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Scaling POMDPs for spoken dialog management

Abstract— Control in spoken dialog systems is challenging recognition error, because sometimes people change their o
largely because automatic speech recognition is unreliabland jective in the middle of a conversation. Finally, conveimais
hence the state of the conversation can never be known with ice a temporal process in which users behave in non-deteriiginist

tainty. Partially observable Markov decision processes (MDPs) d in which acti h both i diat dl t
provide a principled mathematical framework for planning and ~ WayS, andin which actions have both iImmediate and long-term

control in this context; however, POMDPs face severe scaldly ~ €ffects. For all of these reasons, control in a spoken dialog
challenges and past work has been limited to trivially small system can be viewed as planning under uncertainty.

dialog tasks. This paper presents a novel POMDP optimizatio Past work has argued that partially observable Markov
technique — composite summary point-based value iteration yacision processes (POMDPS) provide a principled framiewor
(CSP!S\_/I) — which enables_optlmlzatlon to be perfo_rm_ed on for control in spoken dialog systems [1], [2], [3], [4], [5]
slot-filling POMDP-based dialog managers of a realistic si ! el PL L AN
Using dialog models trained on data from a tourist information  [6]. A POMDP views the state of the dialog as a hidden
domain, simulation results show thatcspBvi scales effectively, variable: rather than maintaining one hypothesis for tlagest
outperforms non-POMDP baselines, and is robust to estimatin  of the dialog, a POMDP maintains a distribution ovadt
errors. possibledialog states, called felief state As the control
Index Terms— Decision theory, dialogue management, partially module takes actions and receives evidence from the input
observable Markov decision process, planning under uncesinty, module, this belief state is updated. Short- and long-term
spoken dialogue system. objectives of the system are specified in the form of the
POMDP’s reward function, and actions are selected with the
|. INTRODUCTION goal of maximizing the sum of rewardsver time i.e., the
POKEN dialog systems (SDSs) help people accompli€©OMDP performs planning to determine an optimal course
a task using spoken language. For example, a perggfnaction which balances short-term and long-term priesiti
might use an SDS to buy a train ticket over the phone, taintaining multiple hypotheses for the current dialogtesta
direct a robot to clean a bedroom, or to control a musinables POMDPs to better interpret conflicting evidencd, an
player in an automobile. Broadly, a spoken dialog systein the literature POMDPs have been shown to outperform
has three modules, one each for input, output, and contr@utomated and hand-crafted) techniques which maintain a
shown in Figure 1. The input module performs automatiingle dialog state hypothesis [1], [2], [3], [4], [5], [6].
speech recognition (ASR) and spoken language understandinEven so, POMDPs face severe scalability limitations. The
(SLU) to convert an acoustic speech signal into a hypotloésiscomputational complexity of planning grows astronomicaté
the user’s intention, such asquest(flight, from(london))rhe concepts are added to the dialog model, and POMDP-based
control module maintains an internal state and decides wis@oken dialog systems in the literature have been limited to
action the machine should take. This includes communieatitrivially small dialog domains. Worse, for reasons expéain
actions such assk(departure-dateand non-communicative below, the existing techniques for scaling found in the PGMD
actions like consulting a database. The output module rendkterature are of little use in the dialog domain.
communicative actions from the machine as audio to the userThis paper presents a novel optimization technique for scal
ing POMDPs in the dialog domain called composite summary
point-based value iteratiort§PBVi). Consideration is limited
Speech recognition & »{ Dialog to so-calledslot-filling dialogs, in which the machine seeks

Input module Control module

y

- anguage understanding mode to collect avaluefor each of a set o#ttributes(or slots) as
quickly and accurately as possible. To keep planning thdeta
cspBVI makes two important assumptions. First, machine

User . . . .
actions are constrained to act on the singést hypothesis
1 Output module 3 for each slot, regardless of its value. Planning then need
Language generation & | Dialog only consider the proportion of probability mass held bysthi

VOt e text-to-speech ) manager best hypothesis, reducing the size of the planning problem

within each slot to a small constant. Second, an indepen-
Fig. 1. High-level architecture of a spoken dialog system. dence assumption is made across slots, allowing planning

to be performed locally within each slot. At runtime each
This paper is concerned with the design of the contrelot nominates an action, and a simple hand-crafted h&urist
module. This is a challenging engineering problem in largghooses which among these to take. With these assumptions,
part because automatic speech recognition (ASR) and undbe complexity of the planning problem remains constanth wit
standing technology in the input module are error-prone, sespect to both theaumber of valueper slot and theaumber
a computer must regard everything it hears with suspicioof slots allowing both to be increased to realistic, real-world
Worse, conflicting evidence does not always indicate a $peesizes. Importantly, these assumptions affgletnning but not
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belief monitoring that is, they may impact plan quality, butas

they do not reduce the machine’s ability to track the current t
state of the dialog or interpret conflicting evidence. Vi = 27(7_1) ZbT(s)r(s, ar) 3
This paper is organized as follows. Section Il reviews the =1 s

fundamentals of POMDPs and reviews existing techniques f@here b, (s) indicates the probability of being in stateat
POMDP optimization. Section Il reviews how POMDPs cafime-stepr and a, iS the actiona taken at timer. The

be applied to the spoken dialog problem and explains wiaymulative, discountednfinite horizonreward is called the
traditional optimization techniques fail in this domairec8on return, denoted byV.,, or simply V for short. The goal

IV describes thecspBvI method, and section V describes amf the machine is to choose actions in such a way as to
example dialog management problem, demonstrates its opa&ximize the returid/ given the POMDP parametef8 =
ation, and compares its performance to a variety of baselings A, T, R, Q, Z, v, by). Determining how to choose actions
Finally, section VI briefly concludes. in this context is called “optimization.”

B. Exact POMDP optimization

) ) ) o ) Maximizing V' in practice means finding a plan called a
This section reviews the definition of a partially obsereablygjicy which indicates which actions to take at each turn.
Markov decision process (POMDP), explains exact optimizgy|icies can be formed as a collection of conditional plans.
tion, and sketches approximate optimization techniques. h_step conditional plamlescribes how actions should be chosen
more detail and examples, refer to works such as [7], [8], [by + steps into the future. Formally, fastep conditional plan
[10], [11], [12]. is a tree of uniform depth and constant branching factor
|O|, in which each node is labelled with an action. The root
- node is referred to as layerand the leaf nodes are referred
A. POMDP definition to as layerl. Every non-leaf node ha®| children, indexed
Formally, a POMDP is defined as a tuplep = asl,2,...,|0|. A conditional plan is used to choose actions
(S,A,T,R,0,Z,v,by) whereS is a set of states describing by first taking the action specified by the root node (lag)er
the machine’s world withs € S; A is a set of actions: An observatiorv will then be received from the POMDP, and
that a machine may take < A; T defines a transition control passes along arcto a node in layer — 1. The action
probability P(s'|s,a) ; R defines the expected (immediatespecified by that node is taken, and so on.
real-valued) reward-(s,a) € R ; O is a set of observations As an illustration, consider a POMDP with 2 observa-
o the machine can receive about the world withe O; Z tions and 4 actions. Three example conditional plans far thi
defines an observation probabili(o’'|s’, a) ; v is a geometric POMDP are shown in Figure 2. For example, conditional plan
discount factord < v < 1; and by is an initial belief state, | specifies that actiom, should be taken first. 16; is then
defined below. received,a; should next be taken, and so on.
The POMDP operates as follows. At each time-step, th~
world is in some unobserved state Since s is not known
exactly, a distribution over states is maintained calldukbef
state b. b is defined inbelief spaceB, which is an(|S| — 1)-
dimensional simplexb(s) indicates the probability of being .
in a particular states with initial belief stateb,. Based or,
the machine selects an actianreceives a reward(s, a), and @ @ @ @ @ @
transitions to (unobserved) state wheres’ depends only on
s anda, according toP(s’|s,a). The machine then receives©.
an observatiorn’ which depends o’ and a, according to
Pl a) (@@ @R @)
At each time-step, the belief state distributiénis up-
dated using a function called tistate estimato(SE), which Fig. 2. Three exampl8-step conditional plans.
computes a new distribution over statésgiven a current

distribution over statek, an action takem, and an observation A t-Step conditional plan has\alue V' (s) associated with
receivedo’ [12]: it, which indicates the expected value of the conditionahpl

depending on the current (unobserved) stat€his value can

Il. BACKGROUND

b(s") = SE(ba,o) (1) be calculated recursively far=1...¢ as:
= W'P(0/|S/7Q)ZP(S/|CL, $)b(s), 2) Vi(s) = r(s,ar) —|—72P(s’|s,a7) .
wheren is a normalization constant independentofi, and ZP(0'|S’, ar )V (s), 4
o’ which ensures tha} ", V/(s') = 1. o’

