
◦

◦ ◦ ◦

◦ ◦ ◦ ◦

◦ ◦

◦ ◦ ◦

◦ ◦ ◦ ◦

◦ ◦ ◦

FAKULTÄT FÜR INFORMATIK
TECHNISCHE UNIVERSITÄT MÜNCHEN

Lehrstuhl für Effiziente Algorithmen

Analysis of Algorithms and Data Structures for
Text Indexing

Moritz G. Maaß

◦
◦ ◦ ◦

◦ ◦ ◦ ◦
◦ ◦

◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦

FAKULTÄT FÜR INFORMATIK

TECHNISCHE UNIVERSITÄT MÜNCHEN

Lehrstuhl für Effiziente Algorithmen

Analysis of Algorithms and Data Structures for

Text Indexing

Moritz G. Maaß

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität

München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Dr. h.c. mult. Wilfried Brauer

Prüfer der Dissertation:

1. Univ.-Prof. Dr. Ernst W. Mayr

2. Prof. Robert Sedgewick, Ph.D.
(Princeton University, New Jersey, USA)

Die Dissertation wurde am 12. April 2005 bei der Technischen Universität München

eingereicht und durch die Fakultät für Informatik am 26. Juni 2006 angenommen.

Abstract

Large amounts of textual data like document collections, DNA sequence data, or the
Internet call for fast look-up methods that avoid searching the whole corpus. This
is often accomplished using tree-based data structures for text indexing such as tries,
PATRICIA trees, or suffix trees. We present and analyze improved algorithms and
index data structures for exact and error-tolerant search.

Affix trees are a data structure for exact indexing. They are a generalization of
suffix trees, allowing a bidirectional search by extending a pattern to the left and to
the right during retrieval. We present an algorithm that constructs affix trees on-line
in both directions, i.e., by augmenting the underlying string in both directions. An
amortized analysis yields that the algorithm has a linear-time worst-case complexity.

A space efficient method for error-tolerant searching in a dictionary for a pattern
allowing some mismatches can be implemented with a trie or a PATRICIA tree. For
a given mismatch probability q and a given maximum of allowed mismatches d, we
study the average-case complexity of the number of comparisons for searching in a
trie with n strings over an alphabet of size σ. Using methods from complex analysis,
we derive a sublinear behavior for d < logσ n. For constant d, we can distinguish
three cases depending upon q. For example, the search complexity for the Hamming
distance is σ(σ − 1)d/((d + 1)!) logd+1

σ n + O(logd n).
To enable an even more efficient search, we utilize an index of a limited d-neigh-

borhood of the text corpus. We show how the index can be used for various search
problems requiring error-tolerant look-up. An average-case analysis proves that the
index size is O(n logd n) while the look-up time is optimal in the worst-case with
respect to the pattern size and the number of reported occurrences. It is possible to
modify the data structure so that its size is bounded in the worst-case while the bound
on the look-up time becomes average-case.

iii

Acknowledgments

First, I thank my advisor Ernst W. Mayr for his helpful guidance and generous support
throughout the time of researching and writing this thesis. Furthermore, I am also
thankful to the current and former members of the Lehrstuhl für Effiziente Algorithmen

for interesting discussions and encouragement, especially to Thomas Erlebach, Sven
Kosub, Hanjo Täubig, and Johannes Nowak. Lastly, I am grateful to Anja Heilmann
and my mother for proofreading the final work.

v

Contents

1 Introduction 1

1.1 From Suffix Trees to Affix Trees . 2
1.2 Approximate Text Indexing . 4

1.2.1 Tree-Based Accelerators for Approximate Text Indexing . . . 5
1.2.2 Registers for Approximate Text Indexing 7

1.3 Thesis Organization . 8
1.4 Publications . 9

2 Preliminaries 11

2.1 Elementary Concepts . 11
2.1.1 Strings . 11
2.1.2 Trees over Strings . 13
2.1.3 String Distances . 14

2.2 Basic Principles of Algorithm Analysis 15
2.2.1 Complexity Measures . 15
2.2.2 Amortized Analysis . 16
2.2.3 Average-Case Analysis . 17

2.3 Basic Data Structures . 19
2.3.1 Tree-Based Data Structures for Text Indexing 19
2.3.2 Range Queries . 22

2.4 Text Indexing Problems . 25
2.5 Rice’s Integrals . 26

3 Linear Construction of Affix Trees 31

3.1 Definitions and Data Structures for Affix Trees 31
3.1.1 Basic Properties of Suffix Links 31
3.1.2 Affix Trees . 34
3.1.3 Additional Data for the Construction of Affix Trees 35
3.1.4 Implementation Issues . 39

3.2 Construction of Compact Suffix Trees 40
3.2.1 On-Line Construction of Suffix Trees 40
3.2.2 Anti-On-Line Suffix Tree Construction with Additional Infor-

mation . 43
3.3 Constructing Compact Affix Trees On-Line 47

3.3.1 Overview . 47
3.3.2 Detailed Description . 49

vii

viii CONTENTS

3.3.3 An Example Iteration . 51
3.3.4 Complexity . 54

3.4 Bidirectional Construction of Compact Affix Trees 54
3.4.1 Additional Steps . 55
3.4.2 Improving the Running Time 56
3.4.3 Analysis of the Bidirectional Construction 57

4 Approximate Trie Search 63

4.1 Problem Statement . 64
4.2 Average-Case Analysis of the LS Algorithm 65
4.3 Average-Case Analysis of the TS Algorithm 67

4.3.1 An Exact Formula . 67
4.3.2 Approximation of Integrals with the Beta Function 69
4.3.3 The Average Compactification Number 77
4.3.4 Allowing a Constant Number of Errors 79
4.3.5 Allowing a Logarithmic Number of Errors 84
4.3.6 Remarks on the Complexity of the TS Algorithm 87

4.4 Applications . 91

5 Text Indexing with Errors 93

5.1 Definitions and Data Structures . 95
5.1.1 A Closer Look at the Edit Distance 95
5.1.2 Weak Tries . 99

5.2 Main Indexing Data Structure . 101
5.2.1 Intuition . 102
5.2.2 Definition of the Basic Data Structure 102
5.2.3 Construction and Size . 104
5.2.4 Main Properties . 106
5.2.5 Search Algorithms . 107

5.3 Worst-Case Optimal Search-Time 110
5.4 Bounded Preprocessing Time and Space 113

6 Conclusion 115

Bibliography 118

Index 129

Figures and Algorithms

2.1 Examples of Σ+-trees . 21
2.2 Illustration of the linear-time Cartesian tree algorithm 23

3.1 Suffix trees, suffix link tree, and affix trees for ababc 32
3.2 The affix trees for aabababa and for aabababaa. 40
3.3 The procedure canonize() . 42
3.4 Constructing ST(acabaabac) from ST(acabaaba) 44
3.5 The procedure decanonize() . 45
3.6 The procedure update-new-suffix() 46
3.7 Constructing ST(cabaabaca) from ST(abaabaca) 48
3.8 The function getTargetNodeVirtualEdge() 49
3.9 Constructing AT(acabaabac) from AT(acabaaba), suffix view . . . 52
3.10 Constructing AT(acabaabac) from AT(acabaaba), prefix view . . . 53

4.1 The LS algorithm . 64
4.2 The TS algorithm . 65
4.3 Illustration for the proof of Lemma 4.6 76
4.4 Location of the poles of g(z) in the complex plane 81
4.5 Illustration for Theorem 4.14. 88
4.6 Parameters for selected comparison-based string distances 91

5.1 The relevant edit graph for international and interaction . . . 96
5.2 Examples of a compact and weak tries 101

ix

Chapter 1

Introduction

Computers, although initially invented for numeric calculations, have changed the way
that text is written, processed, and archived. Even though many more texts than ini-
tially expected or hoped for are still printed to paper, writing is mostly done electron-
ically today. Having text available in a digital form has many advantages: It can be
archived in very little space, it can be reproduced with little effort and without loss in
quality, and it can be searched by a computer. The latter is a great improvement over
previous methods especially because it is not necessary to create a fixed set of terms
that are used to index the documents. When employing a computer, one commonly
allows every word to be used for searching, often called full-text search. Efficient
methods for searching in texts are studied in the realm or pattern matching. Pattern
matching is already a rather mature field of research with numerous textbooks avail-
able [CR94, AG97, Gus97]; the basic algorithms are also part of standard books on
algorithms [CLR90, GBY91]. Searching a text for an arbitrary pattern is usually al-
most as fast as reading the text (especially, if reading is hampered in speed because the
text is stored on a slow media such as a hard disk).

The ease with which electronic documents can be stored has also lead to an enor-
mous increase in the amount of textual data available. The Internet (in particular the
World Wide Web), for example, is a tremendous and growing collection of text docu-
ments. The widely used search engine Google reports to index more than eight billion
web pages.1 Another type of textual data is biological sequence data (e.g., DNA se-
quences, protein sequences). A popular database for DNA sequences, GenBank, was
reported to store over 33 billion bases for over 140 000 species in August 2003 and to
grow at a rate of over 1700 new species per month [BKML+04].

The sheer size of these text collections makes on-line searches unfeasible. There-
fore, a lot of research has been devoted to methods for efficient text retrieval [FBY92]
and text indexes. A text index is a data structure prepared for a document or a collec-
tion of documents that facilitates efficient queries for a search pattern. These queries
can have different types. For a query with a single pattern, one can search, e.g., for all
occurrences of a search string, for all occurrences of an element of a set of strings, or
for all occurrences of a substring that has length twenty and contains at least ten equal
characters—the possibilities for different criteria are endless and usually the result of

1These numbers were taken from http://www.google.com/corporate/facts.html as
of March 2005.

1

2 1.1. FROM SUFFIX TREES TO AFFIX TREES

specific applications. For the classical problem of searching for all occurrences of a
given string (the “pattern”) in a preprocessed text, many algorithms and data struc-
tures have been proposed. The most prominent data structure is the suffix tree, which
can be constructed in linear time [Wei73, McC76, Ukk95, Far97]. It allows finding
all occurrences of a pattern in time proportional to the pattern’s length and the num-
ber of outputs. Due to limitations of space, the suffix array was introduced [MM93]
as a space efficient replacement for the suffix tree with slightly worse construction
and look-up complexities. Recent developments, however, yield a linear construction
time [KSPP03, KA03, KS03] and achieve an optimal query time [AKO02, AOK02,
AKO04]. In practice, construction methods with non-linear asymptotic running times
seem to be even faster [LS99, BK03, MF04]. For tight space requirements, com-
pressed variants of the suffix array have been suggested [GV00, FM00]. The prac-
tical relevance of the suffix tree has thus been reduced. Nevertheless, because of its
clear structure, it often serves as a paradigm for the design of new algorithms (e.g.,
in [NBY00]).

While the computer allows creating and archiving large collections of text effi-
ciently, it sometimes also leads to a less careful handling and revising of documents.
Errors may also arise from mistakes or measuring problems during the experimental
generation. Moreover, in a biological context, error-tolerant matching is useful even
for immaculate data, e.g., for similarity searches. The field of approximate pattern
matching deals with this problem of searching strings allowing errors. The most com-
monly used models are Hamming distance [Ham50] and edit distance, also known as
Levenshtein distance [Lev65]. For so called on-line searches, where no preprocessing
of the document corpus is done, a variety of algorithms is available for many different
error models. A survey containing more than 120 references is given in [Nav01]. The
research on text indexes allowing errors is by far not as mature.

We review the suffix tree as a paradigm for exact text indexing and as the basis for
affix trees in the next section. We then turn to approximate text indexing, a very active
field of research with still quite a few open questions.

1.1 From Suffix Trees to Affix Trees

The suffix tree, also sometimes referred to as subword tree, is a rooted tree allowing
access to all suffixes (and thus to all substrings) of a text from the root of the tree. When
annotating the suffix numbers at the leaves, the subtree below a path corresponding to
a substring of the text is a compact representation of all occurrences of this substring.
This principle allows an exact search in optimal time. The first linear time construction
algorithm for suffix trees was given by Weiner [Wei73]. McCreight described a simpler
and more efficient algorithm [McC76]. A renewed interest in pattern matching has also
lead to the conceptually most elegant construction algorithm by Ukkonen [Ukk95]. It
was later shown by Giegerich and Kurtz that Ukkonen’s and McCreight’s algorithms
are almost the same on an abstract level of operations. All three algorithms consider
strings over an alphabet of constant size. An algorithm to construct suffix trees over
integer alphabets was proposed by Farach [Far97]. This algorithm uses a very different
approach, dividing the underlying string into odd and even positions. (Note that this
approach is also taken by the linear time suffix array construction algorithms.) The

CHAPTER 1. INTRODUCTION 3

three previous algorithms rely on auxiliary edges called suffix links instead.
Suffix links introduce additional structure themselves. The analysis of this struc-

ture was the starting point for the development of affix trees. Before we go into more
detail, let us give a high level description of suffix trees; the formal definitions are in-
troduced in Chapter 2. A suffix tree contains all suffixes of a string t in such a way that
from the root of the tree we can start reading any substring of t. This is done by first
choosing a branch upon the first character, then upon the second and so on. Thus, all
substrings starting with the character a are stored in a branch labeled a. Nodes that do
not present a choice, i.e., which have only one outgoing edge, are usually compressed.
That is, the nodes are eliminated by joining the incoming and outgoing edge into one.
Such suffix trees are called compact. Each node in a suffix tree represents a string and
is the root of the subtree containing all substrings of t starting with this string. Passing
along an edge to another node lengthens the represented string. Suffix links are used to
move from one node to another so that the represented string is shortened at the front.
This is extremely useful because two suffixes of a string always differ by the characters
at the beginning of the longer suffix. Thus, successive traversal of suffixes can be sped
up greatly by the use of suffix links.

