
IEEE TRANS. ON AUDIO, SPEECH & LANGUAGE PROCESSING, VOL. ???, NO. ???, MONTH??? YEAR??? 1

Scaling POMDPs for spoken dialog management

Abstract— Control in spoken dialog systems is challenging
largely because automatic speech recognition is unreliable and
hence the state of the conversation can never be known with cer-
tainty. Partially observable Markov decision processes (POMDPs)
provide a principled mathematical framework for planning and
control in this context; however, POMDPs face severe scalability
challenges and past work has been limited to trivially small
dialog tasks. This paper presents a novel POMDP optimization
technique – composite summary point-based value iteration
(CSPBVI) – which enables optimization to be performed on
slot-filling POMDP-based dialog managers of a realistic size.
Using dialog models trained on data from a tourist information
domain, simulation results show that CSPBVI scales effectively,
outperforms non-POMDP baselines, and is robust to estimation
errors.

Index Terms— Decision theory, dialogue management, partially
observable Markov decision process, planning under uncertainty,
spoken dialogue system.

I. I NTRODUCTION

SPOKEN dialog systems (SDSs) help people accomplish
a task using spoken language. For example, a person

might use an SDS to buy a train ticket over the phone, to
direct a robot to clean a bedroom, or to control a music
player in an automobile. Broadly, a spoken dialog system
has three modules, one each for input, output, and control,
shown in Figure 1. The input module performs automatic
speech recognition (ASR) and spoken language understanding
(SLU) to convert an acoustic speech signal into a hypothesisof
the user’s intention, such asrequest(flight, from(london)). The
control module maintains an internal state and decides what
action the machine should take. This includes communicative
actions such asask(departure-date)and non-communicative
actions like consulting a database. The output module renders
communicative actions from the machine as audio to the user.

Speech recognition &
language understanding

Language generation &
text-to-speech

Dialog
manager

Dialog
model

User

Control moduleInput module

Output module

Fig. 1. High-level architecture of a spoken dialog system.

This paper is concerned with the design of the control
module. This is a challenging engineering problem in large
part because automatic speech recognition (ASR) and under-
standing technology in the input module are error-prone, so
a computer must regard everything it hears with suspicion.
Worse, conflicting evidence does not always indicate a speech

recognition error, because sometimes people change their ob-
jective in the middle of a conversation. Finally, conversation is
a temporal process in which users behave in non-deterministic
ways, and in which actions have both immediate and long-term
effects. For all of these reasons, control in a spoken dialog
system can be viewed as planning under uncertainty.

Past work has argued that partially observable Markov
decision processes (POMDPs) provide a principled framework
for control in spoken dialog systems [1], [2], [3], [4], [5],
[6]. A POMDP views the state of the dialog as a hidden
variable: rather than maintaining one hypothesis for the state
of the dialog, a POMDP maintains a distribution overall
possibledialog states, called abelief state. As the control
module takes actions and receives evidence from the input
module, this belief state is updated. Short- and long-term
objectives of the system are specified in the form of the
POMDP’s reward function, and actions are selected with the
goal of maximizing the sum of rewardsover time: i.e., the
POMDP performs planning to determine an optimal course
of action which balances short-term and long-term priorities.
Maintaining multiple hypotheses for the current dialog state
enables POMDPs to better interpret conflicting evidence, and
in the literature POMDPs have been shown to outperform
(automated and hand-crafted) techniques which maintain a
single dialog state hypothesis [1], [2], [3], [4], [5], [6].

Even so, POMDPs face severe scalability limitations. The
computational complexity of planning grows astronomically as
concepts are added to the dialog model, and POMDP-based
spoken dialog systems in the literature have been limited to
trivially small dialog domains. Worse, for reasons explained
below, the existing techniques for scaling found in the POMDP
literature are of little use in the dialog domain.

This paper presents a novel optimization technique for scal-
ing POMDPs in the dialog domain called composite summary
point-based value iteration (CSPBVI). Consideration is limited
to so-calledslot-filling dialogs, in which the machine seeks
to collect avalue for each of a set ofattributes(or slots) as
quickly and accurately as possible. To keep planning tractable,
CSPBVI makes two important assumptions. First, machine
actions are constrained to act on the singlebest hypothesis
for each slot, regardless of its value. Planning then need
only consider the proportion of probability mass held by this
best hypothesis, reducing the size of the planning problem
within each slot to a small constant. Second, an indepen-
dence assumption is made across slots, allowing planning
to be performed locally within each slot. At runtime each
slot nominates an action, and a simple hand-crafted heuristic
chooses which among these to take. With these assumptions,
the complexity of the planning problem remains constant with
respect to both thenumber of valuesper slot and thenumber
of slots, allowing both to be increased to realistic, real-world
sizes. Importantly, these assumptions affectplanning but not

IEEE TRANS. ON AUDIO, SPEECH & LANGUAGE PROCESSING, VOL. ???, NO. ???, MONTH??? YEAR??? 2

belief monitoring: that is, they may impact plan quality, but
they do not reduce the machine’s ability to track the current
state of the dialog or interpret conflicting evidence.

This paper is organized as follows. Section II reviews the
fundamentals of POMDPs and reviews existing techniques for
POMDP optimization. Section III reviews how POMDPs can
be applied to the spoken dialog problem and explains why
traditional optimization techniques fail in this domain. Section
IV describes theCSPBVI method, and section V describes an
example dialog management problem, demonstrates its oper-
ation, and compares its performance to a variety of baselines.
Finally, section VI briefly concludes.

II. BACKGROUND

This section reviews the definition of a partially observable
Markov decision process (POMDP), explains exact optimiza-
tion, and sketches approximate optimization techniques. For
more detail and examples, refer to works such as [7], [8], [9],
[10], [11], [12].

A. POMDP definition

Formally, a POMDP P is defined as a tupleP =
(S, A, T, R, O, Z, γ, b0) whereS is a set of statess describing
the machine’s world withs ∈ S; A is a set of actionsa
that a machine may takea ∈ A; T defines a transition
probability P (s′|s, a) ; R defines the expected (immediate,
real-valued) rewardr(s, a) ∈ < ; O is a set of observations
o the machine can receive about the world witho ∈ O; Z

defines an observation probabilityP (o′|s′, a) ; γ is a geometric
discount factor0 < γ < 1; and b0 is an initial belief state,
defined below.

The POMDP operates as follows. At each time-step, the
world is in some unobserved states. Sinces is not known
exactly, a distribution over states is maintained called abelief
state, b. b is defined inbelief spaceB, which is an(|S| − 1)-
dimensional simplex.b(s) indicates the probability of being
in a particular states with initial belief stateb0. Based onb,
the machine selects an actiona, receives a rewardr(s, a), and
transitions to (unobserved) states′, wheres′ depends only on
s and a, according toP (s′|s, a). The machine then receives
an observationo′ which depends ons′ and a, according to
P (o′|s′, a).

At each time-step, the belief state distributionb is up-
dated using a function called thestate estimator(SE), which
computes a new distribution over statesb′ given a current
distribution over statesb, an action takena, and an observation
receivedo′ [12]:

b′(s′) = SE(b, a, o′) (1)

= η · P (o′|s′, a)
∑

s

P (s′|a, s)b(s), (2)

whereη is a normalization constant independent ofb, a, and
o′ which ensures that

∑

s′ b′(s′) = 1.
As mentioned above, at each time-step, the machine receives

rewardr(s, a). The cumulative, discounted reward is written

as

Vt =
t

∑

τ=1

γ(τ−1)
∑

s

bτ (s)r(s, aτ) (3)

where bτ (s) indicates the probability of being in states at
time-step τ and aτ is the actiona taken at timeτ . The
cumulative, discounted,infinite horizon reward is called the
return, denoted byV∞, or simply V for short. The goal
of the machine is to choose actions in such a way as to
maximize the returnV given the POMDP parametersP =
(S, A, T, R, O, Z, γ, b0). Determining how to choose actions
in this context is called “optimization.”

B. Exact POMDP optimization

Maximizing V in practice means finding a plan called a
policy which indicates which actions to take at each turn.
Policies can be formed as a collection of conditional plans.A
t-step conditional plandescribes how actions should be chosen
for t steps into the future. Formally, at-step conditional plan
is a tree of uniform deptht and constant branching factor
|O|, in which each node is labelled with an action. The root
node is referred to as layert and the leaf nodes are referred
to as layer1. Every non-leaf node has|O| children, indexed
as1, 2, . . . , |O|. A conditional plan is used to choose actions
by first taking the action specified by the root node (layert).
An observationo will then be received from the POMDP, and
control passes along arco to a node in layert− 1. The action
specified by that node is taken, and so on.

As an illustration, consider a POMDP with 2 observa-
tions and 4 actions. Three example conditional plans for this
POMDP are shown in Figure 2. For example, conditional plan
I specifies that actiona2 should be taken first. Ifo1 is then
received,a3 should next be taken, and so on.

a2

a3 a1

a2 a2 a1 a3

o1 o2

o1 o2 o1 o2

a1

a4 a2

a3 a3 a4 a1

o1 o2

o1 o2 o1 o2

a4

a2 a2

a3 a4 a4 a3

o1 o2

o1 o2 o1 o2

I II III

Fig. 2. Three example3-step conditional plans.