As mentioned above, at each time-step, the machine receiwherea. gives the action associated with the root node of this
rewardr(s,a). The cumulative, discounted reward is writterconditional plan,V°_; indicates the value of the conditional
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plan in layerr—1 which is the child index’ of the conditional

Figure 4 shows theptimal value function, which is the

plan, andVs, V5(s) = 0. Continuing the example above,upper surface of all of the value functions, shown as the
suppose the POMDP has 2 states and the values of eachhedvy line. Note how there are two regions: on the left where

the conditional plans were found to be:

Vi = (4.0,3.0)
Vi = (3.3,3.3) (5)
Viie = (3.0,4.0)

Then if plan Il were executed repeatedly from state the
average discounted sum of the 3 rewards obtained wou
4.0.

Of course at runtime, the machine does not know the
s exactly and instead maintains a belief statdhe value o
a conditional plan at a belief stateis then computed as
expectation over states:

V(b) = b(s)V(s). (6)

In a POMDP, the machine’s task is to choose betwe
number of conditional plans to find the one which maxim
V; for someb. Given a set oft-step conditional plansV;
with n € N, and their corresponding valu¢®;*} and initial
actions{a?}, the value of the best plan at belief stateés:

Vi (b) = max) b(s)Vi'(s). 7
V%, (b) implies anoptimal policyry, (b):
T, (b) = af wheren = argmax,, Z b(s)V*(s). (8)

S

In words, Vi, (b) represents the (scalar) expected valur
starting inb and following the best-step conditional pla
in NV, which begins with actionry,, (b).

This process is illustrated graphically in Figures 3 an
In this example 5 consists of the threg-step conditione
plans I, 1l, and Ill given in equation (5). In this depicticthe
horizontal axis is the belief state where the left end of tt
axis indicates that = (1,0) (i.e., states; with certainty) an
the right end indicates = (0, 1) (i.e., statesy with certainty)
The vertical axis shows the valu&sof the conditional plan:
In Figure 3, the values of the three conditional plans

shown with the dotted lines. In this 2-state example, theaea
functions can be shown as lines, but in general the val

of conditional plans are hyperplanes(i$| — 1)-dimensional
space.

©9)

Fig. 3. Value functions for the three conditional plans shaw Figure 2.

conditional plan I is optimal and on the right where conditib
plan Il is optimal.

r' s A
4 [ 1]

v ................................._._...;.-.'.'.'.'.‘....::::::n..,, ..................... “ ...........
gl T,

v v
(1,0) b (0,1)
Fig. 4. Optimal value function (shown as the heavy line) foe three
conditional plans 1, Il, and Il shown in Figure 2.

If \V; contained all possible conditional plans, theg ()
would give the value of theoptimal ¢-step policyfor this
POMDP. Unfortunately, this type of exhaustive approach is
doomed to failure since the number of possiblstep condi-
tional plans is

lo]* -1
|AJTor=T 9)
which grows astronomically in. In the example here with 2
states, 4 actions, and 2 observations, there are alread@$4.6,
distinct 3-step conditional plans.

Fortunately, it has been found empirically that relativiey
t-step conditional plans make a contribution to an optimal
t-step policy. For example, in Figure 4, there are no belief
points for which conditional plan Il is optimal (i.e., forms
the upper surface). As a result, conditional plan Il will eev
contribute to an optimaB-step policy and can safely be
discarded. In general, this insight can be exploited to agmp
optimal policies more efficiently witkalue iteration[11], [9].
Value iteration is an exact, iterative, dynamic prograngnin
process in which successively longer planning horizons are
considered, and an optimal policy is incrementally created
for longer and longer horizons. Value iteration proceeds by
finding the subsetof possiblet-step conditional plans which
contribute to the optimat-step policy. These conditional plans
are calledusefu) and only usefuk-step plans are considered
when finding the(¢ + 1)-step optimal policy. For example,

ues,

in"Figure 4, conditional plans | and Ill are useful; conditab
plan Il is not and will never form a child of &step conditional
plan.

Each iteration of value iteration consists of two steps.
First, in the “generation” step, all possiblestep conditional
plans are created by enumerating all actions followed by all
possible useful combinations ¢f — 1)-step plans, producing
|A||N;_1|I°! t-step plans. Then, in the “pruning” step, con-
ditional plans which do not contribute to the optimastep
policy are removed, leaving the set of usefidtep plans. The
algorithm is repeated fdF" steps, and produces the values and
initial actions of the optimall’-step policy. For sufficiently
large T' it can be shown that a policy produced in this way
converges to the optimal infinite horizon policy [12].
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The pruning operation seeks to eliminate conditional plab& done accurately. PBVI has been demonstrated to find good
which do not contribute to the optimal policy. One way thipolicies on POMDPs with thousands of states.
can be implemented is with linear programming [12], which In summary, conditional plans provide a framework for
seeks to find a belief point for which a conditional plan igvaluating different courses of action, but enumeratirig al
optimal, or to determine that such a point does not exist. Thessible conditional plans is hopelessly intractable.u¥al
complexity of this linear program is significant and growgeration builds conditional plans incrementally for largand
with the dimensionality of belief spack|. In practice, the longer time horizons, discarding useless plans as it pesgse
combination of growth in the number of conditional plansnaking policy optimization possible for small POMDPs. Even
and the computational complexity of the “pruning” operatioso, optimization with exact value iteration quickly becanie
cause exact value iteration to be intractable for problems teasible and approximate techniques such as point-baseg va
the order of 10 states, actions, and observattofiserefore iteration (PBVI) provide a way to trade off computational
to scale POMDP policy optimisation to real-world taskssomplexity and plan quality, scaling to larger problems.
approximationsnust be made to the exact optimal policy. This
is described next. 1. POMDPS AND DIALOG MANAGEMENT
This section first explains how spoken dialog systems may
be cast as a POMDP, and then shows why even approximate
Exact value iteration is computationally complex primgaril optimisation methods rapidly become intractable whenestal
because it attempts to find an optimal policy & pointsin  to real problems in this domain.
belief spaces3. A family of approximate techniques quantizes The techniques in this paper are based onghe-POMDP
belief space into a set of points and only attempts to findodel which has been previously presented in [4], [5], and
optimal plans at these points. [6], and which is reviewed here for completeness. In the
Point-based value iteration (PBVI) is an example of onebs-pombpP, the POMDP state variable is separated into
such technique [13], [14.PBVI first generates a set d¥ three components;, = (s, ay, sq¢). The component,, € S,
belief points PBVIB = {b1,bs,...,bn} by following a gives theuser's goa) such as a complete travel itinerary.
random policy to sample belief space. In theory it is possibirhis paper is concerned with so-called slot-filling dialogs
that any belief point might eventually be reached startinghich the user’s goak, is composed ofiV slotg s, =
from by, but in practice this is rare and the belief pointsl ..., s!"), wheres® € S¥. For example, in the air
selection process attempts to find those belief points whigfavel domain, a user goal, might be composed of, =
are likely to be reached. Then, value iteration is performegom sio class gairdine time jdate) The component, € A,
but rather than searching all of belief space for vectors tfives the most receniser actionat the concept level, such
prune, PBVI takes a simpleax operation at each belief point.as stating a place the user would like to travel to, respandin
Like exact value iteration, PBVI produces a set of vectots a yes/no question, or a “null” response indicating ther use
N and corresponding actions. However, unlike exact valwgas silent. Finally the componeny € S, records relevant
iteration the number of vectors produced in each iterat®on dialogue history such as the grounding status of a slot, or
constant, because each vector corresponds to a beliefipoinhow many times a slot has been queried. None of these
in B. Furthermore the conditional plan found for each beligfomponents is observable directly by the machine and the
point b, is only guaranteed to be optimal for that belief pointSDS-POMDP belief state is formed from a distribution over
However, the hope is that it will be optimal, or nearly so, ahese componentss.,, a., sq)-
other points nearby. At runtime, an optimal actienrmay be =~ The POMDP action: corresponds to the machine action in
chosen for any belief poink by evaluatinga = a, where the dialog, such as greeting the user, asking the user where
n = argmax, y_ b(s)V"(s), just as in exact value iteration.they want to go “to”, or confirming a user goal. Finally, the
The value of each of these conditional plaig,(s), is ex- POMDP observation is separated into two componermts=
act, but only guaranteed to lmptimalatb,,, and in this respect (a,,, c), wherea, € A, gives the hypothesis of the user’s
PBVI is an approximation technique. As more belief pointaction provided by the speech recognition process,aisda
are added, the quality of optimization increases at the resgpe confidence score.
of additional computational cost, allowing trade-offs te b By substitution and making reasonable conditional in-
made between optimization quality and computational cogépendence assumptions, the POMDP transition func-
[13], [14]. Moreover, since a vector (or, stated equivdient tion P(s'|s,a) and observation functionP(o|s’,a) can
a valueand a value gradient) is maintained for each belighe re-written in SDS-POMDP terms a#(s'|s,a) =
point, interpolation for unsampled belief points at rurgican  pP(s! |s,, a)P(a),|s,, a)P(s}|s,, a., s4,a) and P(d'|s',a) =
P(al,,c'|al,). These individual probability functions corre-