Giegerich and Kurtz [GK97] have shown that there is a strong relationship between
the suffix tree built from the reverse string (often called reverse prefix tree) and the
suffix links of the suffix tree built from the original string. The suffix links of a suffix
tree form a tree by themselves. In essence, this tree partially resembles the suffix tree
of the reverse string. Atomic suffix trees contain a node for every substring of t. Here,
the suffix link structure is even identical (see Section 3.1.1 for details).

A similar relationship was already shown by Blumer et al. [BBH+87] for compact
directed acyclic word graphs (c-DAWG). A c-DAWG is essentially a suffix tree where
isomorphic subtrees are merged. As shown there, the directed acyclic word graphs
(DAWG) contains all nodes of the compact suffix tree and uses the edges of the reverse
prefix tree as suffix links. Because the nodes of the c-DAWG are invariant under
reversal of the string, one can gain a symmetric version of the c-DAWG by adding the
suffix links as reverse edges. Although not stated explicitly, Blumer et al. [BBH+87]
thus already observed the dual structure of suffix trees as stated above.

Because the suffix links of the compact suffix tree already form part of the suf-
fix tree for the reverse string, it is natural to ask whether the suffix tree can be aug-
mented to represent both structures. This would also accentuate even more structure
of the underlying string. Such a structure was introduced and christened affix trees by
Stoye [Sto95] (see also [Sto00]). He also gave a first algorithm for constructing com-
pact affix trees on-line, but the running time of the algorithm presented is not linear. In
Chapter 3, we describe a linear-time algorithm for the construction of affix trees. The
structure of our algorithm is very close to that of Stoye’s algorithm, but we introduce
some vital new elements. Moreover, we put a stronger emphasis on the derivation from
Ukkonen’s and Weiner’s suffix tree construction algorithms.

The core problem for achieving linear complexity and the reason why Stoye’s algo-
rithm did not have a linear running time is that the classical algorithms by Ukkonen or
McCreight expect suffix links to be of length one. That is, suffix links are expected to
point from a node representing a certain string to a node representing exactly the string
that results from removing the first character. As can easily be seen in Figure 3.1, this
is the case for suffix trees but not for affix trees (nodes aba and abab in Figure 3.1(d)

4 1.2. APPROXIMATE TEXT INDEXING

and nodes ba and cbab in Figure 3.1(e)). It seems that the problem cannot be solved
by traversing the tree to find the appropriate atomic suffix links. Stoye himself gave
an example where this approach might even lead to quadratic behavior. We will use
additional data collected in paths to establish a view of the affix tree as if it were the
corresponding suffix tree (the paths correspond to the boxed nodes in Figure 3.1). This
will lead to a linear-time construction algorithm.

1.2 Approximate Text Indexing

In approximate text indexing, we index a single text or multiple texts to find approx-
imate matches of a query string, i.e., matches allowing some errors. The text or the
collection of texts that the index is built for is called the document corpus. We only
deal with the case of a single query string called the pattern. There are two major
indexing tasks: text indexing and dictionary indexing.2 For the first problem, a text
is indexed to query for occurrences of substrings of the text. For the second, a dictio-
nary of strings is indexed as to find all matching entries for a query. We discuss more
variants in Section 2.4 (e.g., the case of multiple texts), but they can usually be solved
with the same methods once the two basic problems are solved. In the following, let
the size of document corpus be n and the size of the pattern be m. The basic idea
of text indexing is to spend some effort in preparing an additional data structure, the
index, from a text in order to accelerate subsequent searches for a pattern.

For exact text indexing, an optimal query time linear in the size of the pattern
and the number of outputs can be reached. From a practical point of view, a query
time involving an additional term logarithmic or polylogarithmic in the size of the
text may still be reasonable. Similar complexities are frequently found in other search
data structures. For example, a search in a red-black tree (see, e.g., [CLR90]) for n
elements takes time of O(log n).

Besides the query time, the size of an index is another very important parameter.
We already mentioned that the space demands of the suffix tree—although linear in
the size of the text—are still too large for some applications, which has lead to the
introduction of alternatives like suffix arrays. Even for these, compressed variants
are studied. This and the ever-growing collections of text documents underline the
importance of the parameter size.

The third parameter, aside from look-up time and index size, is the preprocessing
time (and possibly space). This parameter is usually the least important because text
indexes are built once on a relatively static text corpus to facilitate many queries. For
example, the first suffix array algorithm by Manber and Myers [MM93] had a pre-
processing time of O(n log n) for texts of n characters. Although this is worse than
the O(n) construction time for suffix trees, suffix arrays gained popularity quickly be-
cause they consumed much less space. In that case, even the worse look-up time did
not hinder the success.

There appear various definitions of approximate text indexing in the literature. Be-
sides the existence of many different error models (see Section 2.1.3), the definition

2The dictionary indexing problem is not to be confused with the dictionary matching problem. In the
latter, a dictionary of patterns is indexed and queried by a text. For each position in the text all matching
patterns from the dictionary are sought. The exact version can be solved with automatons [AC75]. For
the approximate version see [FMdB99, AKL+00, BGW00, CGL04].

CHAPTER 1. INTRODUCTION 5

of “index” is not clear. The broader definition just requires the index to “speed up
searches” [NBYST01], whereas a stricter approach requires to answer on-line queries
“in time proportional to the pattern length and the number of occurrences” [AKL+00].
In our opinion, a slightly weakened definition that requires an index to give efficient
worst-case guarantees on the search time is most appropriate. For the sake of making
a clear distinction, we call the methods giving such guarantees registers and the other
methods accelerators.3 Classifying our work from this perspective, we present the
average-case analysis of the effect of using a trie as an accelerator for dictionary index-
ing in Chapter 4. In Chapter 5, we first describe a register with a bounded average-case
size for arbitrary patterns and then a combination of a register for short patterns with
an accelerator for long patterns.

A survey on accelerators is given in [NBYST01]. The available methods are clas-
sified by the search approach and the data structures. The search approaches are classi-
fied into neighborhood generation and partitioning. The basic data structures are suffix
trees, suffix arrays, complete q-gram tables, and sampled q-gram tables. As already
mentioned, suffix arrays are very similar to suffix trees. We handle these and other tree-
based structures in the next section. In Section 1.2.2, we turn our attention to registers.
Further references concerning q-gram-based approaches can be found in [Kär02].

A very different approach is taken by Chávez and Navarro [CN02]. Using a met-
ric index they achieve a look-up time O(m log2 n + m2 + occ) with an index of size
O(n log n) with O(n log2 n) construction time, where all complexities are achieved
on average.

Another somewhat different approach is taken by Gabriele et al. [GMRS03]. For a
restricted version of Hamming distance allowing d mismatches in every window of r
characters, they describe an index that has average size O(n logl n), for some constant l
and average look-up time O(m + occ). The idea is based on dividing the text into
smaller pieces so that strings of length m have unique occurrences. At each level,
all strings within a specified distance are generated and indexed to identify possible
locations of the pattern. These are then searched using standard methods. Therefore,
the approach classifies as an accelerator or a filter.

A special case of dictionary indexing is the nearest neighbor problem, which asks
for the closest string to a query among a collection of n strings of the same length m.
The specific problem has its origin in computational geometry. A very early definition
can be found in [MP69]. A survey on this problem is given in [Ind04]. The work
also discusses some lower bounds (see also [BOR99, BR00, BV02] and [CCGL99]),
which—at least for [BV02]—transfer to the approximate dictionary indexing problem

showing that, under certain assumptions, any algorithm using an index of size 2(nm)o(1)

and (nm)o(1) additional working space needs at least Ω(m log m) time for a query.

1.2.1 Tree-Based Accelerators for Approximate Text Indexing

Digital trees have a wide range of applications and belong to the most studied data
structures in computer science. They have been around for years; for their usefulness

3None of these terms appear in the literature. We introduce them here in order to better classify
different approaches in this section only. The term “register” seemed appropriate because worst-case
methods usually work by reading off the occurrences of a pattern after computing certain start points. On
the other hand, average-case methods often just reduce the number of locations where to check for an
occurrence, thus accelerating an on-line search algorithm.

6 1.2. APPROXIMATE TEXT INDEXING

and beauty of analysis, they have received a lot of attention. Using tree (especially trie
or suffix tree) traversals for indexing problems is a common technique. For instance,
in computer linguistics one often needs to correct misspelled input. Schulz and Mi-
hov [SM02] pursue the idea of correcting misspelled words by finding correctly spelled
candidates from a dictionary implemented as a trie or an automaton. They build an au-
tomaton for the input word and traverse the trie with it in a depth first search. The
search automaton is linear in the size of the pattern if only a constant number of errors
is allowed. A similar approach has been investigated by Oflazer [Ofl96], except that
he directly calculates edit distance instead of using an automaton.

Flajolet and Puech [FP86] analyze the average-case behavior of partial matching in
k-d-tries. A pattern in k domains with s specified values and (k−s) don’t care symbols
is searched. Each entry in a k-dimensional data set is represented by the binary string
constructed by concatenating the first bits of the k domain values, the second bits, the
third bits, and so forth. Using the Mellin transform, Flajolet and Puech prove that the
average search time in a database of n entries under the assumption of an independent
uniform distribution of the bits is O(n1−s/k). The analysis is extended by Kirschen-
hofer et al. [KPS93] to the asymmetric case, where the exponent depends upon k, s,
and the bit probability p (an explicit formula cannot be given). In the same paper, the
authors also derive asymptotic results for the variance, thus proving convergence in
probability. In terms of ordinary strings, searching in a k-d-trie corresponds to match-
ing with a fixed mask of width k containing s don’t cares that is iterated through the
pattern. It is possible to randomize this fixed mask which yields “relaxed k-d-trees”,
which are analyzed with similar results by Martinéz et al. [MPP01].

Baeza-Yates and Gonnet [BYG96] study the problem of searching regular expres-
sions in a trie. The regular expression is used to build a deterministic finite state
automaton, whose size depends only upon the size of the query (although it is possi-
bly exponential in the query size). The automaton is simulated on the trie, and a hit
is reported every time a final state is reached. Extending the average-case analysis of
Flajolet and Puech [FP86], the authors show that the average search time depends upon
the largest eigenvalue (and its multiplicity) of the incidence matrix of the automaton.
As a result, they prove that only a sublinear number of nodes of the trie is visited.

In another article, Baeza-Yates and Gonnet [BYG90, BYG99] study the average
cost of calculating an all-against-all sequence matching. Here, any substrings that
match each other with a certain (fixed) number of errors are sought. With the use of
tries, the average time is shown to be subquadratic.

Apostolico and Szpankowski [AS92] note that suffix trees and tries for independent
strings asymptotically do not differ too much under the symmetric Bernoulli model.
This conjecture is hardened by Jacquet and Szpankowski [JS94] and by Jacquet et
al. [JMS04]. Therefore, it seems reasonable to expect similar results on tries and suffix
trees (as is done by Baeza-Yates and Gonnet [BYG96]).

For approximate indexing (with edit distance), Navarro and Baeza-Yates [NBY00]
describe a method that flexibly partitions the pattern in pieces that can be searched
in sublinear time in the suffix tree for a text.4 For an error rate α = d

m , where m

4For an actual implementation, Navarro and Baeza-Yates suggest to use suffix arrays instead of suffix
trees. This is an example of how the suffix tree, although possibly inferior to the suffix array, plays an
important role as a paradigm for the design and analysis of algorithms.

CHAPTER 1. INTRODUCTION 7

is the pattern length and d the allowed number of errors, they show that a sublinear-
time search is possible if α < 1 − e/

√

|Σ|, thereby partitioning the pattern into j =
(m+d)/(log|Σ| n) pieces. The threshold 1−e/

√

|Σ| plays two roles, it gives a bound
on the search depth in a suffix tree and it gives a bound on the number of verifications
needed. In Navarro [Nav98], the bound is investigated more closely. It is conjectured
that the real threshold, where the number of matches of a pattern in a text decreases
exponentially fast in the pattern length, is α = 1 − c/

√

|Σ| with c ≈ 1.09. Higher
error rates make a filtration algorithm useless because too many positions have to be
verified.