A t-step conditional plan has avalueV (s) associated with
it, which indicates the expected value of the conditional plan,
depending on the current (unobserved) states. This value can
be calculated recursively forτ = 1 . . . t as:

Vτ (s) = r(s, aτ) + γ
∑

s′

P (s′|s, aτ) ·

∑

o′

P (o′|s′, aτ)V o′

τ−1(s
′), (4)

whereaτ gives the action associated with the root node of this
conditional plan,V o′

τ−1 indicates the value of the conditional

IEEE TRANS. ON AUDIO, SPEECH & LANGUAGE PROCESSING, VOL. ???, NO. ???, MONTH??? YEAR??? 3

plan in layerτ−1 which is the child indexo′ of the conditional
plan, and∀s, V0(s) = 0. Continuing the example above,
suppose the POMDP has 2 states and the values of each of
the conditional plans were found to be:

VI = (4.0, 3.0)

VII = (3.3, 3.3) (5)

VIII = (3.0, 4.0)

Then if plan III were executed repeatedly from states2, the
average discounted sum of the 3 rewards obtained would be
4.0.

Of course at runtime, the machine does not know the state
s exactly and instead maintains a belief stateb. The value of
a conditional plan at a belief stateb is then computed as an
expectation over states:

V (b) =
∑

s

b(s)V (s). (6)

In a POMDP, the machine’s task is to choose between a
number of conditional plans to find the one which maximizes
Vt for some b. Given a set oft-step conditional plansNt

with n ∈ Nt, and their corresponding values{V n
t } and initial

actions{an
t }, the value of the best plan at belief stateb is:

V ∗
Nt

(b) = max
n

∑

s

b(s)V n
t (s). (7)

V ∗
Nt

(b) implies anoptimal policyπ∗
Nt

(b):

π∗
Nt

(b) = an
t wheren = argmaxn

∑

s

b(s)V n
t (s). (8)

In words, V ∗
Nt

(b) represents the (scalar) expected value of
starting in b and following the bestt-step conditional plan
in Nt, which begins with actionπ∗

Nt
(b).

This process is illustrated graphically in Figures 3 and 4.
In this example,N3 consists of the three3-step conditional
plans I, II, and III given in equation (5). In this depiction,the
horizontal axis is the belief stateb, where the left end of the
axis indicates thatb = (1, 0) (i.e., states1 with certainty) and
the right end indicatesb = (0, 1) (i.e., states2 with certainty).
The vertical axis shows the valuesV of the conditional plans.
In Figure 3, the values of the three conditional plans are
shown with the dotted lines. In this 2-state example, the value
functions can be shown as lines, but in general the values
of conditional plans are hyperplanes in(|S| − 1)-dimensional
space.

b

V

3

4

(1,0) (0,1)

I III

II

Fig. 3. Value functions for the three conditional plans shown in Figure 2.

Figure 4 shows theoptimal value function, which is the
upper surface of all of the value functions, shown as the
heavy line. Note how there are two regions: on the left where
conditional plan I is optimal and on the right where conditional
plan III is optimal.

b

V

3

4

(1,0) (0,1)

I III

II

Fig. 4. Optimal value function (shown as the heavy line) for the three
conditional plans I, II, and III shown in Figure 2.

If Nt contained all possible conditional plans, thenV ∗
Nt

(b)
would give the value of theoptimal t-step policy for this
POMDP. Unfortunately, this type of exhaustive approach is
doomed to failure since the number of possiblet-step condi-
tional plans is

|A|
|O|t−1

|O|−1 (9)

which grows astronomically int. In the example here with 2
states, 4 actions, and 2 observations, there are already 16,384
distinct 3-step conditional plans.

Fortunately, it has been found empirically that relativelyfew
t-step conditional plans make a contribution to an optimal
t-step policy. For example, in Figure 4, there are no belief
points for which conditional plan II is optimal (i.e., forms
the upper surface). As a result, conditional plan II will never
contribute to an optimal3-step policy and can safely be
discarded. In general, this insight can be exploited to compute
optimal policies more efficiently withvalue iteration[11], [9].
Value iteration is an exact, iterative, dynamic programming
process in which successively longer planning horizons are
considered, and an optimal policy is incrementally created
for longer and longer horizons. Value iteration proceeds by
finding thesubsetof possiblet-step conditional plans which
contribute to the optimalt-step policy. These conditional plans
are calleduseful, and only usefult-step plans are considered
when finding the(t + 1)-step optimal policy. For example,
in Figure 4, conditional plans I and III are useful; conditional
plan II is not and will never form a child of a4-step conditional
plan.

Each iteration of value iteration consists of two steps.
First, in the “generation” step, all possiblet-step conditional
plans are created by enumerating all actions followed by all
possible useful combinations of(t− 1)-step plans, producing
|A||Nt−1||O| t-step plans. Then, in the “pruning” step, con-
ditional plans which do not contribute to the optimalt-step
policy are removed, leaving the set of usefult-step plans. The
algorithm is repeated forT steps, and produces the values and
initial actions of the optimalT -step policy. For sufficiently
large T it can be shown that a policy produced in this way
converges to the optimal infinite horizon policy [12].

IEEE TRANS. ON AUDIO, SPEECH & LANGUAGE PROCESSING, VOL. ???, NO. ???, MONTH??? YEAR??? 4

The pruning operation seeks to eliminate conditional plans
which do not contribute to the optimal policy. One way this
can be implemented is with linear programming [12], which
seeks to find a belief point for which a conditional plan is
optimal, or to determine that such a point does not exist. The
complexity of this linear program is significant and grows
with the dimensionality of belief space|S|. In practice, the
combination of growth in the number of conditional plans,
and the computational complexity of the “pruning” operation
cause exact value iteration to be intractable for problems on
the order of 10 states, actions, and observations.1 Therefore
to scale POMDP policy optimisation to real-world tasks,
approximationsmust be made to the exact optimal policy. This
is described next.

C. Approximate POMDP optimization

Exact value iteration is computationally complex primarily
because it attempts to find an optimal policy forall points in
belief spaceB. A family of approximate techniques quantizes
belief space into a set of points and only attempts to find
optimal plans at these points.

Point-based value iteration (PBVI) is an example of one
such technique [13], [14].2 PBVI first generates a set ofN
belief points PBVI B̂ = {b1, b2, . . . , bN} by following a
random policy to sample belief space. In theory it is possible
that any belief point might eventually be reached starting
from b0, but in practice this is rare and the belief point
selection process attempts to find those belief points which
are likely to be reached. Then, value iteration is performed,
but rather than searching all of belief space for vectors to
prune, PBVI takes a simplemax operation at each belief point.
Like exact value iteration, PBVI produces a set of vectors
N and corresponding actions. However, unlike exact value
iteration the number of vectors produced in each iteration is
constant, because each vector corresponds to a belief pointbn

in B̂. Furthermore the conditional plan found for each belief
point bn is only guaranteed to be optimal for that belief point.
However, the hope is that it will be optimal, or nearly so, at
other points nearby. At runtime, an optimal actiona may be
chosen for any belief pointb by evaluatinga = an where
n = argmaxn

∑

s b(s)V n(s), just as in exact value iteration.
The value of each of these conditional plans,V n

t (s), is ex-
act, but only guaranteed to beoptimalat bn, and in this respect
PBVI is an approximation technique. As more belief points
are added, the quality of optimization increases at the expense
of additional computational cost, allowing trade-offs to be
made between optimization quality and computational cost
[13], [14]. Moreover, since a vector (or, stated equivalently,
a valueand a value gradient) is maintained for each belief
point, interpolation for unsampled belief points at runtime can

1Technically it is thecomplexityof optimal policies, and not the number
of states, actions, and observations which causes value iteration to become
intractable, but it is not obvious how to calculate the complexity of a plan
a priori and in practice the number of states, actions, and observations is a
useful heuristic.

2The phrase “Point-based value iteration” and acronym PBVI were coined
by Pineau [13]. Subsequent work extended Pineau’s formulation [14], and in
this paper PBVI refers to this family of techniques.

be done accurately. PBVI has been demonstrated to find good
policies on POMDPs with thousands of states.

In summary, conditional plans provide a framework for
evaluating different courses of action, but enumerating all
possible conditional plans is hopelessly intractable. Value
iteration builds conditional plans incrementally for longer and
longer time horizons, discarding useless plans as it progresses,
making policy optimization possible for small POMDPs. Even
so, optimization with exact value iteration quickly becomes in-
feasible and approximate techniques such as point-based value
iteration (PBVI) provide a way to trade off computational
complexity and plan quality, scaling to larger problems.

III. POMDPS AND DIALOG MANAGEMENT

This section first explains how spoken dialog systems may
be cast as a POMDP, and then shows why even approximate
optimisation methods rapidly become intractable when scaled
to real problems in this domain.

The techniques in this paper are based on theSDS-POMDP

model which has been previously presented in [4], [5], and
[6], and which is reviewed here for completeness. In the
SDS-POMDP, the POMDP state variables is separated into
three components,s = (su, au, sd). The componentsu ∈ Su

gives the user’s goal, such as a complete travel itinerary.
This paper is concerned with so-called slot-filling dialogsin
which the user’s goalsu is composed ofW slots, su =
(s1

u, . . . , sW
u), where sw

u ∈ Sw
u . For example, in the air

travel domain, a user goalsu might be composed ofsu =
(sfrom

u , sto
u , sclass

u , sairline
u , stime

u , sdate
u). The componentau ∈ Au

gives the most recentuser actionat the concept level, such
as stating a place the user would like to travel to, responding
to a yes/no question, or a “null” response indicating the user
was silent. Finally the componentsd ∈ Sd records relevant
dialogue history, such as the grounding status of a slot, or
how many times a slot has been queried. None of these
components is observable directly by the machine and the
SDS-POMDP belief state is formed from a distribution over
these componentsb(su, au, sd).