Technically it is thecomplexityof optimal policies, and not the number 5551 to intuitivemodelswhich can either be estimated from
of states, actions, and observations which causes valaidgie to become

intractable, but it is not obvious how to calculate the ccemigy of a plan data or handcrafted. For exampl&(a;,|s,,,a) provides a
a priori and in practice the number of states, actions, and obsemgats a model of user behavior which can be estimated from dialog

useful heuristic. o _ data, andP(s/|s,, al,, s4,a) could be handcrafted following
The phrase “Point-based value iteration” and acronym PB¥flencoined

by Pineau [13]. Subsequent work extended Pineau’s forionlgl4], and in e.g., the Informatio_n State Update gpproach [15]- T_he .deSig
this paper PBVI refers to this family of techniques. of the reward function (s, a., sq4, a) is left to the application

C. Approximate POMDP optimization
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designer as it implements the design objectives of a givenan important correspondence between states and actions,
system. In generat encodes trade-offs between speed, apnd this correspondence would be lost in a compression. For
propriateness, and accuracy, and one would expect theseexample a user goal such as= from-londonhas correspond-

be different in (for example) the banking and entertainmeimg system actions such aonfirm-from-londonand print-
domains. ticket-from-london and it seems unlikely that an aggregated

The slot-filling sbs-PomMDP model may be regarded as arstate such agrom-london-or-leedswvould be helpful. As a
extension of a “frame-based” dialog system [16], in whichesult, optimization techniques which attempt to compthes
dialog state is a frame of attributes that are populated wifOMDP through state aggregation are bound to fail in the
values as the dialog progressesctions are selected by adialog domain. Similarly, attempting to exploit the fa&dr
(hand-crafted) dialog management algorithm that exantimnes form of the sbs-PoMDP in optimization (using e.g., [24],
frame and determines which element to query or confirm nef25]) is unlikely to succeed since most of the growth is
Users can provide values for any slot in an utterance, suchdu® to one component (the user’s goal), and the number of
“Where are you flying to?” / “To New York on Monday”, andrequired conditional plans required grows with each usatf.go
in this respect frame-based approaches support a limited foAs a result, to maintain performance, the complexity of an
of mixed initiative. approximation will grow as user goals are added.

A slot-filing sbs-PoMDP model extends the frame-based Therefore to realize the benefits of the POMDP model in
approach by maintaining not a single frame, but rather the dialog domain, a new optimization method is needed.
distribution (belief state) oveall possibleframes. Instead of
populating values as evidence arrives, the belief statesha
around the frame that is most likely. Further, action sé@ds
performed using an optimization criterion rather than adhanA. Intuition
crafted dialog manager. The optimization process prodaces

dialog manager (policy) that selects actions to maximize th Composite summary point-based value iteratiosHgv)
9 ger (policy is a novel POMDP optimization technique which enables a

sum of reward_s gam_ed over the course of the d_|alog. I_n Othsq(r)t-filling SDS-POMDP to be scaled to a realistic si2elo do
words, the optimization process performs planning to fired th

. . S . this, cspPBvI makes two important assumptions.
best action to take for a given distribution over framesiéfel . ) . . . .
state). First, looking through transcripts of simulated dialogshwi

Despite the theoretical appeal of thes-POMDP in practice much smaller POMDP-based dialog applications, it was no-

optimization faces severe scalability issues. For exarifdiee ticed that actions which operate on a user goal tigafirmor
P . Y ) it print-ticket were only taken on the user goal with the highest
size of each slot i§S| = 100, then there are a total ¢,,| =

TL.1S%| = 100W distinct user goals. Because the set of usgre"ef mass. Intuitively, this is sensible: for confirmaiso the
w u .

actionsA,, and machine action& often refer to specific user machine should minimize the chances of a “no” response as
“ P this increases belief state entropy, lengthens the dialad,

gg;l]sag?; ?ﬁ(amféebgrésen:ggp c\;\;h:rrr]];f:itiise zi:o(: v?/h?c Icreases return. Moreover, committing to the wrong usaf go
9 P ' When closing the dialog (e.g., printing a ticket) resultséwere

confirms part of a goal such as “Leaving from London, i . . o . : .
. . : nalties. With this in mind, the first assumption made by
" -
that right?”), the SDS-POMDP action and observation séts EPBVI is to limit a priori actions like confirm and print-

grow with the number of user goals. A 5-slot problem where

. . . ._ficketto act on only the most likely user goal. Then, plannin
each slot has 100 slot values is considered small in thegﬂafo y y g P 9

X o : considers only th@roportion of belief mass held by the most
commu_nlty, yetitis comp_le'Ferllntractab!e for state-bé+art likely user goal (and not its actual value). The structur¢hef
approximate POMDP optimization techniques suckeseus slot-filling domain provides the framework required to map
[14]. In fact, letting G equal the number of values for eadbetween actions and user qoals
slot, the number of plans required by PBVI algorithms like 9 :

Perseusgrows asO(GW ). While this represents a significant Second, in a recent data collection [_28], it was noticed that
: ) . . . hen users are asked about a certain slot, they most often
improvement over value iteration which requires at worst . : . .

