 
of the properties of these two sets of graphs. 
 
                                                             
3 Sch(iermonnikoog) and Hul(shorsterzand) 1 are both 
successional stage 1 food webs. Hul 2, 2-3 and 4 are subsequent 
stages of development at the latter site. Nodes represent trophic 
groups detailed in the original paper. 
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Figure 2. Graphs of subterranean food webs at progressing 
successional stages (Schiermonnikoog and Hulshorsterzand in the 
Netherlands). 

Results 
Figure 3 allows us to read the trends of the measures given 
above for graphs C1-4. Apart from SWC and CPL, all 
measures rise with the number of edges in the network. This 
certainly corresponds with naïve Intuition 2. But this suggests 
the measures are actually poor indicators of complexity as the 
sustained increase contradicts Intuitions 1 and 4 that as the 
network becomes more fully connected, it is becoming more 
homogeneous, less likely to have long loops and distinct 
clusters, and therefore less complex. In contrast, we see here 
that SWC and CPL both take the requisite dive after C3 
(which has density ≈ 0.5) as the network connectedness 
climbs “too far”. 
Figures 4 and 5 show the CPL and SWC respectively, as 
applied to the webs of figure 2. The CPL drops in the middle 
stages, before rising once again. As the ratio of the number of 
arcs to number of nodes increases (i.e., the edge density 
increases), the chance of having differentiated sub-networks 
actually decreases – the network will become one large 
structure with many internally connecting arcs. Depending on 
how these edges are added, the characteristic path length may 
drop, as is the case here and as we saw above, in moving from 
our network C3 to C4. If more nodes are later added in such a 
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way as to add lengthy loops, then the CPL too will rise. 
The SWC demonstrates a continued increase in complexity 
across the webs as we, and the ecologists, would wish. 
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Figure 3. Trends of the various dimensionless measures across 
test graphs, C1-4 (vertical axis has a log scale). 

 
Figure 4. The drop in characteristic path length (CPL) of the food 
webs from Sch to Hul 1 and 2 is counter to our intuition about the 
webs’ complexity. 

 
Figure 5. The increase in the Shannon web complexity (SWC) of 
the food webs matches our intuitions about their complexity. 

Discussion and Future Work 
Our proposed measure of niche web complexity is an 
improvement upon Bedau’s evolutionary activity plots for 
identifying open-ended evolution – in particular, it measures 
the right thing, biological complexity, at at least one of the 
right levels of organisation, the niche web. Even this first 
SWC measure appears tricky to subvert; it is at least better 
than the measures actually employed in the ecological 
literature. In particular, we have shown that SWC corresponds 
to basic intuitions regarding complexity and, at least in our 
test cases, tells us more than its competitors in this regard. 
There are various options for improvement nevertheless. We 
can anticipate in the future looking at: the number of iterations 
required to reduce a non-planar graph to planarity by 
subtraction of maximal planar subgraphs; the standard 
deviations of shortest path lengths clustering coefficients 
across subgraphs; dropping the assumption of uniform arc 
densities in the SWC measure by compounding the SWCs of 
subgraphs. 
Even before we extend our existing measures, we plan to 
apply them to the networks generated by various artificial-life 
ecosystems, especially our own (Korb and Dorin 2009) and 
those measured by others using their own statistics (e.g. (Ray 
1990; Bedau, Snyder et al. 1998; Channon and Damper 2000)) 
to see what they may tell us about the simulations' open-
endedness. Should they prove to support open-endedness, one 
significant hurdle must still be overcome — accommodating 
the “major transitions” of evolution (Maynard-Smith and 
Szathmáry 1995) that play a key role in the open-endedness of 
real evolution. Can these be replicated in simulation? Would 
our measures detect them if they did occur? 
The major transitions such as the evolution of eukaryotes and 
the development of sexual reproduction, relate in part to 
changes in how information is passed between generations. 
Niche webs do not explicitly model such behaviour; however, 
another prominent feature of many of these transitions is the 
incorporation of one entity in the life cycle of another (e.g., 
bacteria in digestion or the development of mitochondria) or, 
again, the differentiation of subparts into specialising modules 
(e.g., new organs and tissues). These kinds of transitions have 
impacts on niche webs, either explicitly or implicitly, and will 
often show up in the ways in which subgraphs of niches are 
interrelated. So, while there are limitations to what examining 
niche webs can reveal about major transitions, there are also 
potential impacts of the transitions on niche webs that should 
not go unexamined. 

Conclusions 
Niche web complexity is a promising focus for understanding 
biological complexity growth and so for assessing also the 
complexity of Artificial Life simulations. While there is a 
long tradition in ecology of considering this kind of 
complexity, most of the literature uncritically adopts one or 
another measure on the basis of intuitive arguments. We have 
codified these intuitions, formalized a variety of measures 
corresponding to them, as well as an information-theoretic 
measure, and tested them using a range of networks. We think 
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the information-theoretic measure has considerable promise 
for assisting us in understanding biological complexity growth 
and, therefore, open-ended evolution. 
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