The POMDP actiona corresponds to the machine action in
the dialog, such as greeting the user, asking the user where
they want to go “to”, or confirming a user goal. Finally, the
POMDP observationo is separated into two componentso =
(ãu, c), where ãu ∈ Au gives the hypothesis of the user’s
action provided by the speech recognition process, andc is a
confidence score.

By substitution and making reasonable conditional in-
dependence assumptions, the POMDP transition func-
tion P (s′|s, a) and observation functionP (o′|s′, a) can
be re-written in SDS-POMDP terms asP (s′|s, a) =
P (s′u|su, a)P (a′

u|s
′
u, a)P (s′d|s

′
u, a′

u, sd, a) and P (o′|s′, a) =
P (ã′

u, c′|a′
u). These individual probability functions corre-

spond to intuitivemodelswhich can either be estimated from
data or handcrafted. For example,P (a′

u|s
′
u, a) provides a

model of user behavior which can be estimated from dialog
data, andP (s′d|s

′
u, a′

u, sd, a) could be handcrafted following
e.g., the Information State Update approach [15]. The design
of the reward functionr(su, au, sd, a) is left to the application

IEEE TRANS. ON AUDIO, SPEECH & LANGUAGE PROCESSING, VOL. ???, NO. ???, MONTH??? YEAR??? 5

designer as it implements the design objectives of a given
system. In generalr encodes trade-offs between speed, ap-
propriateness, and accuracy, and one would expect these to
be different in (for example) the banking and entertainment
domains.

The slot-filling SDS-POMDP model may be regarded as an
extension of a “frame-based” dialog system [16], in which
dialog state is a frame of attributes that are populated with
values as the dialog progresses.3 Actions are selected by a
(hand-crafted) dialog management algorithm that examinesthe
frame and determines which element to query or confirm next.
Users can provide values for any slot in an utterance, such as
“Where are you flying to?” / “To New York on Monday”, and
in this respect frame-based approaches support a limited form
of mixed initiative.

A slot-filling SDS-POMDP model extends the frame-based
approach by maintaining not a single frame, but rather a
distribution (belief state) overall possibleframes. Instead of
populating values as evidence arrives, the belief state sharpens
around the frame that is most likely. Further, action selection is
performed using an optimization criterion rather than a hand-
crafted dialog manager. The optimization process producesa
dialog manager (policy) that selects actions to maximize the
sum of rewards gained over the course of the dialog. In other
words, the optimization process performs planning to find the
best action to take for a given distribution over frames (belief
state).

Despite the theoretical appeal of theSDS-POMDP in practice
optimization faces severe scalability issues. For example, if the
size of each slot is|Sw

u | = 100, then there are a total of|Su| =
∏

w |S
w
u | = 100W distinct user goals. Because the set of user

actionsAu and machine actionsA often refer to specific user
goals, (for example, a user action which states part of a goal
such as “A flight to Paris, please”, or a machine action which
confirms part of a goal such as “Leaving from London, is
that right?”), the SDS-POMDP action and observation sets all
grow with the number of user goals. A 5-slot problem where
each slot has 100 slot values is considered small in the dialog
community, yet it is completely intractable for state-of-the-art
approximate POMDP optimization techniques such asPerseus
[14]. In fact, lettingG equal the number of values for each
slot, the number of plans required by PBVI algorithms like
Perseusgrows asO(GW). While this represents a significant
improvement over value iteration which requires at worst
O[(GW)(G

W)T

] conditional plans, it still grows exponentially
in the number of slots.4

A common scaling technique in the POMDP literature is
to “compress” the state space by aggregating states [20],
[21], [22], [23]. Unfortunately, in the dialog domain, there

3In principle the generalSDS-POMDP model is comparable to the more
advanced “agent-based” model in which the dialog manager maintains beliefs
about the dialog and the user’s goals, and performs planningto achieve
its goals [16]. However the practicalities of this level of generality are not
addressed in this paper.

4An alternative is to abandon planning altogether and greedily select actions
[17], [18], [19]. While this avoids the computational problems of planning, it
requires that the designer somehow encode incentives into the reward function
to make long-term progress toward a goal, which inevitably requires some
hand-crafting and iterative tuning.

is an important correspondence between states and actions,
and this correspondence would be lost in a compression. For
example a user goal such assu = from-londonhas correspond-
ing system actions such asconfirm-from-londonand print-
ticket-from-london, and it seems unlikely that an aggregated
state such asfrom-london-or-leedswould be helpful. As a
result, optimization techniques which attempt to compressthe
POMDP through state aggregation are bound to fail in the
dialog domain. Similarly, attempting to exploit the factored
form of the SDS-POMDP in optimization (using e.g., [24],
[25]) is unlikely to succeed since most of the growth is
due to one component (the user’s goal), and the number of
required conditional plans required grows with each user goal.
As a result, to maintain performance, the complexity of an
approximation will grow as user goals are added.

Therefore to realize the benefits of the POMDP model in
the dialog domain, a new optimization method is needed.

IV. CSPBVI METHOD DESCRIPTION

A. Intuition

Composite summary point-based value iteration (CSPBVI)
is a novel POMDP optimization technique which enables a
slot-filling SDS-POMDP to be scaled to a realistic size.5 To do
this, CSPBVI makes two important assumptions.

First, looking through transcripts of simulated dialogs with
much smaller POMDP-based dialog applications, it was no-
ticed that actions which operate on a user goal likeconfirmor
print-ticket were only taken on the user goal with the highest
belief mass. Intuitively, this is sensible: for confirmations, the
machine should minimize the chances of a “no” response as
this increases belief state entropy, lengthens the dialog,and
decreases return. Moreover, committing to the wrong user goal
when closing the dialog (e.g., printing a ticket) results insevere
penalties. With this in mind, the first assumption made by
CSPBVI is to limit a priori actions like confirm and print-
ticket to act on only the most likely user goal. Then, planning
considers only theproportionof belief mass held by the most
likely user goal (and not its actual value). The structure ofthe
slot-filling domain provides the framework required to map
between actions and user goals.

Second, in a recent data collection [28], it was noticed that
when users are asked about a certain slot, they most often
provide a value for just that slot, and only sometimes provide
values for other slots.6 CSPBVI capitalizes on this insight by
assuming that cross-slot effects are unimportant for planning.
Hence, it first estimates system dynamics locally for each
slot, then uses these estimates to produce a distinct dialog
manager (i.e., POMDP policy) for each slot. In effect, actions
are chosen based on the expectation that user responses will
not provide information about other slots. At runtime, each
dialog manager nominates an action appropriate for its slot
and a handcrafted heuristic chooses which one of these to
take.

5CSPBVI and a precursor were previously described in workshop papers by
the authors [26], [27].

6See table II for data.

IEEE TRANS. ON AUDIO, SPEECH & LANGUAGE PROCESSING, VOL. ???, NO. ???, MONTH??? YEAR??? 6

Together, these two assumptions reduce complexity signif-
icantly: plan growth is constant with respect to the number
of slot valuesG, and is performed separately for each slot,
resulting inW separate optimizations, each with aO(c) plans,
wherec is a constant with respect to the number of slots (W),
the number of values per slot (G), and the planning horizon
(T). Moreover, while these two assumptions affect planning,
they do not alter how evidence is interpreted:CSPBVI still
performs belief monitoring over all user goals. Hence, when
a userdoes provide extra information or when conflicting
evidence is received, it is still properly incorporated into the
belief state.

B. Description

CSPBVI consists of four phases: construction, sampling,
optimization, and execution. In theconstructionphase, first
themasterPOMDP is created, which is an SDS-POMDP with
several constraints and additions. The user’s goalsu ∈ Su is
decomposed intoW slots,su = (s1

u, . . . , sW
u) wheresw

u ∈ S
w
u

and whereSw
u refers to the set of values for slotw. The

dialog historysd ∈ Sd is similarly decomposed intoW slots,
sd = (s1

d, . . . , s
W
d) wheresw

d ∈ S
w
d and whereSw

d refers to
the set of possible dialog histories for slotw. Machine actions
are formed of predicates which take arguments that encode the
slot w and the value (or values)sw

u to which the action refers.
Machine actions are writtenpredicate[w](x), wherepredicate
refers to the illocutionary force of the action,w refers to a
slot index, andx refers to the slot value(s) referred to by
the action, if any. For example, the SDS-POMDP machine
actions ask-from and confirm-to-londonwould be restated
as ask[from]() and confirm[to](london). A special meta-slot
w = all denotes an action which refers to all slots, such
as submit[all](sfrom

u = london, sto
u = paris) and greet[all]().

Finally, in the master POMDP a modified reward function is
createdrw(s, a) which removes conditioning on all but the
slot w. For example, if the rewardr for incorrectly/correctly
submitting a user’scompletegoal is−25/+25, thenrw would
be assigned−25/+25 for incorrectly/correctly submittingonly
slot w, ignoring all others. Also, belief monitoring must
be tractable in the master POMDP, and this may require
approximations in the observation function; an example of this
is shown in the next section.