WA (GY)T - o . provide a value for just that slot, and only sometimes previd
O[(G"™) ] conditional plans, it still grows exponentially o A
. values for other slot&.cspBvi capitalizes on this insight by
in the number of sloté.

assuming that cross-slot effects are unimportant for plenn

t A common”sct:r?hngtt(tachmque 'E the POM?P Iltetra;ture z'glagnce, it first estimates system dynamics locally for each
0 "compress’ the state space by aggregating states [ t, then uses these estimates to produce a distinct dialog

[21], [22], [23]. Unfortunately, in the dialog domain, tieer manager (i.e., POMDP policy) for each slot. In effect, atsio

I _ are chosen based on the expectation that user responses will
3In principle the generasbs-PoMDP model is comparable to the more t ide inf Hi bout oth lots. At fi h
advanced “agent-based” model in which the dialog managéntaias beliefs n_o provide informa 'Qn about o ?r slots. run 'me'_ eac
about the dialog and the users goals, and performs plantingchieve dialog manager nominates an action appropriate for its slot

its goals [16]. However the practicalities of this level afngrality are not gnd a handcrafted heuristic chooses which one of these to
addressed in this paper. tak

4An alternative is to abandon planning altogether and ghgeelect actions axe.
[17], [18], [19]. While this avoids the computational prebis of planning, it
requires that the designer somehow encode incentivestiatetvard function ~ °CsPBviand a precursor were previously described in workshop paper
to make long-term progress toward a goal, which inevitalelguires some the authors [26], [27].
hand-crafting and iterative tuning. 6See table Il for data.

IV. CcSPBVI METHOD DESCRIPTION
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Together, these two assumptions reduce complexity signifalgorithm 1 : FunctionbToSummary
icantly: plan growth is constant with respect to the numberinpyt: o, w
of slot valuesG, and is performed separately for each slot, output: b (for slot w)
resulting inW separate optimizations, each wittUgc) plans, ; (3, = bes) «— maxu b(s¥)
wherec is a constant with respect to the number of sl6t§){ 5(§u —rest) « 1 — 13(u§$ — bes
the number of values per slot:}, and the planning horizon ; 5reach s¥ € S¥ do
(T). Moreover, while these two assumptions affect planning, L B(sw) — b(s®)
they do not alter how evidence is interpretetspav! still d d
performs belief monitoring over all user goals. Hence, when
a userdoes provide extra information or when conflicting
evidence is received, it is still properly incorporatedoirihe

Algorithm 2: FunctionaToMaster
Input: a, w, w, b

belief state.
Output: a
1 if a operates orall slotsthen
B. Description 2 for w < 1 to W do
. _ . .3 | s« argmaxzs b(5y)
CcsPBVI consists of four phases: construction, sampling, u
optimization, and execution. In theonstructionphase, first 4 | a <« alalll(sy,...,sy)
themasterPOMDP is created, which is an SDS-POMDP withy g|se
several constraints and additions. The user’s gga¢k S, iS¢ if 10 = this then
decomposed intdV slots,s, = (s.,...,s") wheres¥ € S¥ - | v =w

and whereSY refers to the set of values for slat. The

. . o . else
dialog historysy € S is similarly decomposed intdl” slots, . :
sa = (sh,....sY) wheres¥ € S¥ and whereSY refers to I— w" = randintomitW, w) _
the set of possible dialog histories for stot Machine actions 10 | if a[w*] takes an argument in master spaten

w*

are formed of predicates which take arguments that encadeith 8, ¢ argmaxgw- b(s¥")
slotw and the value (or values)’ to which the action refers. 12 a — afw*)(s¥")

Machine actions are writtepredicatéw](z), wherepredicate , else

refers to the illocutionary force of the actiom, refers to a |, | a—afw)()

slot index, andz refers to the slot value(s) referred to by L
the action, if any. For example, the SDS-POMDP machine
actions ask-from and confirm-to-londonwould be restated
as asfrom]() and confirnito](londor). A special meta-slot
w = all denotes an action which refers to all slots, su

as submitall](sg"m = london s = pa_ri_s) and gree{all](_). . The action set of each of these summary BMDPs consists of
Finally, in the master POMDP a modified reward function i

; e the predicates of and take one argument, € {this, other},
createdry, (s, a) which removes conditioning on all but the, ere; — thisindicates that an action in master spacefers
slot - !:or examE)Ie, if the rewqrd for incorrectly/correctly to this slot andiw = otherindicates that refers tosome other
submitting a usersompletegoal is—25/+-25, thenr,, would g, (If the actiona operates omll slots,w is set tothis.) For

be assigned-25/4-25 for incorrectly/correctly submittingnly example, in a slot-filing SDS-POMDP with two sldtem and

slot w, ignoring all others. Also, belief monitoring must_to’ a master POMDP action— confirmifrom(london) would

be tractable in the master POMDP, and this may requigg mapped t@™ = confirnithig] in the summary BMDP for
approximations in the observation function; an examplénisf t thefrom slot, anda®® = confirn{othet] in the summary BMDP
is shown in the next section. for the to sIo’t

After the master POMDP is formed}’ belief Markov  actions in summary space are mapped into master space
decision processes (BMDPs) are constructéhch of these by appending the most likely user goal, and this mapping

will provide a compact representation of the belief state of;g implemented by the functiomToMaster (Algorithm 2).
single slot, and for this reason they will be cal_led “Summarype arg max operation in line 11 of Algorithm 2 implements
BMDPs". Each of these has a state space with two COMPQ centralcspevi assumption that actions like “confirm” or
nents, S andSy', whereS;” = {bestrest} andSy’ = Si'- A «print-ticket” are limited to the most likely user goal.

belief point in master spadecan be mapped to a belief point * £ reference, the components of the master POMDP and

in summary spaceé for a specific slotw with the function summary BMDPs for a two-slot dialog task in the travel
bToSummaryAlgorithm 1). This function sets the summaryyomain are shown in table |.

belief componenf»(ég = bes} equal to the probability mass 1phe samplingphase ofcspavi is shown in Algorithm 5

of the most likely user goal in slab, setsh(3}; = rest) equal Sampling iterates over each stot=1... W, and for each slot
to the remaining probability mass of all the rest of the usepnsists of 3 stages. In the first stage (Algorithm 5, lind9p-

oals in slotw, and sets the dialog history in summary space
Cgtégj) equal to the dialog history in master spacgéy ).

A Belief MDP is a Markov decision process with a continuous state 8Algorithms 5-7, which involve the sampling process, argetisin the
corresponding to a POMDP belief state [12]. appendix.
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TABLE |

COMPONENTS OF THE MASTERPOMDPAND SUMMARY BMDPS FOR A TWO-SLOT DIALOG TASK IN THE TRAVEL DOMAIN..