More careful tree traversal techniques can lower the number of nodes that need
to be visited. This idea is pursued by Jokinen and Ukkonen [JU91] (on a DAWG),
although no better bound than O(nm) is given for the worst-case. A backtracking
approach on suffix trees was proposed by Ukkonen [Ukk93], having look-up time
O(mq log q + occ) and space requirement O(mq) with q = min{n, md+1} for d er-
rors. This was improved by Cobbs [Cob95] to look-up time O(mq + occ) and space
O(q + n). No exact average-case analysis is available for these algorithms.

1.2.2 Registers for Approximate Text Indexing

Research has mainly concentrated on methods with a good practical or average-case
performance. Until recently, the best known result for text indexing was due to Amir
et al. [AKL+00], who describe an index for one error under edit distance. The idea
is based on building two suffix trees for the text and its reverse. A query for a pat-
tern is implemented by computing for each prefix and each corresponding suffix of
the pattern the intersection of the leaves in the subtrees of both suffix trees. For the
latter, the leaves are labeled with the suffix (respectively, prefix) numbers and stored
in two arrays. To avoid reporting matches multiple times, the character involved in
the mismatch is added as a third dimension. On these arrays, a three-dimensional
range searching algorithm is used to compute those leaves corresponding to substrings
matching with one error. The size and preprocessing time of the range searching data
structure is O(n log2 n). Each range query takes time O(log n log log n), leading to
an overall query time of O(m log n log log n + occ). By designing an improved algo-
rithm for range searching over such tree cross products, this result was improved by
Buchsbaum et al. [BGW00] to O(n log n) index preprocessing time and index size and
O(m log log n + occ) query time.

Another approach was taken by Nowak [Now04]. It solves the text indexing
problem for one mismatch under Hamming distance with average preprocessing time
O(n log2 n), average index size O(n log n), and worst-case query time O(m + occ).
The algorithm is based on constructing a tree derived from the suffix tree of the text
that contains all strings with one mismatch occurring directly after a node in the suffix
tree. The error tree is constructed by successively merging subtrees of the suffix tree.
Queries are implemented efficiently by making a case distinction upon the location of
the mismatch. We extend the idea to edit distance allowing a constant number of errors
and to other indexing problems in Chapter 5.

Recently, Cole et al. [CGL04] proposed a data structure allowing a constant num-
ber d of errors that works for don’t cares (called wild cards), the Hamming distance,
and the edit distance. For Hamming distance with d mismatches, a worst-case query

8 1.3. THESIS ORGANIZATION

time of O(m + (c log n)d/(d!) · log log n + occ) is achieved using a data structure
that has size and preprocessing time O(n(c log n)d/(d!)) in the worst-case. For the edit
distance, the query time becomes O(m + (c log n)d/(d!) · log log n + 3d occ), and the
index size and preprocessing time is O(n(c log n)d/(d!)). The constant c varies for
each given complexity. The idea is based on a centroid path decomposition of the suf-
fix tree and the construction of errata trees for the paths. The complexities result from
the fact that any string crosses at most log n centroid paths that have to be handled
separately.

The approach of Cole et al. [CGL04] can also be used for the approximate dictio-
nary indexing problem. For n strings of total size N , they achieve a query time of
O(m + (c log n)d/(d!) · log log N + occ) with O(N + n(c log n)d/(d!)) space and
O(N + n(c log n)d/(d!)+N log N) preprocessing time for Hamming distance with d
mismatches. For edit distance with d errors, their approach supports queries in time
O(m + (c log n)d/(d!) · log log N + occ) using and index that has preprocessing time
O(N + n(c log n)d/(d!) + N log N) and size O(N + n(c log n)d/(d!)).

Previous results on dictionary indexing only allowed one error. For dictionaries
of n strings of length m and Hamming distance, Yao and Yao [YY97] (earlier ver-
sion in [YY95]) present and analyze a data structure that achieves a query time of
O(m log log n + occ) and space O(N log m). The result is achieved by dividing the
words recursively into two halves and searching one half exactly. To improve the
query time, certain “bad queries” are handled separately. The analysis is conducted
under a cell-probe model with bitwise complexity (i.e., counting bit probes), thus no
preprocessing time is given.

Also for the Hamming distance and dictionaries of n strings of length m each (i.e.,
with N = nm), Brodal and Ga̧sieniec [BG96] present an algorithm based on tries,
which uses similar ideas than those in [AKL+00]. For the strings in the dictionary,
two tries are generated, the second one containing the reversed strings. In the first
trie, the strings are numbered lexicographically, while the other one is appended with
sorted lists that are iteratively traversed upon a query and compared with the intervals
from the first trie. The lists are internally linked from parent to child nodes, thus saving
some work. Their data structure has size and preprocessing time O(N) and supports
queries with one mismatch in time O(m).

Brodal and Venkatesh [BV00] analyze the problem in a cell-probe model with
word size m. Translated to our uniform complexity, the query time of their approach
is O(m) using O(N log m) space. The idea is based on using perfect hash functions
to quickly determine the position of an error. The data structure can be constructed in
randomized expected time O(Nm).

1.3 Thesis Organization

In Chapter 2, we introduce the relevant notation on strings, trees, and string distances.
We describe concepts for the analysis of our index structures and algorithms and review
some basic methods and data structures. We also give more details on the methods used
for the average-case analysis.

Chapter 3 presents a linear time algorithm for bidirectional on-line construction of
affix trees. We first describe the affix trees data structure. After reviewing algorithms

CHAPTER 1. INTRODUCTION 9

for the construction of suffix trees, we devise a linear-time on-line construction algo-
rithm and analyze its complexity. The description of the necessary changes for the
bidirectional construction and the amortized analysis finish the chapter.

The mathematically most challenging analysis is presented in Chapter 4. We com-
pute the average complexity of an algorithm based on tries for approximate dictionary
indexing and compare it to a simple approach that compares a pattern sequentially
against the whole database. Therefore, we first give the analysis of the average com-
plexity of the simple algorithm. We then derive an exact formula for the trie-based
approach. After establishing some basic bounds, we compute the maximal expected
speed-up. Then we analyze the complexity for a constant number of errors and finally
compute the threshold on the number of errors where the performance of the trie-based
approach becomes asymptotically the same as the performance of the naive method.

Chapter 5 presents a text index for approximate pattern matching with d errors.
It has worst-case optimal query time and reasonable average size O(n logd n) for d
errors and text size n. We first formalize some intuitive properties of edit distance and
introduce a slightly altered trie data structure. We then describe the main indexing
structure based on error trees, detail the search algorithm, and prove size and time
bounds. Next, we analyze the average size for an implementation with worst-case
look-up time. The chapter finishes with the analysis of a modified approach that gives
worst-case guarantees on the index size but only average-case bounds on the query
time.

Finally, Chapter 6 summarizes our results and gives some directions for further
research.

1.4 Publications

The results of this thesis have in part been published or announced at conferences.
The results of Chapter 3 have appeared in [Maa00] and [Maa03]. The average-case
analysis of the trie search algorithm in Chapter 4 has been published as an extended
abstract [Maa04a] and as a technical report [Maa04b]. A journal version has been
submitted to ALGORITHMICA. The results of Chapter 5 have been obtained in joint
work with Johannes Nowak. In particular, the joint work included the idea of defining
error trees recursively and making a distinction upon the position of the error and the
height of the tree. The author of this work was responsible for basing the error trees
on clearly defined error sets, which allowed for a straightforward generalization to any
constant number of errors and enabled us to prove a useful dichotomy for the search
algorithm. Furthermore, the author introduced range queries to select occurrences in
subtrees, which solved the problem of answering queries in worst-case optimal time
and allowed the adaption to a wide range of text indexing problems, and achieve a
trade-off between query time and index size by defining weak tries. Additionally, the
average-case analysis was provided by the author of this thesis. First results on an
index for one error and edit distance have been submitted and accepted for publica-
tion [MN04]. An extended abstract for the full set of results will be presented at the
CPM 2005 and is scheduled to appear in [MN05b]. A technical report describing the
results has also been published [MN05a].

Chapter 2

Preliminaries

This work is concerned with the design and analysis of text indexes. In this chapter, we
introduce the basic concepts and notation needed in order to describe our algorithms
and conduct the analysis. Furthermore, we review some basic techniques related to
text indexing.

2.1 Elementary Concepts

The meaning of text in a narrower sense is that of written text, e.g., in a book, which
is structured into words. Text indexing refers to a broader definition of text including
unstructured text such as DNA sequences. Therefore, we introduce the notion of a
string. A string is a sequence of symbols. When creating an index on a string or a set
of strings, we also refer to the latter as text or text corpus. We query an index with
another string called the pattern.

We describe the basic notation for strings in the next section. We then introduce
concepts of trees, which are an elementary search structure for strings. Finally, because
real data is often far from being perfect, we conclude the section with some definitions
of errors in strings.

2.1.1 Strings

A string is a sequence of symbols from an alphabet Σ. Unless otherwise stated, we
assume a finite alphabet Σ. We let Σl denote the set of all strings of length l, i.e., the
set of all character sequences t1t2t3· · ·tl where ti ∈ Σ. The special case Σ0 is the set
containing only the empty string denoted by ε. The set of all finite strings is defined as
Σ∗ =

⋃

l≥0 Σl and the set of all non-empty, finite strings by Σ+ = Σ\{ε}. The length
of a string is the number of characters of the sequence, i.e., the string t = t1t2t3· · ·tl
has length |t| = l. We can easily reverse a string t = t1t2t3· · ·tl, which we denote
by tR = tltl−1tl−2 · · · t1. For strings u, v ∈ Σ∗, we denote their concatenation by uv.
For u, v, w ∈ Σ∗ and t = uvw, u is a prefix, v a substring, and w a suffix of t.
The substring starting at position i and ending at position j is denoted by ti,j , where
ti,j = ε whenever j < i. We denote by ti,− the suffix starting at position i and by t−,j

the prefix ending at position j. We say that a string u occurs at position i of t if

11

12 2.1. ELEMENTARY CONCEPTS

u = ti· · ·ti+|u|−1. The set of occurrences of u in t is denoted by

occurrencesu (t) = {i | u = ti· · ·ti+|u|−1} . (2.1)

A substring v is called proper if there exist i 6= 1 and j 6= l such that v = ti· · ·tj . For
a string t = t1t2t3· · ·tl, the set of substrings is denoted by

substrings (t) = {ti· · ·tj |1 ≤ i, j ≤ l} , (2.2)

the set of proper substrings by

psubstrings (t) = {ti· · ·tj |1 < i ≤ j < l} , (2.3)

the set of suffixes by

suffixes (t) = {ti· · ·tl|1 ≤ i ≤ l} , (2.4)

and the set of prefixes by

prefixes (t) = {t1· · ·ti|1 ≤ i ≤ l} . (2.5)

A suffix u of t is called proper if it is not the same as t, i.e., u 6=t. It is called
nested if it has at least two occurrences, i.e., additionally to u ∈ suffixes(t) we have
u ∈ psubstrings(t) ∪ prefixes(t). Alternatively defined, a suffix u of t is nested
if u ∈ suffixes(t) and |occurrencesu(t)| > 1. Similarly, a prefix u of t is called
proper if it is not the same as t, and it is called nested if it is a proper prefix with
more than one occurrence in t. We call a substring u of t right-branching if it occurs
at two different positions i and j of t followed by different characters a, b ∈ Σ, i.e.,
ti,i+|u| = ua, tj,j+|u| = ub, and a 6= b. A substring u of t is called left-branching if
it occurs at two different positions i, j of t preceded by different characters a, b ∈ Σ,
i.e., ti−1,i+|u|−1 = au, tj−1,j+|u|−1 = bu, and a 6= b.

We illustrate the previous definitions with the string banana: The suffix banana
is not proper, the suffix anana is proper but not nested, and the suffix ana is proper
and nested. There is no right-branching substring in banana, but the substring ana
is left-branching because bana and nana are substrings of banana. The following
important fact can be easily seen.

Observation 2.1 (The right-branching property is inherited by suffixes).

If w is right-branching in t, then all suffixes of w are also right-branching in t.

Let S ⊆ Σ∗ be a finite set of strings. The size of S is defined as ‖S‖ =
∑

u∈S |u|.
The cardinality of S is denoted by |S|. For any string u ∈ Σ∗, we let u ∈ prefixes(S)
denote that there is a string v in S such that u ∈ prefixes(v). We define maxpref(S)
to be the length |u| of the longest common prefix u of any two different strings in S.
The prefix-free reduction of a set of strings S is the set of strings in S that have no
extension in S, i.e., those strings that are not a prefix of any other string. We denote
the prefix-free reduction of S by

pfree (S) = {u | u ∈ S and ∀a ∈ Σua 6∈ S} . (2.6)

A set S is called prefix-free if no string is the prefix of any other string, that is,
pfree(S) = S.