After the master POMDP is formed,W belief Markov
decision processes (BMDPs) are constructed.7 Each of these
will provide a compact representation of the belief state ofa
single slot, and for this reason they will be called “Summary
BMDPs”. Each of these has a state space with two compo-
nents,Ŝw

u andŜw
d , whereŜw

u = {best, rest} andŜw
d = Sw

d . A
belief point in master spaceb can be mapped to a belief point
in summary spacêb for a specific slotw with the function
bToSummary(Algorithm 1). This function sets the summary
belief component̂b(ŝw

u = best) equal to the probability mass
of the most likely user goal in slotw, setŝb(ŝw

u = rest) equal
to the remaining probability mass of all the rest of the user

7A Belief MDP is a Markov decision process with a continuous state
corresponding to a POMDP belief state [12].

Algorithm 1 : FunctionbToSummary.
Input : b, w
Output : b̂ (for slot w)
b̂(ŝu = best)← maxsw

u
b(sw

u)1

b̂(ŝu = rest)← 1− b̂(ŝw
u = best)2

foreach sw
d ∈ S

w
d do3

b̂(sw
d)← b(sw

d)4

Algorithm 2 : FunctionaToMaster.
Input : â, ŵ, w, b
Output : a
if â operates onall slots then1

for w̃← 1 to W do2

sw̃
u ← arg maxs̃w̃

u
b(s̃w̃

u)3

a← â[all](s1
u, . . . , sW

u)4

else5

if ŵ = this then6

w∗ = w7

else8

w∗ = randIntOmit(W, w)9

if â[w∗] takes an argument in master spacethen10

sw∗

u ← arg maxsw∗
u

b(sw∗

u)11

a← â[w∗](sw∗

u)12

else13

a← â[w∗]()14

goals in slotw, and sets the dialog history in summary space
b̂(ŝw

d) equal to the dialog history in master spaceb(ŝw
d).

The action set of each of these summary BMDPs consists of
the predicates ofA and take one argument,̂w ∈ {this, other},
whereŵ = this indicates that an action in master spacea refers
to this slot andŵ = other indicates thata refers tosome other
slot. (If the actiona operates onall slots,ŵ is set tothis.) For
example, in a slot-filling SDS-POMDP with two slotsfromand
to, a master POMDP actiona = confirm[from](london) would
be mapped tôafrom = confirm[this] in the summary BMDP for
the from slot, andâto = confirm[other] in the summary BMDP
for the to slot.

Actions in summary space are mapped into master space
by appending the most likely user goal, and this mapping
is implemented by the functionaToMaster (Algorithm 2).
Thearg max operation in line 11 of Algorithm 2 implements
the centralCSPBVI assumption that actions like “confirm” or
“print-ticket” are limited to the most likely user goal.

For reference, the components of the master POMDP and
summary BMDPs for a two-slot dialog task in the travel
domain are shown in table I.

The samplingphase ofCSPBVI is shown in Algorithm 5.8

Sampling iterates over each slotw = 1 . . .W , and for each slot
consists of 3 stages. In the first stage (Algorithm 5, lines 2-19),

8Algorithms 5-7, which involve the sampling process, are listed in the
appendix.

IEEE TRANS. ON AUDIO, SPEECH & LANGUAGE PROCESSING, VOL. ???, NO. ???, MONTH??? YEAR??? 7

TABLE I

COMPONENTS OF THE MASTERPOMDPAND SUMMARY BMDPS FOR A TWO-SLOT DIALOG TASK IN THE TRAVEL DOMAIN .

Master POMDP Summary BMDP forfrom slot Summary BMDP forto slot

State (sfrom
u , sto

u , au, sfrom
d

, sto
d
) (ŝfrom

u , ŝfrom
d

) (ŝto
u , ŝto

d
)

State space size ≈ |S from
u | · |S to

u | · |S from
d

| · |S to
d
| = 10002 · 32 = |Ŝ from

u | · |Ŝ from
d

| = 2 · 3 = |Ŝ to
u | · |Ŝ to

d
| = 2 · 3

Action a âfrom âto

Action space size* ≈ 10002 = 3 = 3

Belief state b(sfrom
u , sto

u , au, sfrom
d

, sto
d
) b̂(ŝfrom

u , ŝfrom
d

) b̂(ŝto
u , ŝto

d
)

Sampled quantities — {b̂from,n}, {l(from, n, â, k)}, {r̂â,k
from,n

} {b̂to,n}, {l(to, n, â, k)}, {r̂â,k
to,n}

*In the master POMDP, there is onesubmitaction for each distinct user goal (i.e.,from-to city pair); with 1000 cities there are
approximately10002 distinct actions. By contrast, in each summary BMDP, there are 3 actions:ask, confirm, andsubmit.

for eachw the machine takes actions randomly to sampleN
points in summary space, written as the set{b̂w,n}. Initially
this set is empty and at each stepn = 1 . . .N , the current
belief point b is mapped into summary space for slotw to
producêb with bToSummary. If b̂ (or a point close tôb) has not
already been visited, then it is added and two other quantities
are sampled usingsamplePoint(Algorithm 6). samplePoint
takes each summary actionK times, k = 1 . . .K, resetting
to b after each, and recording the resulting reward inr̂â,k

w,n

and the successor point in summary space inb̂â,k
w,n. In the

second stage of sampling (Algorithm 5, lines 20-28), sampling
is repeated for thecornersof summary space for each slot to
help ensure coverage of summary space (Algorithm 7). In the
third stage (Algorithm 5, lines 29-32), for each pointb̂â,k

w,n,
the closest point in̂bw,n is located and its index is recorded in
l(w, n, â, k). In summary, the sampling phase produces three
quantities:{b̂w,n} which is a set of sampled points in summary
space for each slotw; {l(w, n, â, k)} which are the indices of
the closest points in{b̂w,n} when actionâ was taken from
b̂w,n the kth time; and{r̂â,k

w,n} which is the reward obtained
when action̂a was taken from̂bw,n the kth time.

CSPBVI optimization, shown in Algorithm 3, is runW
times, once for each slotw using that slot’s dynamics and
reward. Dynamic programming is used to iteratively find the
best action and its expected value at each belief pointb̂w,n

for longer and longer planning horizons. Each iteration first
computesq̂â,n, which estimates the value of taking actionâ
from point b̂w,n, then from this computeŝaw,n

t (the optimalt-
step action at̂bw,n) andv̂w,n

t (the expected value of the optimal
t-step policy starting from̂bw,n). Summary actions selected in
each iteration arerestricted to ŵ = this: that is, only actions
which operate onthis slot (or all slots) are incorporated into
conditional plans. Optimization ultimately produces an optimal
summary action̂aw,n for each point̂bw,n.

A CSPBVI policy is executedas shown in Algorithm 4.
Belief monitoring is performed in the master POMDP, and
for a given belief pointb in master space, the corresponding
set of summary belief pointŝbw is computed for all slotsw.
For each belief point̂bw the index of the closest pointn∗ in the
set{b̂w,n} is found, and its summary action (âw,n∗

) is mapped
to a master actionaw. This process is repeated for each slot
w and produces a vector of nominated master actions,aw.
Finally, a handcrafted heuristic calledchooseActionHeuristic,
which must be created for each application, selects an action

Algorithm 3 : CSPBVI optimization procedure.

Input : PSDS , {b̂w,n}, {l(w, n, â, k)}, {r̂â,k
w,n}, K, T

Output : {âw,n
t }

for w ← 1 to W do1

N ← |{b̂w,n}|2

for n← 1 to N do3

v̂n
0 ← 04

for t← 1 to T do5

// Generate {q̂â,n}, values of all
// possibly useful CPs.
for n← 1 to N do6

foreach â ∈ Âw do7

ŵ ← this8

q̂â,n ← 1
K

∑

k r̂
â[ŵ],k
w,n + γv̂

l(w,n,â[ŵ],k)
t−19

// Prune {q̂â,n} to yield {v̂n
t },

// values of actually useful CPs.
for n← 1 to N do10

â∗ ← argmaxâq̂â,n11

âw,n
t ← â∗12

v̂n
t ← q̂â∗,n13

from this vector to take.
Because the number of summary actions and summary

states are constant with respect to the number of slots (and the
number of values for each slot),CSPBVI optimization scales
to handle many slots. The quality of the solution produced is
a function of the optimization parametersT , N , andK, and
of the quality of the handcrafted action selection heuristic.

However, the assumptions which allowCSPBVI to scale
introduce three potential limitations. First, like PBVI,CSPBVI

optimizes actions for a finite set of points{b̂n} and not the
entire belief simplex. As such it is always possible that a
conditional plan which is optimal for a region which does
not include a belief point will be omitted. In practice there
are relatively few summary actions and thus (most likely)
relatively few regions, so provided enough points are sampled
it seems improbable that a region would fail to be included.

Second, since the summary belief state is a non-linear
function of the master belief state, the dynamics of summary
space are not guaranteed to be Markovian. As a result, the

IEEE TRANS. ON AUDIO, SPEECH & LANGUAGE PROCESSING, VOL. ???, NO. ???, MONTH??? YEAR??? 8

Algorithm 4 : CSPBVI action selection procedure, used at
runtime.

Input : b, {b̂w,n}, {âw,n}
Output : a
for w ← 1 to W do1

b̂← bToSummary(b, w)2

n∗ ← arg minn|b̂w,n − b̂|3

aw ← aToMaster(âw,n∗

, ŵ = this, b, w)4

a← chooseActionHeuristic({aw})5

central Markov assumption of value iteration may be violated
and value iteration may fail to produce good policies.9 Yet
in general, reinforcement learning has been found to usually
produce good plans in non-Markovian environments [29].

Finally, CSPBVI relies on the assumption that a “myopic”
view of system dynamics local to each slot is sufficient for
planning, and that a handcrafted heuristic can successfully
choose actions. This assumption seems well-founded since
experience from past work in dialog management suggests that
good plans can be constructed by operations which consider
the state of a single slot at a time.