Master POMDP Summary BMDP forfrom slot Summary BMDP foto slot
State (sfrom. 510 g, sfrom, s19) A (§T[L°ml§g°m) A (§FS,A§‘d°)
State space siz¢ ~ |STom| . [Sto] . |Sffom| . | St = 10002 - 32 = |Sffom| . | sfrom| = 2. 3 = |89 8% =2-3
Action a afrom at
Action space size* ~ 10002 =3 =3
Belief state b(sfom, 510 q,,, sfiom, st0) X b(sfrom gfrom) - X b5, 51 -
Sampled quantities| — {btrom,n }, {l(from,n, & k)}’{ff(:ém,n} {bto,n}, {l(to, n, @, k)}, {Fig }

*In the master POMDP, there is om&ibmitaction for each distinct user goal (i.érom-to city pair); with 1000 cities there are
approximately1000? distinct actions. By contrast, in each summary BMDP, thege3aactions:ask confirm and submit

for eachw the machine takes actions randomly to sample Algorithm 3: cspBvI optimization procedure.

points in summary space, written as the g&p . Initially

npUt. mSDSv {bw,n}' {l(wvnvav k)}’ {’ﬁw’,n
Output: {a;""}
1 for w < 1to W do

K, T
this set is empty and at each step= 1... N, the current }

belief pointb is mapped into summary space for skotto

produceB with bToSummanyf b (or a point close t®) has not

already been visited, then it is added and two other quastiti2 gr(_ Hb?f’?glN do
are sampled usingamplePoint(Algorithm 6). samplePoint 3 ?n(j_ 0
takes each summary actids times, &k = 1... K, resetting 4 L Yo

to b after each, and recording the resulting rewardijﬁl 5

and the successor point in summary spacéﬁ;ﬁn. In the
second stage of sampling (Algorithm 5, lines 20-28), sangpli

for t — 1to T do

Il Generate {g*"},
/1 possibly useful
for n —1to N do

val ues of all
CPs.

is repeated for theornersof summary space for each slot to® J
help ensure coverage of summary space (Algorithm 7). In the foreacha € A" do
third stage (Algorithm 5, lines 29-32), for each poijt*, 8 W thiS
the closest point in‘}wm is located and its index is recorded in9 gom
l(w,n,a, k). In summary, the sampling phase produces three
quantitieS'{Bw »t Which is a set of sampled points in summary
space for each slat; {I(w,n,a, k)} which are the indices of
the closest points |r{bw n} when actiona was taken from *
by n the kth time; and{r "} which is the reward obtamed
when actiona was taken frorrbw n the kth time.

~l(w,n,a[w],k
4 pgllmalal )

Ly fuln "

Il Prune {¢*"} to yield {32},
/1 values of actually useful
for n— 1to N do

a* « argmax, "

AWM ~
a; " —a

CPs.

13 VP — Gorm
CSPBVI optimization shown in Algorithm 3, is runiW -
times, once for each slab using that slot's dynamics and
reward. Dynamic programming is used to iteratively find the
best action and its expected value at each belief p(mrp;
for longer and longer planning horizons. Each iteratiort firfrom this vector to take.
computesqf‘-r”, which estimates the value of taking actiGn  Because the number of summary actions and summary
from pointb,, »,, then from this computeg,”" (the optimalt-  states are constant with respect to the number of slots fend t
step action ah,, ,,) andd;”" (the expected value of the optimalnumber of values for each slot}sPBvI optimization scales
t-step policy starting fronbwyn). Summary actions selected into handle many slots. The quality of the solution produced is
each iteration areestrictedto w = this: that is, only actions a function of the optimization parameters N, and K, and
which operate orhis slot (or all slots) are incorporated intoof the quality of the handcrafted action selection heuwristi
conditional plans. Optimization ultimately produces atirogl However, the assumptions which alloaspBvi to scale
summary actior’-" for each pointb,, ,,. introduce three potential limitations. First, like PB\isPBVI
A cspPBvI policy is executedas shown in Algorithm 4. optimizes actions for a finite set of poin{$,} and not the
Belief monitoring is performed in the master POMDP, an€intire belief simplex. As such it is always possible that a
for a given belief point in master space, the correspondingonditional plan which is optimal for a region which does
set of summary belief points,, is computed for all slotgy. not include a belief point will be omitted. In practice there
For each belief poink,, the index of the closest point in the are relatively few summary actions and thus (most likely)
Set{i)w,n} is found, and its summary actiod(’”") is mapped relatively few regions, so provided enough points are sachpl
to a master actiom™. This process is repeated for each sldt seems improbable that a region would fail to be included.
w and produces a vector of nominated master actiofis, Second, since the summary belief state is a non-linear
Finally, a handcrafted heuristic call@thooseActionHeuristjc function of the master belief state, the dynamics of summary
which must be created for each application, selects anractgpace are not guaranteed to be Markovian. As a result, the
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Algorithm 4: csPBvVI action selection procedure, used at provides some assurance that the learned policies aretrobus

runtime. to variations in the parameters of the simulated user.
Input: b, {Bw_,n}, {Gwn}
Output: a A. Example spoken dialog system
1 for w—1toW do A POMDP-based dialog manager calledak TRAVEL-W
2 b <« bToSummarh, w) was created. MxITRAVEL-W is an SDS-POMDP withiV/
3 n* — argmin,, by, — 0| slots, where each slot contait80 values and wherél’ can
4 a® — aToMastefa®"", @ = this, b, w) be varied. The user’s (single intention) goal consists of a

single value for each slot. To keep belief monitoring tratga
some independence assumptions between slots are made. User
actions are decomposed by slot intg = (al,...,a’"),

u? »
and each per-slot user action elemeiit is decomposed
central Markov assumption of value iteration may be vialatento three components!! = (agae Gdatesiot Gyesnos Where
and value iteration may fail to produce good policle¥et a%,. € A%ue 0Zuesior € Alaesior aNd Aesno € Ajesno

in general, reinforcement learning has been found to usuall¥, . consists ofstatgw|(s¥) and indicates the user said

u

produce good plans in non-Markovian environments [29]. their goalwithout identifyingwhich slot it corresponds to —

Finally, cspBvi relies on the assumption that a “myopic’for example, “London” or “10:00 AM". A%, g0 CONSists of

view of system dynamics local to each slot is sufficient fastateSIdtw](s%) and indicates the user said their gaald
planning, and that a handcrafted heuristic can succegsfutlentified which slot it corresponds to — for example, “to
choose actions. This assumption seems well-founded sinandon”, “from London”, “leaving at 10:00 AM”, or “arriving

experience from past work in dialog management suggesdts tha10:00". Finally.Ajeqyo includes actiongesandno. The sets

good plans can be constructed by operations which consid€f,, A, sir aNd Ajigy, €ach also containull.
the state of a single slot at a time. Next, the user action model(al,|s!,,a) was extended to
In sum, our intuition is that these theoretical limitatiomi ~ support this formulation. Each slot contains a slot-specifi
not be a problem in practice, and the next section testsBvI user model, conditioned on whether the machine is asking
empirically to verify performance on a slot-filling dialogsk about this slot or another (i.eany other) slot. To make the
of a realistic size. user action model as realistic as possible, real dialog data
from the SACTI-1 corpus was employed [28]. The SACTI-1
V. EVALUATION corpus contains 144 human-human dialogs in the traveigiour

. . . . _information domain using a “simulated ASR channel” [31].
In this sectioncspBvIis evaluated in several ways. Tradi-

tionally dial h b desianed by hand: The corpus contains a variety of word error rates, and the
lonally dialog managers nave been designed by nand, Mg, ,yiors observed of the subjects in the corpus are broadly

recently (fully-observable) Markov decision process (MDPconsistent with behaviors observed of a user and a computer

have been shown to provide gains over hand-crafted desi n&ng a real speech recognition system [28]. The corpus
In this sectioncspBviis compared to an MDP-based baseling _ ¢ segmented into a “training sub-corpus” and a “test sub-
and a handcrafted baseline, and is shown to out-perfo

. Ergrpus " which are each composed of an equal number of
both. Further evaluatlpn_s show thBV' scal_es better than dialogs, the same mix of word error rates, and disjoint sttbje
standard POMDP optimization with little loss in performanc

sets. Wizard/User turn pairs were annotated with dialog act

ngause t_he. am of these evaIugUons Is 1o sh_ow t'l‘"ﬂch asaskandconfirmfor the wizard, and/es no, stateand
statistically significant performance gains hold acrosariety stateSlo{as described above) for the user. One user model was

of operating conditi_o_ns (such as the number of slots a en estimated from each sub-corpus, calledttaiming user
the speech recognition error rate), hundreds of thousal Sdel and thetestinguser model® Excerpts from these two

of dialogs are ”eede‘?" and _conductlng thesg dialogs w, dels are shown in Table IlI. In the table, the dash character
real users would be impossible. Rather, a simulated ui%% indicatesnull

hﬁs be(;n crea}ted base(_j on real dialog %@ta. deast work key property of real-world spoken dialog systems is that
shown that performance improvements predicted by User magye o oy, recognition errors are not confined to separate slots

els in reinforcement-learning based systems are borne example, a time such as “ten a.m.” may be mis-recognized

when deployed to real users [30]. Further, in this evalmr;itlo(,]lS another time such as “eleven a.m”, or as a place such as

policies trained on the simulated user are evaluated ONfynnessee” or an airline such as “Pan Am”. To model this as