CHAPTER 2. PRELIMINARIES 13

2.1.2 Trees over Strings

Trees are used in the implementation of many well-known search structures and algo-
rithms, e.g., AVL-trees, (a,b)-trees, red-black trees [Knu98, CLR90]. When the uni-
verse of keys consists of strings, we can do better than the aforementioned comparison-
based methods. This is called “digital searching” [Knu98]. The basic idea is captured
in the definition of Σ+-trees [GK97]. A Σ+-tree T is a rooted, directed tree with edge
labels from Σ+. For each a ∈ Σ, every node in T has at most one outgoing edge
whose label starts with a (unique branching criterion). In essence, a Σ+-tree allows
a one-to-one mapping between certain strings and the nodes of the tree. An edge is
called atomic if it is labeled with a single character. A Σ+-tree is called atomic if all
edges are atomic. A Σ+-tree is called compact if all nodes other than the root are
either leaves or branching nodes. Replacing sequences of nodes that each have only
one child by a single edge with the concatenated labels is called path compression.

Let p be a node of the Σ+-tree T , we denote this by p ∈ T . Let u be the string that
results from concatenating the edge labels on the path from the root to p. We define
the path of p by path(p) = u. By the unique branching criterion there is a one-to-
one correspondence between u and p. In such a case, it is convenient to introduce
the notation u to identify the node p. We define the string depth of a node p to be
depth(p) = |path(p)|. The node depth is defined as the number of nodes on the path
from the root to a node. The latter is less important to us because—since edge labels
are never empty—it is bounded from above by the string depth. In the following, we
thus refer to the string depth simply by the depth. For a Σ+-tree, we define its height
to be the maximal depth of an inner node.

Each Σ+-tree T defines a word set that is represented by the tree. The word set
words(T) is the set of strings that can be read along paths starting at the root of the
tree. Formally, we have

words (T) = {u | there exists p ∈ T with u ∈ prefixes (path (p))} . (2.7)

Note that pfree(words(T)) is exactly the set of strings represented by the leaves of T .
For an atomic or a compact Σ+-tree T there is a one-to-one correspondence be-

tween the set of strings words(T) and the tree T . For an atomic Σ+-tree T there is
even a node p with path(p) = u for every string u ∈ words(T). For non-atomic,
especially for compact Σ+-trees, we distinguish whether a string has an explicit or an
implicit location. If for a string u ∈ words(T) there exists a node p ∈ T , then we
say that u has an explicit location, otherwise we say that u has an implicit location.
Whereas explicit locations can conveniently be represented by a node, we have to in-
troduce virtual nodes for implicit locations. Let u ∈ words(T) be a string with an
implicit location. By definition, there must be a node p with u ∈ prefixes(path(p)).
Let q be the parent of p, then u = path(q)v for some v ∈ Σ+. We define the pair
(q, v) to be the virtual node for u. A virtual node is a concept that allows us to treat
compact Σ+-trees in the same way as atomic Σ+-trees. With a proper representation
of a virtual node (e.g., as a (canonical) reference pair in Chapter 3), we can extend this
to an algorithmic level—designing algorithms for atomic Σ+-trees but representing
them more space efficiently by compact Σ+-trees.

For the Σ+-tree T , we denote by Tp the subtree rooted at node p. It makes no
difference whether p is a real or virtual node. It is convenient to use the same notation

14 2.1. ELEMENTARY CONCEPTS

for strings. For u ∈ words(T), we let Tu denote the subtree rooted at the (possibly
virtual) node p with path(p) = u. The words represented by Tu are special suffixes of
the word set represented by T , i.e., words(Tu) = {v | uv ∈ words(T)}.

2.1.3 String Distances

Wherever real data is entered into a computing system either by hand or by some
automatic device, there is the chance for errors. Furthermore, many times the process
of generating the data, e.g., by measuring it, may be error prone. Therefore, it is
necessary to describe and handle errors in texts and strings. There are many possible
ways of describing the distance (or similarity) of two strings. A very general model
of distance can be described by a set of rules called operations of the type Σ∗ → Σ∗

associated with a certain cost. The distance is the total cost needed to transform one
string into the other by sequentially applying the operations to substrings. Because this
general model allows encoding a Turing machine computation, the distance between
two strings may be undecidable. In this work, we only deal with distances based on
operations of the type Σ ∪ {ε} → Σ ∪ {ε}, which are easily computable by dynamic
programming. It is possible to define distances that operate on larger blocks, but there
is no generally accepted, widespread model. Furthermore, if the model is not carefully
chosen, it might not be easily computable, e.g., there are block distances that are NP-
complete [LT97].

The restriction to operations over substrings of at most one character results in
three different edit operations: insertion {ε} → Σ, deletion Σ → {ε}, and substitution
Σ → Σ. The cost of each operation can be chosen differently by the type of the
operation and by the characters that are involved. It is also possible to restrict the use
only to certain types of operations, which can also be achieved by setting the cost of the
undesired operations to infinity. We assume that the so defined distances are positive,
symmetric, and obey the triangle inequality to deserve their name.

In the simplest version, we only allow substitutions. This corresponds to compar-
ing two strings character-wise. For these comparison-based string distances, we assign
a value d(a, b) ∈ {0, 1} to the comparison of each pair of characters a, b ∈ Σ. Thus,
the distance between two strings u, v ∈ Σ∗ is simply defined by

d (u, v) =

{

∞ if |u| 6= |v|,
∑|u|

i=1 d (ui, vi) otherwise.
(2.8)

The most elementary comparison-based distance is the Hamming distance where
d(a, b) is zero if and only if a = b, and it is one otherwise [Ham50]. The Hamming
distance counts the number of mismatches between two strings of the same length. A
common extension are don’t-care symbols. A don’t-care symbol x is a special charac-
ter for which d(x, a) is always zero.

If we allow only insertions and deletions, we get the longest common subsequence
distance. The value is often divided by the string length to yield a value between zero
and one, giving some measure of string similarity.

The general case is usually called weighted edit distance. It can be computed via
dynamic programming using the following recursive equation. For u ∈ Σk and v ∈ Σl,

CHAPTER 2. PRELIMINARIES 15

we compute

d (u1· · ·uk, v1· · ·vl) = min







d (u1· · ·uk, v1· · ·vl−1) + d (ε, vl)
d (u1· · ·uk−1, v1· · ·vl) + d (uk, ε)
d (u1· · ·uk−1, v1· · ·vl−1) + d (uk, vl)






, (2.9)

where d (ε, ε) = 0. In the above formula, the top line represents an insertion, the mid-
dle line a deletion, and the bottom a substitution or a match. In the most basic variant,
we assign a cost of one for an insertion, deletion, or substitution and a cost of zero for
a match. The result is simply called edit distance or Levenshtein distance [Lev65]. It
counts the minimal number of insertions, deletions, and substitutions to transform one
string into another.

We should mention that there are many other models for string distance but none
as thoroughly studied as the aforementioned ones. Besides those also considered in
the pattern matching or computational biology community (see [Nav01] for a list and
references), there are a number of specialized distances in information retrieval or
record linkage (see, e.g., [PW99]).

2.2 Basic Principles of Algorithm Analysis

Before embarking on the design and analysis of our algorithms, we review some basic
principles. In particular, we have to agree on how to measure the cost or complexity
of an algorithm and a data structure, i.e., we describe the measure for our resources
time and space. Secondly, we review amortized analysis, which is used heavily in
Chapter 3. Finally we describe the basic concepts of average-case analysis, needed for
Chapters 4 and 5.

2.2.1 Complexity Measures

In order to assess the quality of an algorithm by comparing it with other algorithms,
we need a common measure. The basic resources we compare are time and space
usage. We compare these asymptotically by describing the relation between the size
of the input, and the space and time needed. The complexity of an algorithm is thus a
description of the growth in the amount of resources used.

There are basically two choices for time complexity and two for space complexity.
Most computers do not work with bits but with chunks of bits of a certain size, called
words. Basic operations are usually implemented in the main processor to take only
a constant number of clock ticks (e.g., addition, comparison, or even multiplication).
The word size usually also affects the memory access, i.e., the bus width. Therefore, a
word is often assumed as a basic unit in the complexity analysis.

Regarding time complexity, we can either assume a uniform cost model with con-
stant time per operation or a logarithmic cost model where the cost of each operation
is linear in the number of bits of the numbers operated on. The uniform cost model
is very popular because it reflects the situation where the size of numbers and point-
ers does not exceed the word size of the computer. This is usually the case for text
algorithms when all data fits into the main memory, for which a pointer can normally
be stored in a single word. Usually, even the size of the data storable on a random

16 2.2. BASIC PRINCIPLES OF ALGORITHM ANALYSIS

access hard disk does not exceed one or two words. While operations like multiplica-
tion can indeed depend on the size of the number, this fact is often not visible due to
advanced microprocessor architecture features like pipelining, out-of-order execution,
or caching strategies (memory access is often a bottleneck).

Especially regarding text indexes, there are two main models for measuring space.
The word model counts the number of words of memory used. A more detailed anal-
ysis, called bit model, accounts the number of bits used. When the size of the input
is limited, e.g., by the main memory, the difference in both models is only a constant
factor (the word size). In practice, the size of an index plays an important role, so the
constant factor hidden by the Landau notation is of interest.

Unless explicitly stated otherwise, we assume a uniform cost model for time com-
plexity and the word model for space complexity in this work.

2.2.2 Amortized Analysis

Amortized analysis is a technique to bound the worst-case time complexity of an algo-
rithm. It is commonly used to analyze a sequence of operations and prove a worst-case
bound on the average time per operation. There are three basic techniques called aggre-
gate, accounting, and potential method (see, e.g., Chapter 18 in [CLR90]). We make
heavy use of the accounting method in Chapter 3; therefore, we review the method on
dynamic tables, a data structure that we also need in Chapter 3.

A dynamic table is a growing array with amortized constant cost for adding an
element. Elements are added to the end until a previously reserved space is filled. Each
time this happens, a new, larger space is claimed, and the old elements are copied to
this space. Referencing and changing elements works in the same way as for normal
arrays. Dynamic tables can also be implemented to support deletions, but we refer the
reader to [CLR90] for the details.

The basic idea of amortized analysis is to distribute the cost arising for certain op-
erations, e.g., when the array reaches its current maximum and the elements need to
be copied to a new location. Therefore, we consider an infinite sequence of operations
and show that the first n operations can be executed in n steps, i.e., every step takes
amortized constant time. By the aggregate technique, we would just bound the total
number of operations and divide it by n. By the potential method, we would assign a
certain potential to the data structure (much like the potential energy of a bike on top of
a hill) and “use” it to perform certain costly operations that reduce the potential. Here,
for the accounting method, we assign coins to certain places in the data structure. In
particular, we put two coins on each added element to pay for the subsequent restruc-
turing. In a sense, we put a certain amount of time in a bank account to be used later.
The accounting method differs from the potential method in that one cannot necessar-
ily “see” the coins when looking at the data structure. Therefore, we have to prove that
the coins are available when we need them.

For the dynamic table, we only describe the data structure and the operation to add
an element. The data structure consists of an array A of size m and a fill level l. It
stores l elements. As long as l +1 ≤ m, a new element is stored in A[l +1]. When the
fill level reaches m, a new array A′ of size 2m is created and the elements from A are
copied to A′. The array A is then released and replaced by A′. We need to perform m
additional operations to copy the elements from A to A′. Afterwards, we can store the

CHAPTER 2. PRELIMINARIES 17

new element in l + 1 as usual. Note that after we have copied elements from A to A′

we have l = m
2 .

To prove that adding an element takes amortized constant time, we add two coins
on each newly inserted element if l + 1 ≤ m. Thus, the amortized time to add an
element is 2+1 = 3 operations for adding two coins and storing the new element in A.
At the time where the array has to be enlarged, we have added the elements A[m

2 + 1]
to A[m]. On each of these elements, we have stored two coins. Therefore, we have
exactly m coins, which we use to pay for the time needed to copy the elements from A
to the newly allocated A′. We then add the new element together with two coins. As
a result, adding a new element has an amortized constant cost of one real and two
delayed operations.

2.2.3 Average-Case Analysis

Average-case analysis analyzes the expected behavior of algorithms. This is especially
interesting in the case that an algorithm is executed many times with different inputs,
thus giving Fortuna a chance to do her duty and even out some inputs with high costs.
The primary goal of average-case analysis is to find a better understanding of the be-
havior of algorithms as it is observed in practice. The usefulness of an average-case
analysis also depends upon the adopted probabilistic model that has to be sufficiently
realistic. The model is therefore the basis of the analysis. In this section, we describe
some common models for average-case analysis of string algorithms. A very thorough
treatment of the subject is available in [Szp00].

In the average-case analysis of string algorithms, the random input is usually a
string or a set of strings. It is common to assume that each string w is the prefix
of an infinite sequence of symbols {Xk}k≥1 generated by a random source from the
alphabet Σ. The assumptions about the source determine the probabilistic model.

The simplest source is the memoryless source. The sequence {Xk}k≥1 is assumed
to be the result of independent Bernoulli trials with a fixed probability Pr{Xk = a}
for each character a ∈ Σ. We distinguish the asymmetric case where the probability
for each character may be different and the symmetric case where Pr{Xk = a} = 1

|Σ| .
When the assumption of character-wise independence is too strong, one can use

a Markov source. Here, the probability of each character depends upon the history,
i.e., it depends on the l previous characters for an l-th order Markov chain. Usu-
ally, only first order Markov chains are treated, where the probabilities are given by
Pr{Xk = a|Xk = b}. We do not work with Markov chains but with the following
more general model.