In sum, our intuition is that these theoretical limitationswill
not be a problem in practice, and the next section testsCSPBVI

empirically to verify performance on a slot-filling dialog task
of a realistic size.

V. EVALUATION

In this section,CSPBVI is evaluated in several ways. Tradi-
tionally dialog managers have been designed by hand; more
recently (fully-observable) Markov decision process (MDP)
have been shown to provide gains over hand-crafted designs.
In this section,CSPBVI is compared to an MDP-based baseline
and a handcrafted baseline, and is shown to out-perform
both. Further evaluations show thatCSPBVI scales better than
standard POMDP optimization with little loss in performance.

Because the aim of these evaluations is to show that
statistically significant performance gains hold across a variety
of operating conditions (such as the number of slots and
the speech recognition error rate), hundreds of thousands
of dialogs are needed, and conducting these dialogs with
real users would be impossible. Rather, a simulated user
has been created based on real dialog data. Past work has
shown that performance improvements predicted by user mod-
els in reinforcement-learning based systems are borne out
when deployed to real users [30]. Further, in this evaluation,
policies trained on the simulated user are evaluated on a
second simulated user estimated from held-out data, and it
is found that performance does not degrade significantly. This

9A further limitation is that, unlike PBVI,CSPBVI computes only the value
of a conditional plan at each point, and not its value gradient. As a result,
CSPBVI does not compute accurate boundaries between regions and relies on
a nearest neighbor heuristic. However, a version ofCSPBVI which maintained
gradients was evaluated and obtained worse performance than the method
presented here. It was observed that occasionally gradients would be poorly
estimated which reduced plan quality and lowered returns, and it is believed
this was caused by the non-linear mapping into summary space.

provides some assurance that the learned policies are robust
to variations in the parameters of the simulated user.

A. Example spoken dialog system

A POMDP-based dialog manager called MAXI TRAVEL-W
was created. MAXI TRAVEL-W is an SDS-POMDP withW
slots, where each slot contains100 values and whereW can
be varied. The user’s (single intention) goal consists of a
single value for each slot. To keep belief monitoring tractable,
some independence assumptions between slots are made. User
actions are decomposed by slot intoau = (a1

u, . . . , aW
u),

and each per-slot user action elementaw
u is decomposed

into three componentsaw
u = (aw

state, a
w
stateSlot, a

w
yesNo), where

aw
state ∈ A

w
state, aw

stateSlot ∈ A
w
stateSlot, and aw

yesNo ∈ A
w
yesNo.

Aw
state consists ofstate[w](sw

u) and indicates the user said
their goalwithout identifyingwhich slot it corresponds to –
for example, “London” or “10:00 AM”.Aw

stateSlot consists of
stateSlot[w](sw

u) and indicates the user said their goaland
identified which slot it corresponds to – for example, “to
London”, “from London”, “leaving at 10:00 AM”, or “arriving
at 10:00”. FinallyAw

yesNo includes actionsyesandno. The sets
Aw

state, A
w
stateSlot, andAw

yesNo each also containnull.
Next, the user action modelp(a′

u|s
′
u, a) was extended to

support this formulation. Each slot contains a slot-specific
user model, conditioned on whether the machine is asking
about this slot or another (i.e.,any other) slot. To make the
user action model as realistic as possible, real dialog data
from the SACTI-1 corpus was employed [28]. The SACTI-1
corpus contains 144 human-human dialogs in the travel/tourist
information domain using a “simulated ASR channel” [31].
The corpus contains a variety of word error rates, and the
behaviors observed of the subjects in the corpus are broadly
consistent with behaviors observed of a user and a computer
using a real speech recognition system [28]. The corpus
was segmented into a “training sub-corpus” and a “test sub-
corpus,” which are each composed of an equal number of
dialogs, the same mix of word error rates, and disjoint subject
sets. Wizard/User turn pairs were annotated with dialog acts
such asaskandconfirmfor the wizard, andyes, no, stateand
stateSlot(as described above) for the user. One user model was
then estimated from each sub-corpus, called thetraining user
model and thetestinguser model.10 Excerpts from these two
models are shown in Table II. In the table, the dash character
(—) indicatesnull.

A key property of real-world spoken dialog systems is that
speech recognition errors are not confined to separate slots:
for example, a time such as “ten a.m.” may be mis-recognized
as another time such as “eleven a.m.”, or as a place such as
“Tennessee” or an airline such as “Pan Am”. To model this as
closely as possible, the observation model was separated into a

10The user models did not attempt to estimate statistics for “propositional
content” of user utterances (such as “London”) from the corpus, as it
was assumed that the user would provide propositional content which was
consistent with their goal. Rather the user model estimatedthe distribution
of the “illocutionary force” of a user action for a given wizard action: for
example, if the wizard asked about a particular slot, the user model estimated
how often the user would provide a value for that slot, how often the user
would include the name of the slot, and how often the user would provide a
value for another slot.

IEEE TRANS. ON AUDIO, SPEECH & LANGUAGE PROCESSING, VOL. ???, NO. ???, MONTH??? YEAR??? 9

TABLE II

SUMMARY OF USER MODEL PARAMETERS FOR THEMAXI TRAVEL-W APPLICATION.

Machine Action User Response (to slot only) P (ato
u
′|sto

u
′ = London, a)

Utterance a Utterance (ato′
state, a

to′
stateSlot, a

to′
yesNo) Training Testing

“Where are you going to?” ask[to]()
“London” (london,−,−) 0.521 0.532

“To London” (−, london,−) 0.467 0.443
— (−,−,−) 0.013 0.025

“Where are you leaving from?” ask[from]()
“To London” (−, london,−) 0.146 0.212

— (−,−,−) 0.855 0.788

“To London, is that right?” confirm[to](london)

“Yes” (−,−, yes) 0.782 0.806
“Yes, London” (london,−, yes) 0.093 0.042

“Yes, to London” (−, london, yes) 0.112 0.127
— (−,−,−) 0.013 0.025

“To Edinburgh, is that right?” confirm[to](edinburgh)

“No” (−,−, no) 0.782 0.806
“No, London” (london,−, no) 0.093 0.042

“No, to London” (−, london, no) 0.112 0.127
— (−,−,−) 0.013 0.025

“From Oxford, is that right?” confirm[from](oxford)
“To London” (−, london,−) 0.245 0.522

— (−,−,−) 0.755 0.478

generationmodel and aninferencemodel. An important goal
in this work is to allow the user to say anything at any point
in the dialog, and so it is assumed that the same recognition
grammar is active throughout. To model this, the generation
model makes concept confusions with a constant probability
perr, where a confusion substitutes a non-null user action
component to any other componentin any slot. For example,
if one concept error is made, the user action “Yes, London”
might be changed to “Frankfurt London” or even “Yes No”.
Since null is one type of user action, the generation model
also simulates deletion errors – for example, “Yes, London”
could be changed to “Yes”, “London” ornull. The model does
not simulate insertion errors.

In addition, each observation component (such as “London”
or “To Edinburgh” or “Yes”) carries with it aper-concept
confidence scorec. Past work has found that confidence scores
can be modelled with an exponential distribution [32], and here
confidence scores for correct recognitions are sampled from
ph(c) and incorrect recognitions are sampled fromph(1− c),
where

ph(c) =
(hehc)

eh − 1
, (10)

c ∈ [0, 1], h is a constant that determines the “informativeness”
of the confidence score. For example, forh = 0 the confidence
score is random noise, and ash increases the confidence score
becomes more reliable. To give an intuitive sense of the effect
of h, consider a classifier which attempts to label utterances
ascorrect or incorrect from a speech recognizer which makes
errors 30% of the time (perr = 0.30). When h = 0, the
confidence score adds no information, and the minimum error
rate possible for a classifier would be 30% (by marking all
utterances as correct). Ath = 2, the confidence score adds
useful information, and the classifier’s minimum error rate
decreases to 23%. Ath = 5, the minimum classification
error rate is 8%, and ash approaches infinity, the minimum
classification error rate approaches 0.

Ideally the observation inference model should express the
probability of the entire observation given the entire user
action P (ã′

u, c′|au), but this formulation would complicate

belief monitoring significantly. Instead, the observationmodel
estimatesP (ã′

u, c′|aw
u
′) separatelyfor each slot:

P (ã′
u, c′|aw

u
′) ≈































ph(c′i) · (1 − perr)

if there exists an
observation component
i in ã′

u with the
sametypeasaw

u
′,

perr

|Aw
u
|−1 otherwise,

(11)

where exampletypes include “place names”, “dates”, or
“boolean” (yes/no).

The reward function provided a large positive reward
(+12.5 ·W) for taking a correct submit action; a large penalty
(−12.5 ·W) for taking an incorrect submit action; and a host
of smaller penalties ranging from−1 to −3 depending on
the appropriateness of information gathering actions and the
grounding state given insd.

A CSPBVI-based dialog manager requires a heuristic which
chooses among actions nominated by each slot. For the
MAXI TRAVEL-W application, this heuristic first looks for an
askaction by considering the slots in order; if it does not find
one, it then looks for aconfirm action again considering the
slots in order; and if it does not find one then all slots must
have nominated thesubmitaction, which is selected.

The CSPBVI optimization procedure takes a set of param-
etersN , K, andT whereN is the number of belief points
in summary space sampled for each slot;K is the number
of successor belief points sampled for each summary action
taken at each belief point; andT is the planning horizon.
Experimentation found that no gains in performance were
achieved for values beyondN = 100, K = 50, andT = 50,
and these values were used for all experiments, below.