;econd simulated user estimated from heId-_out. .data,. andclﬁsely as possible, the observation model was separdted in
is found that performance does not degrade significantlis Th

10The user models did not attempt to estimate statistics fovppsitional
9A further limitation is that, unlike PBVIcspBvicomputes only the value content” of user utterances (such as “London”) from the wsypas it
of a conditional plan at each point, and not its value gradi&s a result, was assumed that the user would provide propositional nonthich was
cspevidoes not compute accurate boundaries between regions l@glae consistent with their goal. Rather the user model estiméteddistribution
a nearest neighbor heuristic. However, a versioc®#8VvIwhich maintained of the “illocutionary force” of a user action for a given wigaaction: for
gradients was evaluated and obtained worse performancetiteamethod example, if the wizard asked about a particular slot, the memlel estimated
presented here. It was observed that occasionally gradieotld be poorly how often the user would provide a value for that slot, hovemfthe user
estimated which reduced plan quality and lowered retumd, ifis believed would include the name of the slot, and how often the user dvpubvide a
this was caused by the non-linear mapping into summary space value for another slot.

5 a < chooseActionHeuristi{§a™})
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TABLE Il
SUMMARY OF USER MODEL PARAMETERS FOR THEMAXI TRAVEL-W APPLICATION.

Machine Action User Responsio (slot only) P(a®®’|s%" = London a)
Utterance a | Utterance (0% 1 osiot “igch) | Training Testing
“London” (london —, —) 0.521 0.532
“Where are you going to?” asKto] () “To London” (—,london —) 0.467 0.443
— — =) 0.013 0.025
“Where are you leaving from?” asKfrom() To LTdon (—,lon_doE)—) 8%22 8%;
“Yes” (—,—,yes 0.782 0.806
W . . " ) “Yes, London” london —, ye: 0.093 0.042
To London, is that right? confirmto] (london) “Yes to London” E_ Ionr(;on zeg 0112 0127
— (= — —) 0.013 0.025
“No” (—,—,no) 0.782 0.806
“To Edinburgh, is that right?”  confirnito] (edinburgh “N';)lo‘toLig?](égn" EI_On%?]ré;r{ 28; 82?2 82;’3
— R 0.013 0.025
“From Oxford, is that right?”  confirm{from](oxford) To LTdon (—,lonfoE)—) 8322 82%

generationmodel and arinferencemodel. An important goal belief monitoring significantly. Instead, the observationdel
in this work is to allow the user to say anything at any poirgstimatesP(a.,, ¢’|a?’) separatelyfor each slot:

in the dialog, and so it is assumed that the same recognition

grammar is active throughout. To model this, the generation P(ay, |ay’) ~

model makes concept confusions with a constant probability

perr» Where a confusion substitutes a non-null user action

component to any other componeéntany slot For example,

if one concept error is made, the user action “Yes, London” | pr(c;) - (1 = perr)

if there exists an
observation component
i in a,, with the

might be changed to “Frankfurt London” or even “Yes No”". sametypeas ¢’ (11)
Sincenull is one type of user action, the generation model v
also simulates deletion errors — for example, “Yes, London” Perr otherwis
“ TS ” IAgI—l e
could be changed to “Yes”, “London” amull. The model does
not simulate insertion errors. where exampletypes include “place names”, “dates”, or

In addition, each observation component (such as “Londofoolean” (yes/no).
or “To Edinburgh” or “Yes”) carries with it aper-concept  The reward function provided a large positive reward
confidence score. Past work has found that confidence scorqs-12.5. W) for taking a correct submit action; a large penalty
can be modelled with an exponential distribution [32], aeteh (—12.5. W) for taking an incorrect submit action; and a host
confidence scores for correct recognitions are sampled fresmaller penalties ranging from1 to —3 depending on
pr(c) and incorrect recognitions are sampled frop{l —¢), the appropriateness of information gathering actions &ed t

where grounding state given im.
(hehe) A cspBvtibased dialog manager requires a heuristic which
pr(c) = It (10) chooses among actions nominated by each slot. For the

MaAXI TRAVEL-W application, this heuristic first looks for an

c € [0, 1], h is a constant that determines the “informativenessiskaction by considering the slots in order; if it does not find
of the confidence score. For example, fio= 0 the confidence one, it then looks for aonfirm action again considering the
score is random noise, and lasncreases the confidence scorslots in order; and if it does not find one then all slots must
becomes more reliable. To give an intuitive sense of theceffdhhave nominated theubmitaction, which is selected.
of h, consider a classifier which attempts to label utterancesThe csPBvI optimization procedure takes a set of param-
ascorrector incorrectfrom a speech recognizer which makesters N, K, andT where N is the number of belief points
errors 30% of the timep(,,., = 0.30). When h = 0, the in summary space sampled for each slit;is the number
confidence score adds no information, and the minimum ermifr successor belief points sampled for each summary action
rate possible for a classifier would be 30% (by marking aldken at each belief point; anfi is the planning horizon.
utterances as correct). At = 2, the confidence score adds€Experimentation found that no gains in performance were
useful information, and the classifier's minimum error ratachieved for values beyond = 100, K = 50, andT = 50,
decreases to 23%. At = 5, the minimum classification and these values were used for all experiments, below.
error rate is 8%, and as approaches infinity, the minimum  As an illustration, Figure 5 shows a conversation with a 2-
classification error rate approaches 0. slot version of MAxI TRAVEL-W with a typical concept error

Ideally the observation inference model should express ttae ... = 0.30) and a somewhat informative confidence
probability of the entire observation given the entire usecore i = 2). This figure shows only the user goal component
action P(a!,, c'|a,), but this formulation would complicate — the dialog history component has been omitted due to space
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limitations. In this example, the user is trying to buy a &tk B. Results

from London to Cambridge. First csPBVIwas compared to a variety of fully-observable
Markov decision processes (MDPs). Past work has shown that
Initially belief mass is spread over all user goals everiy} a MDPs are an effective technique for building good dialog
at the beginning of the conversation, the summary beli¢éstananagers [33], [34], [32]. Like POMDPs, MDPs perform
for each slot is passed to its respective policy, and both tRENNing, but unlike POMDPs they maintain a single discrete
from slot and theo slot nominate thaskaction. The heuristic State. POMDPs have previously been shown to outperform
examines these two actions and selectsasigfrom]() action MDPs on very small dialog problems [1], [2], [4], [6], and
(M1). The user’s response (U1) of “London” is mis-recoguizeNere it will be verified that the assumptions madedspsvi
as “Leeds” with relatively high confidence (0.67), causing @ Not compromise the ability of the POMDP to outperform
large shift in belief mass towareedsin thefromslot, and no an MDP baseline. _
change to the belief state of theslot. For the second machine The first comparison sought to determine the value of
action (M2), thefrom slot nominates theonfirm action and Performing belief monitoring (i.e., maintaining multiptey-
the to slot nominates thask action. The heuristic examinesPotheses for the dialog state). In this experiment, no con-
these and selects tasKto]() action (M2). The user’s responsefidence score information is used (i.é., = 0). Two MDP
(U2) of “To Cambridge” is again mis-recognized, this time a8aselines were created. Both MDPs used a state estimator
“From Oxford”, with moderate confidence (0.45). Howevethich received the speech recognition hypothésis input
since the user model indicates this is a relatively unlikedgr and tracked whether each slot wadt-stated unconfirmedor
action, and because the confidence score is somewhat lew, Bnfirmedusing basic grounding rules. The first MDP baseline,
results in only a moderate shift of belief mass towasdord ~MDP-Full’, formed its state space as the cross-product of
in the from slot (and again no change to theslot). For the @l MDP slot-states and the second MDP baseline, “MDP-