Memoryless and Markov sources are comprised in stationary and ergodic sources.
An in-depth treatment can be found in [Kal02]. Let (Ω, F, µ) be a probability space for
the random sequence {Xk}k≥1. The set Ω contains all possible realizations of strings,
that is,

Ω = {ω; | ω = {ωk}k≥1 and ωk ∈ Σ for all k} , (2.10)

the σ-field F is generated by all finite sets

F
m
1 = {ω1 · · ·ωm; | ωk ∈ Σ for all 1 ≤ k ≤ m} , (2.11)

18 2.2. BASIC PRINCIPLES OF ALGORITHM ANALYSIS

and µ is a probability measure on F. Let θ : Ω → Ω be the shift operator, i.e.,

θ(ω1, ω2, ω3, . . .) = ω2, ω3, (2.12)

A random sequence {Xk}k≥1 is called stationary if θ({Xk}k≥1) has the same

distribution as the sequence itself, that is, θ is measure preserving: µ ◦ θ−1 = µ.
A set I ⊂ Ω is called shift-invariant if θ−1(I) = I . Let S be the set of shift-

invariant sets in Ω, then S is a σ-field. A stationary sequence is called ergodic if
the shift-invariant σ-field is trivial, i.e., for each element I ∈ S either µ(I) = 0 or
µ(I) = 1. Stationary and ergodic sequence are of interest because the time and space
means are equal, i.e., we can find the expected value of the Xk by averaging over the
sequence: E[Xk] = n−1

∑n
i=1 Xi.

Once we have fixed the probabilistic model, we can analyze the expected time or
space complexity using various methods from probability theory and also analytical
tools (an approach already taken in [Knu98]). Before we embark on this tasks, we
introduce some additional properties needed and related results.

Let {Xk}k≥1 be a random sequence generated by a stationary and ergodic source.
For n < m, let F

m
n be the σ-field generated by {Xk}m

k=n with 1 ≤ n ≤ m. The source
satisfies the mixing condition if there exist positive constants c1, c2 ∈ R and d ∈ N

such that for all 1 ≤ m ≤ m + d ≤ n and for all A ∈ F
m
1 , B ∈ F

n
m+d, the inequality

c1Pr {A}Pr {B} ≤ Pr {A ∩ B} ≤ c2Pr {A}Pr {B} (2.13)

holds. Note that this model encompasses the memoryless model and stationary and
ergodic Markov chains. Under this model, the following limit (the Rény entropy of
second order) exists

r2 = lim
n→∞

− ln
(
∑

w∈Σn (Pr {w})2
)

2n
, (2.14)

which can be proven by using sub-additivity [Pit85].
The source satisfies the strong α-mixing condition if a function α : N → R exists

with limd→∞ α(d) = 0 such that, for all 1 ≤ m ≤ m + d ≤ n and for all A ∈ F
m
1 ,

B ∈ F
n
m+d, the inequality

(1 − α(d))Pr {A}Pr {B} ≤ Pr {A ∩ B} ≤ (1 − α(d))Pr {A}Pr {B} (2.15)

holds.
We do not only consider expected complexities in the average-case analysis of al-

gorithms or data structures, but also probabilistic bounds, i.e., statements about the
probability that certain events occur. In particular, a behavior is witnessed with high
probability (w.h.p.) when the probability grows as 1 − o(1) with respect to the in-
put size n, i.e., the probability approaches one as n increases. For random variables
depending on growing sequences, we can also define convergence probabilities. A
random variable Xn converges in probability to a value x if for any ǫ > 0

lim
n→∞

Pr {|Xn − x| < ǫ} = 1 . (2.16)

CHAPTER 2. PRELIMINARIES 19

A random variable Xn converges almost surely to a value x if for any ǫ > 0

lim
N→∞

Pr

{

sup
n≥N

|Xn − x| < ǫ

}

= 1 . (2.17)

As an example and for later use, we reproduce some results regarding the maximal
length of a repeated substring in a string of length n. We recapitulate here results
from [Szp93a] (see also [Szp93b]). Let Hn denote the maximal length of a repeated
string with both occurrences starting in the first n characters of a stationary and ergodic
sequence {Xk}k≥1. If the source satisfies the mixing condition (2.13) and if r2 > 0,
then one can prove that

Pr

{

Hn ≥ (1 + ǫ)
lnn

r2

}

≤ cn−ǫ lnn , (2.18)

for some constant c and ǫ > 0. Thus, Hn is with high probability O(lnn). Indeed,
even almost sure convergence can be proven:

lim
n→∞

Hn

lnn
=

1

r2
(a.s.) , (2.19)

which is valid if the source satisfies the strong α-mixing condition and additionally
∑∞

d=0 α(d) < ∞ holds. The latter condition is always fulfilled for stationary and
ergodic Markov chains [Bra86]. We have just bounded the (string) height of a suffix
tree that we will introduce in Section 2.3.1. Most Σ+-trees built from sets of random
string generated by a stationary and ergodic source have a logarithmic height [Pit85].

2.3 Basic Data Structures

We already described dynamic tables in Section 2.2.2. In Chapter 4, we analyze a
search algorithm on tries or PATRICIA trees. The index structure described in Chap-
ter 5 works for all kinds of Σ+-trees, e.g., tries, PATRICIA trees, suffix trees, and
generalized suffix trees. We introduce all these data structures in the following sec-
tion. Section 2.3.2 describes how to implement range queries in optimal time, which
we also need in Chapter 5.

2.3.1 Tree-Based Data Structures for Text Indexing

In this section, we present some of the most common data structures for text indexing
in terms of the Σ+-tree defined above. These structures are the basis of our algorithms.
We describe here how the data structures are interpreted theoretically and also give
some basic idea on how they can be implemented.

There are many implementation aspects for Σ+-trees depending on the applica-
tion. Some applications require that the parent of a node is accessible in constant
time whereas others always traverse the tree from the root to the leaves. Some basic
techniques can be identified.

In many cases, the edges are not labeled explicitly but by using pointers into an
underlying string or set of strings. This can be either a start and an end pointer or a start

20 2.3. BASIC DATA STRUCTURES

pointer and a length. In this way, each edge takes constant space while still allowing
constant time access to the label. Furthermore, it may be possible to store the pointers
implicitly (see, e.g., [GKS03]). Because we are dealing with trees, it is also common
to store the edges (i.e., their parameters) at the target nodes.

Another choice concerning the implementation is the organization of branching.
The children of a node are commonly accessed by the first character of the corre-
sponding edge label. The most common techniques are arrays, hashing, linked list,
search trees, or a combination of these. The fastest access is possible using arrays in-
dexed by the first character of the corresponding edge label, which takes |Σ| pointers
per node. The most space efficient implementation uses a linked list, which needs one
pointer per child. Here the access time is proportional to the number of children or
O(|Σ|) in the worst case. Hashing and search trees provide solutions which compro-
mise between both extremes. Asymptotically, the solutions are all equivalent because
we assume a constant size alphabet.

The simplest variant of a Σ+-tree is the trie, introduced by Brandais [Bri59] and
by Fredkin [Fre60]. A trie for a prefix-free set of strings S is a Σ+-tree T such that
pfree(words(T)) = S, i.e., each string in S is represented by a leaf, and there are no
other leaves in T . The representation of edges does not matter asymptotically, but the
classic trie has atomic edges from the root to the inner nodes and then compactifies the
edges leading to the leaves. An example is given in Figures 2.1(a) and 2.1(b).

The idea of compressing all paths of a trie leads to the PATRICIA tree introduced
by Morrison [Mor68]. An example is shown in Figure 2.1(c). A PATRICIA tree is
essentially a simple representation of the compact Σ+-tree for the set of strings S. It
is not uncommon to talk of compact tries instead of PATRICIA trees.

A suffix tree for a string t is a Σ+-tree that contains all the substrings of t. For-
mally, a suffix tree T for a string t must satisfy

words (T) = substrings (t) . (2.20)

Usually, one is only interested in the compact suffix tree (CST) because it has linear
size. In the following we will always refer to the compact suffix tree simply by the
suffix tree.

The example of a suffix tree in Figure 2.1(d) also includes additional edges (dashed
arrows). These are called suffix links. A suffix link points from a node p to a node q
if path(q) represents a suffix of path(p) in T . In particular, path(q) should be the
longest proper suffix of path(p). In suffix trees, usually only suffix links for inner
nodes are added. Historically, suffix links were an invention to facilitate linear-time
construction of suffix trees [Wei73, McC76, Ukk95], but there exist other applications
for suffix links in suffix trees, e.g., computing matching statistics [CL94] or finding
tandem repeats in linear time [GS04].

Another common feature of suffix trees visible in Figure 2.1(d) is the use of a
sentinel, in this case the character ’$’. A sentinel is a character that does not occur
anywhere else in the string. By the addition of such a unique character, there can be
no nested suffixes, thus each suffix is represented by a leaf in the suffix tree.

If the leaves are labeled by the number of the suffix of t that they represent, then
the suffix tree can be used to find all occurrences of a pattern w. Starting from the root,
we simply follow the edges which spell out w. The leaves of the subtree Tw represent

CHAPTER 2. PRELIMINARIES 21

r

a

l

l
e

di

l

l

y

u

b

ll

e

k

c

p

o

t

s

0

1

2

3 4

5 6

7 8

9

10 11

12

13

14 15 16

17 18

19 20

21

(a) A trie

e

y

u

b

p

o

t

s

ar

ll

id

ll

ell

ck

0

1

2

4

6

8

9

11

12

13

16

17 18

20

21

(b) A trie with compressed leaf edges

ar

ll

e

id

ll

y

ub

ell

ck

p

to

s

0

1

2

4

6

8

9

11

12

13

16

18

20

21

(c) A PATRICIA tree

$

$

ppi$

ppi$

ssippi$

ssii

mississippi$
i$

pi$

p

ppi$

ssippi$i

ppi$

ssippi$

si

s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

(d) A suffix tree

Figure 2.1: Examples of Σ+-trees representing the prefix-free set of strings bear, bell,
bid, bull, buy, sell, stock, stop (a-c) and a suffix tree for mississippi$ (d).

22 2.3. BASIC DATA STRUCTURES

the occurrences of w, i.e., if the leaf p ∈ Tw is labeled i, then there is an occurrence
of w starting at i. Hence, we can report l occurrences of a pattern w in a text t in
time O(|w| + l). The suffix tree thus solves the text indexing problem in optimal time.
The problem is to preprocess a given text t to answer the following queries: Given a
pattern w, report all i such that ti,i+|w|−1 is equal to w.

As noted already, suffix trees can be constructed in linear time [Wei73, McC76,
Ukk95, Far97] (Ukkonen’s algorithm is described in Chapter 3). It is also possible to
build a suffix tree for a set of strings, a so-called generalized suffix tree. A Σ+-tree T
is a generalized suffix tree for the set of strings S if

words (T) =
⋃

t∈S

substrings (t) . (2.21)

The easiest way to construct a generalized suffix tree for a set S is to create a new
string u = t1$1t2$2 · · · t|S|$|S| as the concatenation of all strings ti in S separated by
different sentinels $i. The suffix tree for u is equivalent to the generalized suffix tree
for S if leaves are cut off after each sentinel. Note that it is not necessary to use |S|
different sentinels. We can use a comparison function that considers two sentinels to
be different. The drawback is that there might be two outgoing edges labeled by the
sentinel at a single node which must then be handled in matching and retrieval.

To conclude this section, we mention that there are alternative data structures such
as the directed acyclic word graph (DAWG) [BBH+87], the suffix array [MM93], the
suffix cactus [Kär95], or the suffix vector [MZS02]. The most important of these is the
suffix array, which has become a viable replacement for the suffix tree [AKO04].

2.3.2 Range Queries

In the previous section, we described a method to find all l occurrences of a pattern w
in a string t by matching the pattern in the suffix tree built from t and reporting the
indices stored at the leaves as output. This algorithm runs in time O(|w| + l) which
is linear in the size of the query pattern and the number of reported indices. We call
such a behavior output sensitive. An algorithm is output sensitive if it is optimal with
respect to the input and output, i.e., it has a running time that is linear in the size of the
input and of the outputs.

Another important problem is the document listing problem. The problem is to
preprocess a given set of strings S = {d1, . . . , dm} (called documents) to answer the
following queries: Given a pattern w, report all i such that di contains w.

Let T be a generalized suffix tree for S where the leaves are labeled with the doc-
ument numbers, i.e., leaf p is labeled with k if path(p) is a suffix of dk. The document
listing problem can be solved by matching the pattern w and reporting all different
document numbers occurring at leaves in Tw. Unfortunately, the number of leaves
may be much larger than the number of reported documents. The simple algorithm is
not output sensitive. This and other similar problems can be solved optimally by using
constant time range queries [Mut02], which we present next.