As an illustration, Figure 5 shows a conversation with a 2-
slot version of MAXI TRAVEL-W with a typical concept error
rate (perr = 0.30) and a somewhat informative confidence
score (h = 2). This figure shows only the user goal component
– the dialog history component has been omitted due to space

IEEE TRANS. ON AUDIO, SPEECH & LANGUAGE PROCESSING, VOL. ???, NO. ???, MONTH??? YEAR??? 10

limitations. In this example, the user is trying to buy a ticket
from London to Cambridge.

Initially belief mass is spread over all user goals evenly, and
at the beginning of the conversation, the summary belief state
for each slot is passed to its respective policy, and both the
from slot and theto slot nominate theaskaction. The heuristic
examines these two actions and selects theask[from]() action
(M1). The user’s response (U1) of “London” is mis-recognized
as “Leeds” with relatively high confidence (0.67), causing a
large shift in belief mass towardleedsin the from slot, and no
change to the belief state of theto slot. For the second machine
action (M2), thefrom slot nominates theconfirm action and
the to slot nominates theask action. The heuristic examines
these and selects theask[to]() action (M2). The user’s response
(U2) of “To Cambridge” is again mis-recognized, this time as
“From Oxford”, with moderate confidence (0.45). However,
since the user model indicates this is a relatively unlikelyuser
action, and because the confidence score is somewhat low, this
results in only a moderate shift of belief mass towardoxford
in the from slot (and again no change to theto slot). For the
third machine action (M3), thefrom slot again nominates the
confirm action and theto slot nominates theask action; the
heuristic examines these and again selects theask[to]() action
(M3).

The user’s response to M3 (U3) of “To Cambridge” is
correctly recognized with very high confidence (0.97). This
causes a massive shift of belief mass towardcambridgein the
to slot (and no change to thefrom slot). For the fourth machine
action (M4), thefrom slot is in the same belief state and again
nominates theconfirm action. Theto slot is now in a belief
state with high certainty, and nominates thesubmitaction. The
heuristic examines these and selects theconfirm[from](leeds)
action (M2). To this the user responds “No, from London”
(U4) but this is mis-recognized as “No, to Edinburgh”. The
no portion of the response is recognized with high confidence
(0.78) and is also highly predicted by the user model, so as a
result a great deal of belief mass moves away fromleedsin
thefrom slot. However, the “to Edinburgh” portion is predicted
as highly unlikely by the user model, and is also recognized
with very low confidence (0.13), and has virtually no effect
on the to slot. For the fifth machine action (M5), thefrom
slot is now in a belief state with relatively low certainty, and
nominates theask action. Theto slot is still in a state of
very high certainty and again nominates thesubmit action.
Between these the heuristic selects the “ask[from]()” action
(M5), and the user’s response of “From London to Cambridge”
(U5) is correctly understood. The “From London” portion
is recognized with very high confidence (0.95) and causes
a massive shift in belief mass; the “to Cambridge” portion
is recognized with relatively low confidence (0.33), and as a
result has only a marginal effect on theto slot. For the sixth
machine action, both slots are in a state of high certainty
and both nominate thesubmit action; the heuristic chooses
a = submit[all](sfrom

u = london, sto
u = cambridge) and the

dialog is completed successfully.

B. Results

First CSPBVI was compared to a variety of fully-observable
Markov decision processes (MDPs). Past work has shown that
MDPs are an effective technique for building good dialog
managers [33], [34], [32]. Like POMDPs, MDPs perform
planning, but unlike POMDPs they maintain a single discrete
state. POMDPs have previously been shown to outperform
MDPs on very small dialog problems [1], [2], [4], [6], and
here it will be verified that the assumptions made byCSPBVI

do not compromise the ability of the POMDP to outperform
an MDP baseline.

The first comparison sought to determine the value of
performing belief monitoring (i.e., maintaining multiplehy-
potheses for the dialog state). In this experiment, no con-
fidence score information is used (i.e.,h = 0). Two MDP
baselines were created. Both MDPs used a state estimator
which received the speech recognition hypothesisãu as input
and tracked whether each slot wasnot-stated, unconfirmed, or
confirmedusing basic grounding rules. The first MDP baseline,
“MDP-Full”, formed its state space as the cross-product of
all MDP slot-states and the second MDP baseline, “MDP-
Composite”, estimated a separate MDP policy for each slot
and used the same heuristic to choose actions at runtime as
CSPBVI. In all other respects the simulation environment for
the MDPs andCSPBVI were identical (e.g., the MDP action
set included the same actions as in theCSPBVI action set).
Both MDP baselines were trained using Q-learning [35]. A
variety of learning parameters were explored and the best-
performing set were selected: 100,000 training dialogs, initial
Q values set to0, exploration parameterε = 0.2, and learning
rateα = 1/m, wherem is the number of visits to theQ(s, a)
being updated. This experiment was repeated forw = 1 . . . 5 at
a variety of error rates using the same optimization parameters.
Results are shown in Figure 6. When no recognition errors are
made (i.e.,perr = 0.00), the POMDP and MDPs perform
identically but when concept recognition errors are made
(i.e., perr > 0), the POMDP outperforms the MDP. As the
number of slots increases, average return declines slightly for
all techniques, because eliciting values for more slots results
in longer dialogs. Past work has shown that POMDPs cope
with conflicting evidence better than MDPs; the findings here
agree and suggest that the approximations made byCSPBVI

do not compromise this crucial characteristic of the POMDP
approach.

Next, the effect of confidence score was investigated by
varyingh. The concept error rate was set toperr = 0.30. For
the MDP-Composite baseline, a “confidence bucket” feature
was added to the MDP state space representing “high” and
“low” observed confidence scores. A variety of confidence
thresholds were explored and it was found that using a thresh-
old of 0.5 produced optimal results for the MDP.11 Results
are shown in Figure 7. As the confidence score becomes more
informative (i.e., ash increases), performance increases for
both theCSPBVI and MDP policies. Past work has found that

11The other techniques considered included dividing the probability mass
of the confidence scorec evenly between buckets, and dividing the range
of error rates equally (e.g., for two buckets, setting a threshold such that
p(observation is correct|confidence score) = 0.5).

IEEE TRANS. ON AUDIO, SPEECH & LANGUAGE PROCESSING, VOL. ???, NO. ???, MONTH??? YEAR??? 11

b

LDS

Prior to start
of dialog

System / User / ASR Master space

OXD LON

M1: Where from?
U1: London

[leeds~0.67]

POMDP belief state (user goal, from slot)

Summary space

b

best rest

b

LDS OXD LON

b

best rest

b

CAM

Master space

EDI LON

POMDP belief state (user goal, to slot)

Summary space

b

best rest

b

CAM EDI LON

b

best rest

M2: Where to?
U2: To Cambridge

[from-oxford~0.45]
b

LDS OXD LON

b

best rest

b

CAM EDI LON

b

best rest

^

^

^

^

^

^

ask ask

confirm

confirm

ask

ask

a = from^ a = to ^

b

LDS OXD LON

M4: From Leeds, right?
U4: No, from London

[no~0.78,
to-edinburgh~0.13]

b

best rest

b

LDS OXD LON

b

best rest

b

CAM EDI LON

b

best rest

b

CAM EDI LON

b

best rest

M5: Where from?
U5: From London

to Cambridge
[from-london~0.95,
to-cambridge~0.33]

b

LDS OXD LON

b

best rest

b

CAM EDI LON

b

best rest

^

^

^

^

^

^

confirm submit

M6: [prints ticket from London to Cambridge]

ask

submit

submit

submit

M3: Where to?
U3: To Cambridge

[to-cambridge~0.97]

a = from^

a = from^

a = from^

a = from^

a = from^

a = to^

a = to^

a = to^

a = to^

a = to^

Fig. 5. Example conversation with theCSPBVI dialog manager. LDS stands for Leeds, OXD for Oxford, LON forLondon, CAM for Cambridge, and EDI for
Edinburgh.afrom andato indicate actions nominated by each slot. Numbers indicate confidence scores; boldface highlights concept recognitionerrors. Only
the user goal component of the POMDP state has been shown – thedialog history and user action components have been omitteddue to space limitations. As
described in Algorithm 4, the policy for each slot nominatesa summary action such aŝafrom = confirm or âto = submit. These actions are mapped to master
space using Algorithm 2 which appends the most likely user goal for the slot, converting (for example)̂afrom = confirm intoa = confirm[from](leeds).

POMDPs make better use of confidence score information
than MDPs on very small dialog problems [5], and Figure
7 indicates that this trend continues at scale.

CSPBVI optimization was then compared to two handcrafted

dialog managers, HC1 and HC2. HC1 and HC2 both use the
same state estimator as the “MDP-Composite” baseline. Both
HC1 and HC2 take theaskaction fornot-statedslots, and the
submitaction forconfirmedslots. Forunconfirmedslots, HC1

IEEE TRANS. ON AUDIO, SPEECH & LANGUAGE PROCESSING, VOL. ???, NO. ???, MONTH??? YEAR??? 12

-15

-10

-5

0

5

10

15

1 2 3 4 5
Number of slots (W)

A
ve

ra
ge

 r
et

ur
n

(p
er

 d
ia

lo
g,

 p
er

 s
lo

t)

CSPBVI (0.00)

CSPBVI (0.30)

CSPBVI (0.50)

MDP-Comp (0.00)

MDP-Comp (0.30)

MDP-Comp (0.50)

MDP-Full (0.00)

MDP-Full (0.30)

MDP-Full (0.50)

Fig. 6. Average return vs. number of slots (W) for CSPBVI and two MDP
baselines at various concept error rates. At the0.00 error rate, the solid lines
for CSPBVI MDP-Comp and MDP-Full are equal and are overlaid.