third machine action (M3), théom slot again nominates the COMposite”, estimated a separate MDP policy for each slot
confirm action and theo slot nominates thesk action: the @nd used the same heuristic to choose actions at runtime as

heuristic examines these and again selectsatfifto]() action CSPBVL In all other respectg the_simulation environmen_t for
(M3). the MDPs andcspPBvI were identical (e.g., the MDP action
set included the same actions as in th&PBVI action set).
Both MDP baselines were trained using Q-learning [35]. A
The user's response to M3 (U3) of “To Cambridge” igariety of learning parameters were explored and the best-
correctly recognized with very high confidence (0.97). Thigerforming set were selected: 100,000 training dialogtialn
causes a massive shift of belief mass toweachbridgein the Q values set td), exploration parameter= 0.2, and learning
to slot (and no change to ttimm slot). For the fourth machine (ate o, — 1/m, wherem is the number of visits to thé(s, a)
action (M4), thefrom slot is in the same belief state and agaifeing updated. This experiment was repeatedfer 1...5 at
nominates theconfirm action. Theto slot is now in a belief a variety of error rates using the same optimization parerset
state with high certainty, and nominates gubmitaction. The Results are shown in Figure 6. When no recognition errors are
heuristic examines these and selects a¢befirn{ffrom|(leedd made (i.e.,perr = 0.00), the POMDP and MDPs perform
action (M2). To this the user responds “No, from Londonjgentically but when concept recognition errors are made
(U4) but this is mis-recognized as “No, to Edinburgh”. Th@i_e” Perr > 0), the POMDP outperforms the MDP. As the
no portion of the response is recognized with high confidenggimber of slots increases, average return declines sliggrt!
(0.78) and is also highly predicted by the user model, so agf techniques, because eliciting values for more slotsltes
result a great deal of belief mass moves away fleetsin iy |onger dialogs. Past work has shown that POMDPs cope
thefrom slot. However, the “to Edinburgh” portion is predictedyith conflicting evidence better than MDPs; the findings here
as h|gh|y Unlikely by the user mOde|, and iS alSO recogniz%ree and Suggest that the approximations madej:BBV|
with very low confidence (0.13), and has virtually no effec§o not compromise this crucial characteristic of the POMDP
on theto slot. For the fifth machine action (M5), thieom approach.
slot is now in a belief state with relatively low certaintyjch Next, the effect of confidence score was investigated by
nominates theask action. Theto slot is still in a state of varying k. The concept error rate was setztg.,. = 0.30. For
very high certainty and again nominates thebmitaction. the MDP-Composite baseline, a “confidence bucket” feature
Between these the heuristic selects the “ask[from]()"aacti was added to the MDP state space representing “high” and
(M5), and the user’s response of “From London to Cambridgejow” observed confidence scores. A variety of confidence
(US) is correctly understood. The “From London” portiorthresholds were explored and it was found that using a thresh
is recognized with very high confidence (0.95) and causggi of 0.5 produced optimal results for the MBP.Results
a massive shift in belief mass; the “to Cambridge” portiogre shown in Figure 7. As the confidence score becomes more
is recognized with relatively low confidence (0.33), and asigformative (i.e., ash increases), performance increases for

result has only a marginal effect on theslot. For the sixth poth thecspsvi and MDP policies. Past work has found that
machine action, both slots are in a state of high certainty

and both nominate theubmit action; the heuristic chooses UThe other techniques considered included dividing the gty mass
. bmitalll(s™™ — lond to brid d th of the confidence score evenly between buckets, and dividing the range
a = submitall](sy*" = london sy = cambridge an € of error rates equally (e.g., for two buckets, setting ashetd such that

dialog is completed successfully. p(observation is correftonfidence scode= 0.5).
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System / User / ASR

POMDP belief state (user goal, from slot)

Master space

Summary space

11

POMDP belief state (user goal, to slot)

Master space

Summary space

Prior to start A
of dialog b b b
[ N s N e B 1 [ N e B e B 1
LDS OXD LON best rest CAM EDI LON best rest
from = ask A= ask
M1: Where from? N
U1: London b b b
fleeds=0.67] ETRLL oo, e
LDS OXD LON best rest CAM EDI LON best rest
Afrom = confirm Qo= ask
M2: Where to? n
U2: To Cambridge b b b
firom-oxford=0.4] 0 = oee, [] b, LS
LDS OXD LON best rest CAM EDI LON best rest
from = confirm A= ask
M3: Where to?
U3: To Cambridge A
[to-cambridge~0.97] b b
| EIN eee
LDS OXD LON best rest CAM EDI LON best rest
—— ——r
Afrom = confirm Ato= submit
M4: From Leeds, right?
U4: No, from London n
[no~0.78, b b b
to-edinburgh~0.13] = 1 — o0 1 — XN —
LDS OXD LON best rest CAM EDI LON best rest
/éfrom = ask 310: submit
M5: Where from?
U5: From London n
to Cambridge b b b
[from—Ionfjon~0.95, ooe | | | | oo >
to-cambridge~0.33] LDS OXD LON best rest CAM EDI LON best  rest
M6: [prints ticket from London to Cambridge] Afrom = submit Ato= submit

Fig. 5. Example conversation with tftsspBVvIdialog manager. LDS stands for Leeds, OXD for Oxford, LONLondon, CAM for Cambridge, and EDI for
Edinburgh.a™™ and ¢ indicate actions nominated by each slot. Numbers indicatdidence scores; boldface highlights concept recognitisars. Only
the user goal component of the POMDP state has been showndiathg history and user action components have been onttiedo space limitations. As
described in Algorithm 4, the policy for each slot nominagesummary action such a°™ = confirm ora'® = submit. These actions are mapped to master
space using Algorithm 2 which appends the most likely usel ar the slot, converting (for exampl&f™™ = confirm into a = confirm[from](leeds.

POMDPs make better use of confidence score informatidimlog managers, HC1 and HC2. HC1 and HC2 both use the
than MDPs on very small dialog problems [5], and Figursame state estimator as the “MDP-Composite” baseline. Both
HC1 and HC2 take thaskaction fornot-statedslots, and the

7 indicates that this trend continues at scale.

submitaction forconfirmedslots. Forunconfirmedslots, HC1
CsPBVIoptimization was then compared to two handcrafted
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Fig. 8. Average return vs. number of slots fospBvI and handcrafted
Fig. 6. Average return vs. number of slotd’§ for cspeviand two MDP  baselines at various concept error rates.
baselines at various concept error rates. AtGte® error rate, the solid lines
for cspBvI MDP-Comp and MDP-Full are equal and are overlaid.

training user model and evaluated using thesting user
model described above. Results are shown in Figure 9. As

speech recognition errors increase, the average reward per
—o— CSPBVI (h=5) turn decreases as expected, and in general performance on

=
o

8 - %~ CSPBVI (h=3) the test user model is less than but very close to the training
— CSPBVI (h=1) user model, implying that the method is reasonably robust to
71 - variations in patterns of user behavior or estimation erior
~o MDP-2 (h=5) the user model.
6 -x:- MDP-2 (h=3)
12
rrrrrr MDP-2 (h=1)

)]
I

Average return (per dialog, per slot)

IN

Number of slots (W)

Fig. 7. Average return vs. number of slot&/] for cspevi and MDP-
Composite-2 baseline for and for concept error nate. = 0.30 at various
levels of confidence score reliabilityr).