The following range queries all operate on arrays containing integers. The goal is
to preprocess these arrays in linear time so that the queries can be answered in constant
time.

CHAPTER 2. PRELIMINARIES 23

p

q

RMC

(a) Nodes p and q are found starting from
the right-most child (labeled “RMC”).

p

q

RMC

r

(b) The node p becomes a left child of
the new node r which is inserted as right
child of the node q.

Figure 2.2: One step in the linear-time algorithm to build the Cartesian tree. After insert-
ing the node r, it becomes the new right-most child. Observe how no node on the path
from the old right-most child to the node p can ever be on the right-most path again.

A range minimum query (RM) for the range (i, j) on an array A asks for the
smallest index containing the minimum value in the given range. Formally, we seek
the smallest index k with i ≤ k ≤ j and A[k] = mini≤l≤j A[l].

A bounded value range query (BVR) for the range (i, j) with bound b on array A
asks for the set of indices L in the given range where A contains values less than or
equal to b. The set is given by L = {l | i ≤ l ≤ j and A[l] ≤ b}.

A colored range query (CR) for the range (i, j) on array A asks for the set of
distinct elements in the given range of A. These are given by C = {A[k] | i ≤ k ≤ j}.

RM queries can be answered in constant time and with linear processing [GBT84].
The idea is based on lowest common ancestor (LCA) queries, which can be answered
in constant time [HT84, SV88, BFC00, BFCP+01]. We briefly describe an algorithm
for RM queries along the lines of [BFC00].

The first step is to build the Cartesian tree B for the array A. Let A be indexed 1
through n. The Cartesian tree [Vui80] is a binary tree. The root represents the small-
est index i with the minimum element in A, the left subtree is a Cartesian tree for
the subarray A[1 . . . i − 1], and the right subtree is a Cartesian tree for the subarray
A[n . . . i − 1]. The Cartesian tree B can be built in linear time by iteratively building
the tree for the subarray A[1 . . . i]. At each step, we keep a pointer to the right-most
node (the node we reach when taking only right edges). When the new value A[i] is
added, we move towards the root until we find a node p containing a smaller value.
If no such node is found, the new value is the smallest so far and becomes the new
root with the old root being its left child. Otherwise, let q be the right child of p (if it
exists). We add a new node r with the value A[i] in place of q as the right child of p
and make q the left child of r. Figure 2.2 shows a sketch of this step. Because every
traversed node ends up in the left subtree of r, no node is traversed twice in this way.
As a result, the total time to build B is O(n).

24 2.3. BASIC DATA STRUCTURES

In the second step, we construct three new arrays from an Euler tour of the Carte-
sian tree. The first array H of size 2n contains the node depths encountered during the
traversal, the second array E of size 2n contains the indices of A stored at the nodes,
and the third array M of size n stores an occurrence in E for each index in A. The
Cartesian tree can be discarded after this step. Note that successive values in H differ
by plus or minus one, thus we call H a ±1-array. Note further that, if k is the index of
the minimum element in the range (i, j) of H , then A[E[k]] is the minimum element
in the range (E[i], E[j]) of A. This allows answering RM queries on A by RM queries
on H .

As a last step, we need to prepare RM queries on the ±1-array H . We divide H
into blocks of length b = ⌈ log n

2 ⌉. A doubly indexed array L contains in L[i, j] the
index of the minimum value in H[ib . . . (i + 2j − 1)b]. It has size O(n) and we can
construct it by dynamic programming using the equation

L[i, j] =

{

L[i, j − 1] if H[L[i, j − 1]] < H[L[i + 2j−1 − 1, j − 1]]

L[i + 2j−1 − 1, j − 1] otherwise.
(2.22)

The values L[i, 1] are computed by a simple scan of H . Because H is a ±1-array, we
represent each block of size b by an integer x between zero and 2b ≤ 2

√
n. For each

pair of relative offsets (k, l) we store in an array B[x, k, l] the relative offset of the
smallest value. We have 0 ≤ k, l < b, thus B has size O(

√
n log2 n). An additional

array P of size ⌈n
b ⌉ is used to store the integer representation of the blocks.

To find the index of the minimum element in H in the range (i, j) we first compute
the block boundaries i′ = ⌈ i

b⌉ and j′ = ⌊ j
b⌋. If we have j − i < b, then we can

find the index of the minimum element in H by looking up B[P [i′], i − bi′, j − bi′].
Otherwise we use array L to find the index of the minimum element in the range
(bi′, bj′) by comparing H[L[i′, k]] and H[L[j′ + 2k−1 − 1, k]] where k is chosen such
that 2k ≤ i′ − j′ ≤ 2k+1. For the ranges (i, bi′) and (bj′, j), we look up the indices of
the minima in the array B by B[P [i′], i − bi′, b − 1] and B[P [j′ + 1], 0, j − bj′]. As
a result, we can answer minimum range queries on A in constant time with the arrays
H, E, M, L, B, P using O(n) space.

BVR queries on array A can be answered based on RM queries [Mut02] in time
O(|L|) and with linear preprocessing. The idea is to successively perform RM queries:
Let k be the answer to the RM query (i, j), then either A[k] > b, in which case we
are finished with this subrange, or A[k] ≤ b, in which case we continue by querying
(i, k − 1) and (k + 1, j). Each query either stops or yields a new element of L. Thus,
we get a binary tree like query structure, the inner nodes corresponding to successful
queries and the leaves to unsuccessful queries or empty intervals. The tree is binary,
so we perform O(|L|) queries in total.

Finally, CR queries can also be answered in time O(|C|) and with linear prepro-
cessing [Mut02]. The solution is based on BVR queries. A new array R is constructed
with R[i] = j if j < i is the largest index with A[j] = A[i], and with R[i] = −1 if
no such index exists. Thus, a colored range query (i, j) on A can be answered by a
bounded value range query (i, j) with bound i on R: The resulting indices in L are
translated by a simple look-up to C = {A[l] | l ∈ L}. No value A[l] can occur twice
because we would have R[l′] = l > i for the second occurrence l′.

We now turn back to our original selection problem on the generalized suffix

CHAPTER 2. PRELIMINARIES 25

tree T . To achieve an optimal query time, we create an array A containing the docu-
ment numbers in the order they are encountered at the leaves by a depth first traversal.
At the same time, we store the index used for the left-most and for the right-most leaf
in the array at each inner node. Assume we have matched a pattern w in the tree and
let p be the next node in the tree with w ∈ suffixes(path(p)). Let i be the index of the
left-most and j be the index of the right-most leaf stored in Tp. Thus, the document
numbers of the leaves in the subtree Tw are those in the subarray A[i · · · j], and we
can retrieve the different document numbers by a CR query on A in linear time in the
number of outputs. Chapter 5 contains more applications of range queries.

2.4 Text Indexing Problems

An indexing problem is defined by a database and a query type. We deal here with text
indexing problems, so the database is either a single string t ∈ Σ∗ or a collection of
strings C ⊂ Σ∗. A query type defines what the eligible query patterns are and what the
output (in dependence on the input pattern) should be. It is possible to define problems
where the query is a set of strings, but here we are only interested in the canonical
version where the query is a single string called the pattern possibly accompanied by
some additional parameters.

In exact pattern matching, the output of a query involves a property on the set of
occurrences of a pattern w in the database. We already got to know the text indexing
problem in Section 2.3.1, where there is no additional property, i.e., the complete set
is to be reported. The solution given there can easily be extended for indexing a set
of strings. The problem is then sometimes also called the occurrence listing problem.
The problem is to preprocess a given collection of texts S = {t1, . . . , tn} to answer
the following queries: Given a pattern w, report all (i, j) such that tj i,i+|w|−1 is equal
to w. In Section 2.3.2, we described the document listing problem where the property
is the set of document identifiers i of those strings ti ∈ S that contain an occurrence
of the pattern w.

Besides occurrence and document listing, the third canonical type of problem de-
fined for a collection of strings S = {t1, . . . , tn} is the dictionary indexing prob-
lem. For a query with the pattern w, the desired output is the set of identifiers i such
that ti = w. For exact text indexing, optimal algorithms for indexing a single text
have been known for a while. The extensions for indexing a set of documents are of-
ten straightforward. The use of range queries broadens the possibilities even further
(see [Mut02]).

Chapters 4 and 5 deal with the problem of approximate text indexing. Approximate
text indexing bases its output on the set of approximate occurrences.1 An approximate
occurrence of a pattern w in a string t with respect to a maximal distance k in a certain
distance model d : Σ∗ → Σ∗ is a substring ti,j with d (ti,j , w) ≤ k. The parameter k

1The use of “approximate” here is not to be confused with the use of “approximate” in a lot of other
branches of computer science, such as complexity theory. In our context, “approximate” has a well-
defined meaning and is a desired property of the solution. On the contrary, for instance, an NP-hard
problem is “approximable” if we can find a “solution” that is within a bounded range of the optimum
value. Thus, the term “approximate” has a negative touch because it is otherwise practically impossible
to compute the “real”, optimal solution (unless P=NP).

26 2.5. RICE’S INTEGRALS

can either be part of the input or part of the problem instance. The following scheme
allows a classification of the text indexing problems in this work.

Text Corpus This is either a string t ∈ Σ∗ (“Σ∗”) or a collection of strings S ⊂ Σ∗

(“P(Σ∗)”).

String Distance The distance is one of the standard distances: edit distance (“edit”),
Hamming distance (“hamm”), equality (“exact”, for exact indexing), or another
distance (e.g., a comparison-based distance).

Distance Bound The bound can be given with the query (“in”), a fixed number (“k”),
a proportion with respect to the pattern size (“α”), or another function of the
input parameters.

Output Type: We can report occurrences (document number, start and end point;
“occ”), positions (document number and start point—corresponding to a suf-
fix of the document starting at the given position; “pos”), or documents (docu-
ment number only; “doc”). Identifiers of higher hierarchical structures (such as
sections, chapters, volumes) are also possible.

Application Rule: We define the suffix (“suff”), the prefix (“pref”), the substring
(“substr”), and the entire string rule (“all”). A possible output candidate is re-
ported if the distance between a suffix (prefix, substrings, the entire string) of
the candidate and the pattern is below the distance bound.

These five categories allow us to classify each text indexing problem. In the no-
tation of our classification scheme, we denote the document listing problem by the
quintuple 〈P(Σ∗)|exact|0|doc|substr〉. The standard edit distance text indexing prob-
lem that seeks all positions where an approximate occurrence of the pattern with
no more than k errors starts is described by 〈Σ∗|edit|k|pos|suff〉. In Chapter 4, we
treat among others the Hamming distance dictionary indexing problem denoted by
〈P(Σ∗)|hamm|f(n)|doc|all〉 where we seek all strings in S matching a pattern with
Hamming distance at most f(n) with n = |S|.

2.5 Rice’s Integrals

In Chapter 4, we analyze the expected number of nodes visited by a recursive search
process. The closed formula that we derive for the expected running time is of the
form

n∑

k=m

(
n

k

)

(−1)kfn,k . (2.23)

The sum turns out to be of polynomial growth, so we witness an exponential cancella-
tion effect. The terms of the sum are exponentially large and alternate in sign. Sums of
this type are intimately connected to tries and other digital search trees. Similar prob-
lems appear very often in their analysis (see, e.g., [Szp00]). Such sums have also been
considered in a general setting by Szpankowski [Szp88a] and Kirschenhofer [Kir96].
It is a common technique to use Rice’s integrals. The basic idea is captured in the
following theorem.

CHAPTER 2. PRELIMINARIES 27

Theorem 2.2 (Rice’s integrals).

Let f(z) be an analytic continuation of f(k) = fk that contains the half line [m,∞).
Then

n∑

k=m

(−1)k

(
n

k

)

fk =
(−1)n

2πı

∮

C
f(z)

n!

z(z − 1) · · · (z − n)
dz , (2.24)

where C is a positively oriented curve that encircles [m, n] and does not include any

of the integers 0, 1, . . . , m − 1 or other singularities of f(z).

The formula already appeared in [Nör24] (Chapter 8, §1), see also [Knu98, FS95,
Szp00]. The proof is a simple application of the Cauchy Residue Theorem. We briefly
go over some definitions to recapitulate the basic idea. All of this is widely known
(see, e.g., [Rud87]). A function is said to be meromorphic in an open set Ω if it is
analytic in Ω \ A and has a pole at every point in A, where A ⊂ Ω is a set with no
limit points in Ω. In essence, a meromorphic function has only countably many poles
and is otherwise analytic. For each point z0 ∈ A we can “subtract” the pole from the
meromorphic function f and get a function

f(z) −
m∑

k=1

ck

(z − z0)
k

, (2.25)

which is analytic in the vicinity of z0. The term
∑m

k=1
ck

(z−z0)
k is called the principle

part of f and m is the order of the pole. The complex value ck is called the residue
of f at z1 denoted by

res[f(z), z = z0] = c1 . (2.26)

Let C be a simple closed curve in Ω encircling the poles a1, . . . , an ∈ A. The Cauchy
Residue Theorem then states that

1

2πı

∮

C
f(z)dz =

n∑

k=1

res[f(z), z = ak] , (2.27)

where C is traversed in a mathematically positive sense (i.e., counterclockwise).
A brilliant introduction into the technique of Rice’s integrals is given in [FS95].