4

5

6

7

8

9

10

1 2 3 4 5
Number of slots (W)

A
ve

ra
ge

 r
et

ur
n

(p
er

 d
ia

lo
g,

 p
er

 s
lo

t)

CSPBVI (h=5)

CSPBVI (h=3)

CSPBVI (h=1)

MDP-2 (h=5)

MDP-2 (h=3)

MDP-2 (h=1)

Fig. 7. Average return vs. number of slots (W) for CSPBVI and MDP-
Composite-2 baseline for and for concept error rateperr = 0.30 at various
levels of confidence score reliability (h).

takes theconfirm action and HC2 takes theask action. HC1
and HC2 were evaluated by running 10,000 simulated dialogs
for various number of slots and error rates. Results are shown
in Figure 8.

CSPBVI outperforms both handcrafted controllers at all error
rates. As the number of slots increases, the reward gained per
slot decreases, but at higher error rates (i.e.,perr = 0.50)
this decline is precipitous for the handcrafted controllers but
gradual for the POMDP. One reason for this is that the
POMDP is making use of a user model and taking proper
account of less likely observations, but the handcrafted policies
place equal trust in all observations. As dialogs become longer,
the simulated user provides less-reliable information about
otherslots more times in each dialog, causing the performance
of handcrafted policies to degrade.

To this point, all experiments have been optimized and
evaluated on the same user model (training user model in
Table II). In practice, a user model will be a noisy estimate of
real user behavior, and experiments so far have not addressed
what effect this deviation might have on performance. To
model this, a 5-slot MAXI TRAVEL-W was trained using the

-15

-10

-5

0

5

10

15

1 2 3 4 5
Number of slots (W)

A
ve

ra
ge

 r
et

ur
n

(p
er

 d
ia

lo
g,

 p
er

 s
lo

t)

CSPBVI (0.00)

CSPBVI (0.30)

CSPBVI (0.50)

HC1 (0.00)

HC1 (0.30)

HC1 (0.50)

HC2 (0.00)

HC2 (0.30)

HC2 (0.50)

Fig. 8. Average return vs. number of slots forCSPBVI and handcrafted
baselines at various concept error rates.

training user model and evaluated using thetesting user
model described above. Results are shown in Figure 9. As
speech recognition errors increase, the average reward per
turn decreases as expected, and in general performance on
the test user model is less than but very close to the training
user model, implying that the method is reasonably robust to
variations in patterns of user behavior or estimation errors in
the user model.

-4

-2

0

2

4

6

8

10

12

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

Concept error rate (p err)

A
ve

ra
ge

 r
et

ur
n

(p
er

 d
ia

lo
g,

 p
er

 s
lo

t)

Training user model

Testing user model

Fig. 9. Average return vs. concept error rate for training and testing user
models.

Finally, the scalability ofCSPBVI was compared to di-
rect optimization. A simplified, one-slot version of the
MAXI TRAVEL-W application was created, with a concept
error rate (perr) of 0.30 and no confidence score information
(h = 0). The number of slot values (M) was initially set
to 3. CSPBVI was run on this application withN = 100
belief points (in summary space), and as a baseline, PBVI (as
implemented inPerseus[14]) was also run on this application
with N = 1000 belief points (in master space). This process
was repeated for values ofM (i.e., distinct number of slot
values) from 3 to 5000.

Figure 10 showsM vs. average return forCSPBVI and the
PBVI baseline. For small problems, i.e., lower values ofM ,
CSPBVI performs equivalently to the PBVI baseline, but for
larger problems,CSPBVI outperforms PBVI by an increasing

IEEE TRANS. ON AUDIO, SPEECH & LANGUAGE PROCESSING, VOL. ???, NO. ???, MONTH??? YEAR??? 13

margin untilM = 100 at which point PBVI was not able to
find policies. Moreover, theCSPBVI policies were computed
using 90% fewer belief points than the baseline; i.e.,CSPBVI

policies scale to large problems and are much more compact.

-10

-8

-6

-4

-2

0

2

4

6

8

3 4 5 10 20 50 10
0

20
0

50
0

10
00

20
00

50
00

Number of distinct slot values (M)

A
ve

ra
ge

 r
et

ur
n

CSPBVI

PBVI

Fig. 10. Average return vs. number of distinct slot values (M) for a simplified
1-slot dialog problem.

It is interesting to note that asM increases, the performance
of the summary POMDP method appears to increase toward an
asymptote. This trend is due to the fact that all confusions are
equally likely in this model. For a given error rate, the more
concepts in the model, the less likely consistent confusions are.
Thus, having more concepts actually helps the policy identify
spurious evidence over the course of a dialog. In practice of
course the concept error rateperr may increase as concepts
are added.

VI. CONCLUSIONS

CSPBVI enables slot-filling dialog systems cast as SDS-
POMDPs to be scaled to handle many slots. In dialog simula-
tion, the scalability gained with localized planning maintains
performance gains over baseline techniques while tolerating
errors in user model estimation. AlthoughCSPBVI makes sev-
eral important assumptions – i.e., sufficient coverage of belief
space, lack of value gradient estimation, Markov assumption
violations, and localized planning – in practiceCSPBVI out-
performs MDP and hand-crafted dialog manager baselines
while scaling to problems beyond the reach of other POMDP
optimization techniques. Now that realistically-sized systems
can be created, our next step is to conduct trials ofCSPBVI-
based dialog managers with real users.

CSPBVI was created for the dialog management domain,
but it could also be applied to similarly structured problems
in other domains. For example, consider a fault remediation
task consisting of a network with many components. Tests
may be run which give an indication of faulty component, and
the ultimate goal is to decide which component to replace. In
this scenario, the identity of the particular component is less
important than how likely it is to be the culprit given the
evidence. It would be interesting to try applyingCSPBVI to
problems like this outside of the dialog domain.

APPENDIX

ALGORITHM LISTINGS

Algorithm 5 : Sampling stage ofCSPBVI.
Input : PSDS , ε, N , K, W
Output : {b̂w,n},{r̂â,k

w,n}, {l(w, n, â, k)}
// Iterate over each slot w.
for w ← 1 to W do1

// First, sample points
// using a random policy
s← sampleFromDistribution(b)2

n← 13

b← b04

b̂w,n ← bToSummary(b, w)5

(r̂â,k
w,n, b̂â,k

w,n)← samplePoint(PSDS , b, w, K)6

while n < N do7

// Take a random action and
// compute new belief state.
â← randomElement(|Â|)8

ŵ← randomElement({this, other})9

a← aToMaster(â, ŵ, w, b)10

s′ ← sampleFromDistribution(P (s′|s, a))11

o′ ← sampleFromDistribution(P (o′|s′, a))12

b← SE(b, a, o′)13

b̂← bToSummary(b, w)14

// If this is a (sufficiently)
// new point, add it to B̂.

if mini∈[1,n] |b̂w,i − b̂| > ε then15

n← (n + 1)16

b̂w,n ← b̂17

(r̂â,k
w,n, b̂â,k

w,n)← samplePoint(PSDS , b, w, K)18

s← s′19

// Second, sample corners ŝ
// of summary space
foreach ŝ ∈ Ŝw do20

foreach s̃ ∈ Ŝw do21

b̂(s̃)← 022

b̂(ŝ)← 123

if mini∈[1,n] |b̂w,i − b̂| > ε then24

n← (n + 1); N ← n25

b← sampleCorner(b0, ŝ)26

b̂w,n ← bToSummary(b, w)27

(r̂â,k
w,n, b̂â,k

w,n)← samplePoint(PSDS , b, w, K)28

// Third, find index l(w, n, â, k) of
// closest point to bâ,k

w,n

for n← 1 to N do29

foreach â ∈ Âw do30

for k ← 1 to K do31

l(w, n, â, k)← arg minñ|b
a,k
w,n − bw,ñ|32

IEEE TRANS. ON AUDIO, SPEECH & LANGUAGE PROCESSING, VOL. ???, NO. ???, MONTH??? YEAR??? 14

Algorithm 6 : FunctionsamplePointused byCSPBVI sam-
pling (Algorithm 5).
Input : PSDS, b, w, K
Output : {b̂â,k}, {r̂â,k}
foreach â ∈ Âw do1

foreach ŵ ∈ Ŵ do2

for k ← 1 to K do3

// Sample a (possibly) new
// master state s̃.
s̃← sampleFromDistribution(b)4

a← aToMaster(â, ŵ, w, b)5

s′ ← sampleFromDistribution(P (s′|s̃, a))6

o′ ← sampleFromDistribution(P (o′|s′, a))7

// Compute successor b′ and

// save r̂â[ŵ],k and b̂â[ŵ],k.
b′ ← SE(b, a, o′)8

r̂â[ŵ],k ← rw(s̃, a)9

b̂â[ŵ],k ← bToSummary(b′, w)10

Algorithm 7 : FunctionsampleCorner.
Input : b, ŝ
Output : b
s∗u ← arg maxsu

b(su)1

if ŝu = bestthen2

// When ŝu = best, best guess for
// user’s goal is correct:
// set su to this guess and b(su)
// to that corner.
foreach su ∈ Su do3

b(su)← 04

b(s∗u)← 15

else6

// When ŝu = rest, best guess for
// user’s goal is NOT correct:
// set b(s∗u) to zero and
// renormalize, then
// sample su from this renormalized
// belief state.
b(s∗u)← 07

norm←
∑

su
b(su)8

foreach su ∈ Su do9

b(su)← b(su)
norm10

// Copy b̂(sd) directly into b(sd).
foreach sd ∈ Sd do11

b(sd)← b̂(sd)12

ACKNOWLEDGMENT

This work has been supported in part by the EU FP6 Talk
Project.