~Training user model

'
N
I

— Testing user model

Average return (per dialog, per slot)

takes theconfirm action and HC2 takes thask action. HC1

O IR I S I R R SN SE S S o)
. . . Q Q -] ™ W o0 & © ©

and HC2 were evaluated by running 10,000 simulated dialogs ©" < o 07 ¥ 0¥ 7 7 ¥ ¥ &7 o7 °

for various number of slots and error rates. Results are show Concept error rate (p er)

in Figure 8.

Fig. 9. Average return vs. concept error rate for training &esting user
cspBvIoutperforms both handcrafted controllers at all errgrodels.

rates. As the number of slots increases, the reward gained pe
slot decreases, but at higher error rates (ipg., = 0.50) Finally, the scalability ofcspevI was compared to di-
this decline is precipitous for the handcrafted contrsllbut rect optimization. A simplified, one-slot version of the
gradual for the POMDP. One reason for this is that thelaxi TRAVEL-W application was created, with a concept
POMDP is making use of a user model and taking propefror rate f.,) of 0.30 and no confidence score information
account of less likely observations, but the handcraftdidips (1 = 0). The number of slot values)M) was initially set
place equal trust in all observations. As dialogs becomgdan to 3. cspevI was run on this application witiv = 100
the simulated user provides less-reliable informationuabdpelief points (in summary space), and as a baseline, PBVI (as
otherslots more times in each dialog, causing the performaniggplemented irPerseug14]) was also run on this application
of handcrafted policies to degrade. with N = 1000 belief points (in master space). This process
To this point, all experiments have been optimized anslas repeated for values dff (i.e., distinct number of slot
evaluated on the same user modehifing user model in values) from 3 to 5000.
Table Il). In practice, a user model will be a noisy estimdte o Figure 10 showsV/ vs. average return fatspevi and the
real user behavior, and experiments so far have not addresBBVI baseline. For small problems, i.e., lower values)Mf
what effect this deviation might have on performance. TospBvI performs equivalently to the PBVI baseline, but for
model this, a 5-slot MxI TRAVEL-W was trained using the larger problemscspBvi outperforms PBVI by an increasing
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margin until A/ = 100 at which point PBVI was not able to
find policies. Moreover, thespBvi policies were computed
using 90% fewer belief points than the baseline; icspBvI
policies scale to large problems and are much more compact.

APPENDIX
ALGORITHM LISTINGS

Average return

—CSPBVI

---PBVI

Algorithm 5: Sampling stage ofspPBviI.

)

S

Q ) O O O O Q
v ) ,»0 ’1/0 § \90 (190

2

O
P

Input: Bsps, e, N, K, W

output: {by,, }.{7%" Y, {I(w,n,a,k)}

Il Iterate over each slot w.
1 for w«—1to W do
/1 First, sanple points
/1 using a random policy
s « sampleFromDistributiofh)
n«—1
b «— bo

buw,n <— bToSummargh, w)

Number of distinct slot values (M)

N o g b~ w N

Fig. 10. Average return vs. number of distinct slot valug) for a simplified
1-slot dialog problem.

It is interesting to note that a§/ increases, the performanceg
of the summary POMDP method appears to increase towardg@n
asymptote. This trend is due to the fact that all confusioas g,
equally likely in this model. For a given error rate, the morg
concepts in the model, the less likely consistent confisséog. 45
Thus, having more concepts actually helps the policy identi
spurious evidence over the course of a dialog. In practice, pf
course the concept error rate,,, may increase as concepts
are added.

15
16

VI. CONCLUSIONS 17

cspPBVI enables slot-filling dialog systems cast as sp&
POMDPs to be scaled to handle many slots. In dialog simula-
tion, the scalability gained with localized planning mains
performance gains over baseline techniques while toleyati
errors in user model estimation. AlthougisPpevi makes sev- ,,
eral important assumptions — i.e., sufficient coverage bébe L
space, lack of value gradient estimation, Markov assumptlz%
violations, and localized planning — in practicspPBVI out-
performs MDP and hand-crafted dialog manager baselines
while scaling to problems beyond the reach of other POMDBF
optimization techniques. Now that realistically-sizedsteyns 25
can be created, our next step is to conduct triale®hBVI 26
based dialog managers with real users. 27

cspBVI was created for the dialog management domaijs,
but it could also be applied to similarly structured probéeem
in other domains. For example, consider a fault remediation
task consisting of a network with many components. Tests
may be run which give an indication of faulty component, ar?d
the ultimate goal is to decide which component to replace.3mn
this scenario, the identity of the particular componentess| 31
important than how likely it is to be the culprit given the?
evidence. It would be interesting to try applyirmgPBvi to

(7&k b3k ) — samplePoin@sps, b, w, K)
while n < N do

I/ Take a random acti on and
/1l compute new belief state.

a — randomElemerttA|)

w « randomElemert{this, other})

a < aToMastefa, w, w, b)

s’ « sampleFromDistributiaiP(s’|s, a))
o' «— sampleFromDistributiof (¢’ |s’, a))
b+~ SE(b,a,0)

b — bToSummargh, w)

[l If this is a (sufficiently)
/1 new point, add it to B.

if min;eqr ) [bw,s — b > € then

bun — b

G pak ) < samplePoir®Bsps, b, w, K)

w,n’ Yw,n

5« s

/1 Second, sanple corners 3

/1 of summary space

foreach s € S,, do

foreach s € S,, do

| b(3) <0

l;(é) —1

if min;eqr ) [bw,s — b > € then
n—(n+1); N<n
b «— sampleCornéhby, §)
bw.n — bToSummargh, w)
(P3-F bk ) — samplePoin®Bsps, b, w, K)

w,n’ Yw,n

/1 Third, find index l(w,n,a,k) of
Il closest point to bi*
for n«<— 1to N do
foreacha € A* do
for k— 1to K do
L L Hw,n,a,k) — argminﬂbﬁ;ﬁl — by i

problems like this outside of the dialog domain.
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Algorithm 6 : FunctionsamplePoinused bycspBviI sam- [2
pling (Algorithm 5).
Input: Psps, b, w, K [3]
Output: {p**+}, {7a-F}
1 foreacha € A” do ]
2 foreach w € W do
3 for k — 1to K do
/] Sanple a (possibly) new [5]
/'l master state 3.
§ « sampleFromDistributiofh)
a «— aToMastefa, w, w, b)
s’ «— sampleFromDistributiof(s'|3, a))
o' — sampleFromDistributiofP (o' |s’, a)) (7]
/'l Conpute successor ¥ and 8]
/1 save pil@lk and pallk,
b — SE(b,a,0)
pelelk  p (5, a)
10 bal@lk — hToSummargl/, w) (10]

(6]

N o o b

El

(11]

Algorithm 7 : FunctionsampleCorner
Input: b, 3 [12]
Output: b
1 s «— argmax,, b(sy)
2 if §, = bestthen
/1 \When §, =Dbest, best guess for
/] user’s goal is correct: [14]
Il set s, to this guess and b(s,)

[13]

/1l to that corner. [15]

foreach s, € S, do

| b(su) <0 [16]
5 | b(sk)—1 [17]
6 else

/1l \When §, =rest, best guess for

/'l user’s goal is NOT correct: [18]

Il set b(sf) to zero and

/'l renormalize, then

/1 sample s, fromthis renormalized
/1 belief state.

b(s%) — 0 [20]
norm« > b(su)

foreach s, € S, do

10 L b(sy) — Lo

[19]

[21]

norm

/1 Copy b(sq) directly into b(sq). [22]
11 foreach sy € S; do
12 | b(sa) < b(sq) 23]
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