The kernel in (2.24) can also be expressed in terms of Euler’s Gamma and Beta func-
tions (see, e.g., [Tem96]) by

n!

z(z − 1) · · · (z − n)
=

Γ(n + 1)Γ(z − n)

Γ(z + 1)
= (−1)n+1 Γ(n + 1)Γ(−z)

Γ(n − z + 1)

= B(n + 1, z − n) = (−1)n+1B(n + 1,−z) (2.28)

If the function f(z) in (2.24) has a moderate (polynomial) growth, the contour-
integral can be replaced by a simple integral along a line ℜ(z) = c (usually c =
−m + 1

2)

n∑

k=m

(−1)k

(
n

k

)

fk =
1

2πı

∫ c+ı∞

c−ı∞
f(−z)B(n + 1, z)dz , (2.29)

28 2.5. RICE’S INTEGRALS

because, for fixed n, the kernel B(n + 1, z − n) grows asymptotically as O(z−n) for
|z| → ∞. Details are provided in Section 4.3.2.

To proceed further we either bound the integral or sweep over some residues, very
similar to the usage of the Mellin transform. The following asymptotic expansion (in
the sense of Poincarè) of the ratio of Gamma functions is very helpful and already
suggested in [Szp88a].

Γ(z + α)

Γ(z + β)
∼
∑

k

Γ(α − β + 1)

k!Γ(α − β + 1 − k)
B

(α−β+1)
k (α)z−k , (2.30)

for all constants α, β with β − α 6∈ N as |z| → ∞ with |arg(z)| < π [TE51].

The B
(a)
n (x) are the generalized Bernoulli polynomials (see [Nör24], Chapter 6, §5,

or [Tem96]). They are defined by the generating function

ext

(
t

et − 1

)a

=
∞∑

k=0

B
(a)
k (x)

tk

k!
, |t| < 2π . (2.31)

They are multivariate polynomials in a and x of degree n. The first polynomials are

B
(a)
0 (x) = 1, B

(a)
1 (x) = −a

2 + x, and B
(a)
2 (x) = 3a2+12x2−a(1+12x)

12 .

For the approximation of Γ(z) Γ(n+1)
Γ(n+1+z) we have to be careful because z is not a

constant. Indeed, n has to be regarded as a constant when integrating over z ranging
from c − ı∞ to c + ı∞. Fortunately, the expansion turns out to be uniform to a certain
degree [Fie70]. In this lesser known form, the uniform asymptotic expansion is

Γ(z + α)

Γ(z + β)
= zα−β

m∑

k=0

1

k!

Γ(1 + α − β)

Γ(1 + α − β − k)
B

(1+α−β)
k (α)z−k

+ O
(

zα−β−m (1 + |α − β|m) (1 + |α| + |α − β|)m
)

, (2.32)

which is uniformly valid for | arg(z + α)| < π, (1 + |α − β|) (1 + |α| + |α − β|) =
o(z), and β − α 6∈ N as z → ∞.

Besides the already defined generalized Bernoulli polynomials, we also encounter
generalized Bernoulli numbers defined by

(
t

et − 1

)a

=

∞∑

k=0

B
(a)
k

tk

k!
, |t| < 2π , (2.33)

Bernoulli numbers defined by

t

et − 1
=

∞∑

k=0

Bk
tk

k!
, |t| < 2π , (2.34)

and Eulerian polynomials defined by

1 − x

1 − xet(1−x)
=

∞∑

k=0

Ak (x)
tk

k!
=

∞∑

k=0

tk

k!

k∑

l=0

Ak,lx
l , |t| <

lnx

x − 1
. (2.35)

CHAPTER 2. PRELIMINARIES 29

See [Tem96] for the Bernoulli numbers B
(a)
k and Bk. See [Com74] for the Eulerian

polynomials Ak(x), and [GKP94] for the Eulerian numbers Ak,l.
Rice’s integrals are one of many methods that transfer a discrete problem into the

realm of complex analysis. We do not treat (nor use) other methods, but we mention
here that another very powerful method is the Mellin transform. Indeed, there is an in-
timate connection (the Poisson-Mellin-Newton Cycle). We refer to [FR85, FGK+94,
FGD95, FS96] for details. For our purposes, Rice’s integrals are well suited. In par-
ticular, the use of the Mellin transform requires an additional depoissonization step to
regain the coefficients [Szp00]. In Chapter 4, we transform our sum to a line integral,
which is very similar to the use of the Mellin transform.

Chapter 3

Linear Bidirectional On-Line

Construction of Affix Trees

In this chapter, we present a linear-time algorithm to construct affix trees. An affix
tree for a string t is a combination of the suffix tree for t and the suffix tree for the
reversed string tR. Besides exhibiting this inherently beautiful duality structure, affix
trees allow searching for a pattern alternating the direction of reading, i.e., by starting
in the middle and extending to both sides. In contrast, the suffix tree only allows to
search a pattern reading from left to right. The alternating searches allow to search
for patterns of the kind uvuR more efficiently using an affix tree. An application
is, e.g., the search for certain RNA-related patterns [MP03], e.g., hairpin loops. A
hairpin loop is the result of two bonding complementary pieces of an RNA strand.
These can be found by searching for patterns of the form uvw, where w is the reversed
complementary to u.

We begin this chapter by describing the affix tree data structure and giving the
necessary definitions. We continue with a linear-time algorithm to build the affix tree
on-line by reading a string only in one direction from left to right (or vice versa).
Finally, we describe and analyze the most general case of building the affix tree on-
line by appending characters on either side of the string. This case requires a very
detailed amortized analysis, which finishes the chapter.

3.1 Definitions and Data Structures for Affix Trees

The affix tree is based on completing the structure exhibited by the suffix links of the
suffix tree. Before defining affix trees, we investigate some properties of suffix links
that lead naturally to the question of whether and how affix trees can be built.

3.1.1 Basic Properties of Suffix Links

Recall our definition of suffix links from Section 2.3.1. A suffix link points from a
node p to a node q if path(q) is the longest proper suffix of path(p). For every node p,
there can be at most one node representing a longest proper suffix, whereas a node q
can represent the shortest proper suffix of multiple other nodes. Because ε is a suffix
of every string and is represented by the root, we can add a suffix link for every node.

31

32 3.1. DEFINITIONS AND DATA STRUCTURES FOR AFFIX TREES

a

b

c

c

a

b a

b

c

c

b c

(a)

b

a

c

b

a

b

a

(b)

a

b

a

b

a

b

a

c

b

a

b

a

(c)

c

b

a c

a

b a

b

c

c

b c

(d)

a

b

a b

a

a

b

a

b

a

b

c

(e)

Figure 3.1: Example trees based on the string ababc. Figure (a) shows the suffix tree
for t = ababc, Figure (b) shows the suffix link tree of the suffix tree for t = ababc,
Figure (c) shows the suffix tree for the reversed string t = cbaba, Figure (d) shows a
view of the affix tree for t = ababc focused on the suffix structure, and Figure (e) shows
the affix tree focused on the prefix structure.

Thus, the suffix links form a tree structure themselves. For a suffix link from p to q,
let path(p) = upath(q). We label the suffix link with uR. This way, if we have two
suffix links from p to q to r labeled u and v, we get path(p) = uRpath(q), path(q) =
vRpath(r), and path(p) = (vu)Rpath(r). Hence, we can read and concatenate suffix
link labels from the root downward. This leads to the definition of the suffix link
tree [GK97].

The suffix link tree T R of a Σ+-tree T that is augmented with suffix links is
defined as the tree that is formed by the suffix links of T .

Figure 3.1(a) shows the suffix tree for the string ababcwith the suffix links from ab

to b to the root as it would have been constructed, e.g., by Ukkonen’s algorithm. These
links are labeled with a and b. We added suffix links for the leaves, too, from ababc

via babc, abc, bc, and c to the root. These links are labeled with a, b, a, b, and c.
Figure 3.1(b) shows the resulting suffix link tree.

There is a duality between reversing the string and taking the suffix link tree,
proven in [GK97]. For any string t, there is a strong duality for the atomic suffix
tree AST(t) and a weak duality for the (compact) suffix tree CST(t). In particular, we
have AST(t)R = AST(tR) and words(CST(t)R) ⊆ words(CST(tR)).

For the atomic suffix tree, this can easily be seen as follows. Let t = t1 · · · tn
and let w be a substring of t. The string w is explicitly represented by a node p in
AST(t) with w = path(p) = titi+1ti+2 · · · tj . Because AST(t) is atomic, all edges
have length one and all substrings of t have an explicit location. Therefore, there
is also a node q with path(q) = ti+1ti+2 · · · tj and a suffix link labeled ti links p
to q. By induction, we find a chain of suffix links with labels ti, ti+1, ti+2, . . . , tj .

Thus, the string tjtj−1tj−2 · · · ti = wR is represented in AST(t)R. As a result,

all substrings of tR are represented in AST(t)R. Because AST(tR) is defined by
words(AST(tR)) = substrings(tR), this proves the duality. While this fact about
atomic suffix trees is interesting in its own, it only serves as an illustration here. The
remaining chapter is only concerned with compact suffix trees. Henceforth, suffix tree

CHAPTER 3. LINEAR CONSTRUCTION OF AFFIX TREES 33

refers only to the compact version again.
For suffix trees, the above construction does not work because not all substrings

of t are represented explicitly. The suffix link tree CST(t)R represents only a subset of
the words of CST(tR). In fact, it represents all substrings that have an explicit location
in CST(t).

The following lemmas give an intuition of the part of substrings(t) that are rep-
resented in the suffix link tree CST(t)R. These results are common knowledge and
variations appear throughout the literature. We formalize the results in a suitable way.

Lemma 3.1 (Explicit locations in suffix trees).

In the suffix tree T for the string t, a substring u is represented by an inner node (its

location is explicit) if and only if it is a right-branching substring. It is represented by

a leaf if and only if it is a non-nested suffix of t. Finally, the substring is represented

by the root if and only if it is the empty string. There are no other nodes in T .

Proof. Clearly, the empty string is always represented by the root.
If u ∈ words(T) is a non-nested suffix of t, no v ∈ Σ+ and w ∈ Σ∗ exist such that

t = wuv. If u were not represented by a leaf, there would have to be a node p such that
path(p) = uv′ with v′ ∈ Σ+. This would be a contradiction to u being non-nested.
Therefore, u is represented by a leaf.

If w ∈ words(T) is right-branching in t, there exist a, b ∈ Σ with a 6= b and
wa, wb ∈ substrings(t). The string wa and wb are in words(T) by the definition of
suffix trees. Hence, there are nodes p and q such that wa is a prefix of path(p) and wb
is a prefix of path(q). From the uniqueness of string locations in Σ+-trees and from
a 6= b it follows that p 6= q. Therefore, there must be a branching node r such that r
is an ancestor of p and q, and path(r) is a prefix of path(p) and path(q). Therefore,
path(r) must be a prefix of w. If path(r) 6= w, there would be two edges leading out
of r with labels starting with the same character, which would contradict T being a
Σ+-tree. As a result, path(r) = w and w is represented by a node.

Let p be a node in T . If p is not the root (representing the empty string), by the
compactness of T , it must be either a leaf or a branching node.

If p is a leaf, it represents a substring u = path(p) of t. Suppose u is not a
suffix, then the string uw with w ∈ Σ+ is in substrings(t) and consequently in
words(T). There must be a node q with path path(q) = uw, and hence p cannot
be a leaf because it must be the parent of q. Suppose u is a nested suffix. By defini-
tion, we have u ∈ psubstrings(t) ∪ prefixes(t). Again there must be w ∈ Σ+ with
uw ∈ substrings(t)—leading to the same contradiction. As a result, path(p) must
represent a non-nested suffix.

If p is a branching inner node, there must be two nodes q and r which are children
of p. Let w = path(p). Because all outgoing edges of p have labels with different start
characters, we have path(q) = wau and path(r) = wbv for u, v ∈ Σ∗. Therefore,
wa, wb are substrings of t and w is right-branching in t.

A very important consequence of the previous lemma and Observation 2.1 is the
following.

Lemma 3.2 (Chain property of suffix links).

Let p be a node in the suffix tree T for the string t. The node p is either the root, the

leaf representing the shortest non-nested suffix, or p has an atomic suffix link.

34 3.1. DEFINITIONS AND DATA STRUCTURES FOR AFFIX TREES

Proof. Let p be a node that is not the root and not the node representing the shortest
non-nested suffix of t. Let u = path(p). If p is a leaf, it represents a non-nested
suffix. Because p does not represent the shortest non-nested suffix, there is a shorter
non-nested suffix v such that av = u for some a ∈ Σ. Since v is a non-nested suffix,
there is a node q representing v, and there is an atomic suffix link from p to q.