REFERENCES

[1] N. Roy, J. Pineau, and S. Thrun, “Spoken dialog management for
robots,” inProc Association for Computational Linguistics (ACL), Hong
Kong, 2000.

[2] B. Zhang, Q. Cai, J. Mao, E. Chang, and B. Guo, “Spoken dialogue man-
agement as planning and acting under uncertainty,” inProc Eurospeech,
Aalborg, Denmark, 2001.

[3] B. Zhang, Q. Cai, J. Mao, and B. Guo, “Planning and acting under un-
certainty: A new model for spoken dialogue system,” inProc Conference
in Uncertainty in Artificial Intelligence (UAI), 2001, pp. 572–579.

[4] J. Williams, P. Poupart, and S. Young, “Factored partially observable
Markov decision processes for dialogue management,” inProc Workshop
on Knowledge and Reasoning in Practical Dialog Systems, Intl Joint
Conf on Artificial Intelligence (IJCAI), Edinburgh, 2005.

[5] ——, “Partially observable Markov decision processes with continuous
observations for dialogue management,” inProc SIGdial Workshop on
Discourse and Dialogue, Lisbon, 2005.

[6] J. Williams and S. Young, “Partially observable markov decision pro-
cesses for spoken dialog systems,”Computer Speech and Language,
vol. 21, no. 2, pp. 393–422, 2007.

[7] A. Drake, “Observation of a markov process through a noisy channel,”
Ph.D. dissertation, Massachusetts Institute of Technology, 1962.

[8] K. Astrom, “Optimal control of markov decision processes with incom-
plete state estimation,”Journal of Mathematical Analysis and Applica-
tions, vol. 10, pp. 174–205, 1965.

[9] E. Sondik, “The optimal control of partially observableMarkov decision
processes,” Ph.D. dissertation, Stanford University, 1971.

[10] R. Smallwood and E. Sondik, “The optimal control of partially ob-
servable markov processes over a finite horizon,”Operations Research,
vol. 21, pp. 1071–1088, 1973.

[11] G. Monahan, “A survey of partially observable Markov decision pro-
cesses: Theory, models, and algorithms,”Management Science, vol. 28,
no. 1, pp. 1–16, 1982.

[12] L. Kaelbling, M. Littman, and A. Cassandra, “Planning and acting in
partially observable stochastic domains,”Artificial Intelligence, vol. 101,
1998.

[13] J. Pineau, G. Gordon, and S. Thrun, “Point-based value iteration: an
anytime algorithm for POMDPs,” inProc Intl Joint Conf on Artificial
Intelligence (IJCAI), Acapulco, Mexico, 2003.

[14] M. Spaan and N. Vlassis, “Perseus: randomized point-based value
iteration for POMDPs,”Journal of Artificial Intelligence Research,
vol. 24, pp. 195–220, 2005.

[15] S. Larsson and D. Traum, “Information state and dialogue management
in the TRINDI dialogue move engine toolkit,”Natural Language Engi-
neering, vol. 5, no. 3/4, pp. 323–340, 2000.

[16] M. F. McTear,Spoken dialogue technology: toward the conversational
user interface. Springer Verlag, 2004.

[17] T. Paek and E. Horvitz, “Uncertainty, utility, and misunderstanding: A
decision-theoretic perspective on grounding in conversational systems,”
in AAAI Fall Symposium on Psychological Models of Communication,
North Falmouth, MA, USA, 1999, pp. 85–92.

[18] E. Horvitz and T. Paek, “DeepListener: Harnessing expected utility to
guide clarification dialog in spoken language systems,” inProc Intl Conf
on Spoken Language Processing (ICSLP), Beijing, 2000.

[19] T. Paek and E. Horvitz, “Conversation as action under uncertainty,”
in Proceedings of the 16th Conference on Uncertainty in Artificial
Intelligence (UAI), Stanford, CA, 2000.

[20] C. Boutilier and D. Poole, “Computing optimal policiesfor partially
observable decision processes using compact representations,” in Proc
Thirteenth National Conference on Artificial Intelligence, Portland, OR,
USA, 1996, pp. 1168–1175.

[21] E. Hansen and Z. Feng, “Dynamic programming for pomdps using a
factored state representation,” inProc Fifth International Conference on
AI Planning Systems, Breckenridge, CO, USA, 2000, pp. 130–139.

[22] N. Roy and G. Gordon, “Exponential family PCA for beliefcompression
in POMDPs,” in Proc Advances in Neural Information Processing
Systems (NIPS), Vancouver, BC, Canada, 2002, pp. 1635–1642.

[23] P. Poupart and C. Boutilier, “VDCBPI: an approximate scalable algo-
rithm for large scale POMDPs,” inProc Advances in Neural Information
Processing Systems 17 (NIPS), Vancouver, Canada, 2004, pp. 1081–
1088.

[24] C. Guestrin, D. Koller, and R. Parr, “Solving factored POMDPs with
linear value functions,” inProc Intl Joint Conf on Artificial Intelligence
(IJCAI) Workshop on Planning under Uncertainty and Incomplete
Information, Seattle, 2001.

[25] J. Pineau, “Tractable planning under uncertainty: Exploiting structure,”
Ph.D. dissertation, Carnegie Mellon University, 2004.

[26] J. Williams and S. Young, “Scaling up POMDPs for dialog management:
The “summary POMDP” method,” inProc IEEE Workshop on Automatic
Speech Recognition and Understanding (ASRU), San Juan, Puerto Rico,
USA, 2005.

IEEE TRANS. ON AUDIO, SPEECH & LANGUAGE PROCESSING, VOL. ???, NO. ???, MONTH??? YEAR??? 15

[27] ——, “Scaling POMDPs for dialog management with composite sum-
mary point-based value iteration (CSPBVI),” inProc American Asso-
ciation for Artificial Intelligence (AAAI) Workshop on Statistical and
Empirical Approaches for Spoken Dialogue Systems, 2006.

[28] ——, “Characterizing task-oriented dialog using a simulated ASR chan-
nel,” in Proc Intl Conf on Speech and Language Processing (ICSLP),
Jeju, Korea, 2004.

[29] R. Sutton and A. Barto,Reinforcement Learning: an Introduction. MIT
Press, 1998.

[30] O. Lemon, K. Georgila, and J. Henderson, “Evaluating effectiveness
and portability of reinforcement learned dialogue strategies with real
users: the TALK TownInfo evaluation,” inProc IEEE/ACL Workshop
on Spoken Language Technology (SLT), Aruba, 2006.

[31] M. Stuttle, J. Williams, and S. Young, “A framework for Wizard-of-
Oz experiments with a simulated ASR channel,” inProc Intl Conf on
Speech and Language Processing (ICSLP), Jeju, Korea, 2004.

[32] O. Pietquin, “A framework for unsupervised learning ofdialogue strate-
gies,” Ph.D. dissertation, Faculty of Engineering, Mons (TCTS Lab),
Belgium, 2004.

[33] E. Levin, R. Pieraccini, and W. Eckert, “A stochastic model of human-
machine interaction for learning dialogue strategies,”IEEE Trans.
Speech Audio Processing, vol. 8, no. 1, pp. 11–23, 2000.

[34] S. Singh, D. Litman, M. Kearns, and M. Walker, “Optimizing dialogue
management with reinforcement leaning: experiments with the NJFun
system,”Journal of Artificial Intelligence, vol. 16, pp. 105–133, 2002.

[35] C. Watkins, “Learning from delayed rewards,” Ph.D. dissertation, Cam-
bridge University, 1989.

Jason D. Williams is a Senior Member of Technical
Staff at AT&T Labs – Research in Florham Park,
New Jersey, USA. He received a BSE in Electrical
Engineering from Princeton University in 1998, and
at Cambridge University he received an M Phil
in Computer Speech and Language Processing in
1999 under a Churchill Scholarship and a Ph D
in Information Engineering in 2006 under a Gates
Scholarship. His main research interests are dialog
management, the design of spoken language sys-
tems, and planning under uncertainty. He has previ-

ously held positions at Tellme Networks, Edify Corporation(now Intervoice),
and McKinsey & Company’s Business Technology Office.

PLACE
PHOTO
HERE

Steve Young received a BA in Electrical Science
Tripos from Cambridge University in 1973 and a
PhD in 1977. He was then a lecturer at UMIST and
Cambridge before being elected to a Chair in Infor-
mation Engineering at Cambridge in 1995 where he
is currently Head of the Information Engineering Di-
vision. Interleaved with his academic appointments,
he has also held industrial positions with GEC,
Entropic and Microsoft. His main research interests
lie in the area of spoken language systems including
speech recognition, speech synthesis and dialogue

management. He was Editor of Computer Speech and Language from 1993
to 2004. He is a Fellow of the Royal Academy of Engineering, the Institution
of Electrical Engineers and the RSA. He is a member of the British Computer
Society and the Institute of Electrical and Electronics Engineers. In 2004, he
was a recipient of an IEEE Signal Processing Society Technical Achievement
Award.