If p is not a leaf (and not the root), it must be a branching node. Therefore, u is
right-branching in t. Let v ∈ Σ∗ be a proper suffix of u such that av = u for some
a ∈ Σ. By Observation 2.1, v is also right-branching and, by Lemma 3.1, represented
by a node q. Therefore, there is an atomic suffix link from p to q.

From the above lemmas, we know that the suffix link tree T R of a suffix tree T
for the string t represents a subset of all substrings of tR, namely the left-branching
substrings and tR itself (see Figures 3.1(b) and 3.1(c)). The idea of an affix tree is to
augment a suffix tree with nodes such that it represents all suffixes of t and that its
reverse represents all suffixes of tR (respectively the prefixes of t).

3.1.2 Affix Trees

Affix trees can be defined as “dual” suffix trees. Formally, an affix tree T for a string t
is a Σ+-tree with suffix links such that

words (T) = substrings (t) and

words
(
T R
)

= substrings
(
tR
)

.

Figures 3.1(d) and 3.1(e) show the affix tree for ababc. Figure 3.1(d) focuses on
the suffix-tree-like structure and Figure 3.1(e) on the prefix-tree-like structure. The
differences to the suffix tree and to the prefix tree in each structure are the additional
nodes that are boxed (compare (a), (c), (d), and (e) in Figure 3.1).

Note that a substring w of t might have two different locations in the affix tree T
for t: the location of w in the suffix tree part and the location of wR in the prefix tree
part. If these locations are implicit, then they are not represented by the same node
but lie “in” two different edges. For example, the location of bab appears in the suffix
edge between the nodes b and babc (Figure 3.1(d)) and in the prefix edge between
the nodes ba and baba (Figure 3.1(e)). The location of ba appears in the suffix edge
between the nodes b and babc (Figure 3.1(d)) and in the prefix edge between the root
and aba (Figure 3.1(e)).

Having two different implicit locations complicates the process of making a loca-
tion explicit (i.e., inserting a node for the location). Both implicit locations must be
found for that. To insert a node ba (respectively ab in the prefix view) into the affix
tree shown in Figures 3.1(d) and 3.1(e), the two edges (b, babc) and (root, aba) have
to be split.

The affix tree for a string t represents two trees in one. It represents the suffix
tree for t and the suffix tree for tR. The latter is called the prefix tree for the string t.
From Lemma 3.1, we learned that the affix tree contains all nodes that would be part
of the suffix tree and all nodes that would be part of the prefix tree. As an application
of this lemma, one can classify each node whether it belongs to the suffix part, the
prefix part, or both parts. Thus, we define the following node type. A node is a suffix
node if it is a suffix leaf (it has no outgoing suffix edges), if it is the root, or if it is a

CHAPTER 3. LINEAR CONSTRUCTION OF AFFIX TREES 35

branching node in the suffix tree (it has at least two outgoing suffix edges). A node is
a prefix node if it is a prefix leaf (it has no outgoing prefix edges), if it is the root, or
if it is a branching node in the prefix tree (it has at least two outgoing prefix edges).
The attribute needs not be stored explicitly but can be reconstructed on-line. Edges are
either suffix or prefix edges. The suffix links are the (reversed) prefix edges and vice
versa. Therefore, all edges need to be traversable in both directions. In the following,
we distinguish between the suffix structure and the prefix structure of the affix tree.

Throughout the remaining chapter, let ST(t) denote the suffix tree and let AT(t)
denote the affix tree built from the string t, which we call the underlying string. The
prefix tree can be denoted by ST(tR).

3.1.3 Additional Data for the Construction of Affix Trees

An essential property of affix trees is its inherent duality. In the final sections of this
chapter, we show how to build the affix trees by expanding a string in both directions.
To support such a behavior, we can implement a string as a pair of dynamic tables
(see Section 2.2.2). The first table contains the positive indices (starting at zero) and
the second table the negative indices (starting at −1). When switching the view (from
suffix to prefix), a simple translation f : x → −1 − x also switches the indices and
allows to read the string in a completely reversed manner. Thus, on the implementation
level we number strings differently, starting at zero. To distinguish this case, we denote
the characters of a string t by t[i], where i ranges from zero to n − 1.

For the algorithmic part, we need to be able to keep track of locations in the suffix
or affix tree and be able to reach these quickly. In Section 2.1.2, we introduced virtual
nodes as means for referencing implicit locations. A reference pair is a representation
of a virtual node of a suffix tree introduced in [Ukk95] for that reason. For a suffix
tree T for the string t, a reference pair is a pair (p, (o, l)) where p is a node (called
the base of the reference pair), and (o, l) represents a substring u = to,o+l−1. It cor-
responds to the virtual node (p, u). For ease of notation, we also denote the reference
pair (p, (o, l)) by (p, u) knowing that u is a substring of t and can be represented by
(o, l). To actually reach the location, we start at the base and move along edges whose
labels represent the same string as u.

As mentioned above, there may be two locations of a substring of t in the affix
tree, one in the suffix structure and one in the prefix structure. We therefore need to
distinguish between a suffix reference pair, where the represented location is reached
by moving along suffix edges, and a prefix reference pair, where the represented lo-
cation is reached by moving along prefix edges. Conceptually, one can also think of
using a combined reference pair for a string in the affix tree made up of a prefix and a
suffix reference pair.

For the construction of suffix trees, a reference pair (p, u) is called canonical if
there exists no node q and a suffix v ∈ suffixes(u) such that path(p) is a proper prefix
of path(q) and path(p)u = path(q)v. For the construction of affix trees, we use
suffix and prefix reference pairs. For a suffix reference pair (p, u), we require q to be
a suffix node, and, for a prefix reference pair (p, u), we require p to be a prefix node.
A suffix reference pair is canonical if there is no suffix node q and a string v such that
path(p) is a proper prefix of path(q) and path(p)u = path(q)v. In other words, a
canonical reference pair is a reference pair where the base node has maximal depth.

36 3.1. DEFINITIONS AND DATA STRUCTURES FOR AFFIX TREES

For example, in Figure 3.1 with the underlying string t = t[0] · · · t[4] = ababc

(with tR = t[−1] · · · t[−5] = cbaba) the canonical prefix reference pair for ab is
(root, (−3, 2)), the canonical suffix reference pair for ba = (ab)−1 is (ab, (3, 0)). A
non-canonical suffix reference pair for ba is (root, (1, 2)).

Similar to suffix trees, edges are implemented with indices into the underlying
string t. For the efficient handling of leaves, we also use open edges as introduced
in [Ukk95]. The edges leading to leaves are labeled with the starting index and an
infinite end index (e.g., (i,∞)) that represents the end of the underlying string. Such
an edge always extends to the end of the string. This can easily be achieved using a
single bit (or by implicitly assuming the end index ∞ for leaves).

For the on-line construction of affix trees, we need to keep track of some important
locations in the tree. Let α(t) be the longest nested suffix of the string t and α̂(t) the

longest nested prefix of t. Obviously, we have α(t) = (α̂(tR))
R

. The longest nested
suffix is called the active suffix and the longest nested prefix is called the active prefix.
By Lemma 3.1, all longer suffixes (respectively prefixes) are represented by leaves. As
with suffix trees, all updating is done “around” the positions of the active suffix and
the active prefix. We therefore always keep the following data for the construction of
compact affix trees:

• A canonical suffix reference pair aspsuffix(t) for the active suffix point, the suffix
location of the active suffix.

• A canonical prefix reference pair aspprefix(t) for the active suffix point, the prefix
location of the active suffix, which is the active prefix of the reverse string.

• A canonical prefix reference pair appprefix(t) for the active prefix point, the pre-
fix location of the active prefix. The active prefix is the active suffix of the
reverse string, so it is the counterpart to aspsuffix(t) in the prefix view.

• A canonical suffix reference pair appsuffix(t) for the active prefix point, the suffix
location of the active prefix.

• The active suffix leaf asl suffix(t), which represents the shortest non-nested suffix
of t.

• The active prefix leaf aplprefix(t), which represents the shortest non-nested prefix
of t.

For the four reference pairs and the two leaves we also keep the “depth” (the length
of the represented string). This is needed in order to calculate the correct indices of
edge labels in the implementation of the algorithm.

Note that aspprefix(t) should be read as “the location of the active suffix in the
prefix view”. In this way, we fix a view and the definition of active suffix and active
prefix refers to the string t and not to its reverse. When reversing the view, suffix and
prefix also have to be reversed, e.g., appsuffix(t) becomes aspprefix(t

R).
As already mentioned before, we can conceptually see aspsuffix(t) and aspprefix(t)

as one combined reference pair for the active suffix and appprefix(t) and appsuffix(t) as
one combined reference pair for the active prefix.

CHAPTER 3. LINEAR CONSTRUCTION OF AFFIX TREES 37

A non-nested suffix, represented by a suffix leaf in the suffix tree, is not represented
by a node in the prefix tree because it occurs only once as the prefix of tR. Hence, all
suffix leaves must be hidden in a prefix tree-like view of the affix tree.

By Lemma 3.2, the asl suffix is the only suffix node other than the root that may
have a non-atomic suffix link. Therefore, all suffix leaves form a chain with atomic
suffix links because, if a leaf is not the asl suffix, there is a leaf representing a suffix that
is shorter by one character. This chain of suffix leaves must be hidden in the prefix
view. Fortunately, the chain does not extend over the leaves to other suffix nodes. The
next lemma proves that the prefix parent of asl suffix is always a prefix node, too, and is
hence represented by a node in the prefix tree.

Theorem 3.3 (Parent of the active suffix leaf).

The prefix (or suffix) parent of the active suffix (respectively prefix) leaf is always a

prefix (respectively suffix) node.

Proof. The asl suffix(t) is the leaf representing the shortest non-nested suffix. Let p be
the prefix parent of asl suffix(t).

Suppose p is not a prefix node, then p must be a suffix node and w = path(p) is
right-branching in t. By the definition of suffix links, w is a suffix of path(asl suffix(t))
and hence a suffix of t. For w to be right-branching there must be at least two occur-
rences of w in t, one followed by a ∈ Σ, the other by b ∈ Σ (with a 6= b). Taking a
look at the preceding characters, we therefore find that

xw ∈ suffixes (t) and ywa, zwb ∈ substrings (t) (3.1)

with x, y, z ∈ Σ ∪ {ǫ} and not both y and z are empty strings (otherwise a = b).
Note that there can be no node q with u = path(q) such that u is a proper suffix
of path(asl suffix(t)) and w is a proper suffix of u. We say that such a node q “lies
between” p and asl suffix(t). Because asl suffix(t) is represented by a leaf and p is its
direct suffix parent, this node would be between these two, contradicting the original
assumptions.

If y and z are different characters, then w is left-branching and—by Lemma 3.1—a
prefix node. Suppose the contrary is true, then we can distinguish two cases: Either y
and z are equal, or one of the occurrences of w is as a prefix of t, i.e., y = ε or z = ε.

Let us first assume that both are equal and let y = z = c ∈ Σ. Either x is equal to c
or it is different. If we had x = c, then cw would be right-branching and represented
by a suffix node q lying between p and asl suffix(t)—a contradiction to our assumptions.
If we have x 6= c then w would be left-branching and p is a prefix node.

Thus, we find ourselves in the second case: One of y, z must be the empty string.
Hence, w occurs as a prefix of t. Without loss of generality, assume that z = ε. We
then have the situation

xw ∈ suffixes (t), ywa ∈ substrings (t), and wb ∈ prefixes (t) . (3.2)

If x 6= y, then w is left-branching and p is a prefix node. Therefore, we must have
x = y = c for c ∈ Σ+. Taking a look at the next position to the left of c we find that

xcw ∈ suffixes (t), ycwa ∈ substrings (t), and wb ∈ prefixes (t) (3.3)

38 3.1. DEFINITIONS AND DATA STRUCTURES FOR AFFIX TREES

for yet different x, y ∈ Σ ∪ {ǫ}.
Again we find that, if x 6= y, we have a left-branching string u that is represented

by a prefix node lying between p and asl suffix(t). Thus, either x = y or y is the empty
string (since ycwa is closer to the left string border than xcw). Iterating this argument
leads to

cuw ∈ suffixes (t) and uwa, wb ∈ prefixes (t) , (3.4)

for some string u ∈ Σ+ (at some point the left border is reached, y is the empty string,
and x is the character c). Therefore, wb is a prefix of uw. (Clearly, we have |u| > 0
because otherwise a = b.) It follows that cwb is a substring of t. Now, let u = vd for
some character d ∈ Σ, thus vdwa is a prefix of t, and the situation is

cwb, dwa ∈ substrings (t) and dw ∈ suffixes (t) . (3.5)

If c = d, then dw is a right-branching string represented by a node q that lies between p
and asl suffix(t)—a contradiction. Therefore, c 6= d, w is left-branching, and p is a
prefix node.

From Lemma 3.2 and the above theorem, we conclude that all nodes that occur in
the prefix tree for t but not in the suffix tree for t (so called prefix only nodes) appear
in chains with atomic edges limited by suffix nodes. As a consequence, we can cluster
the prefix nodes in the affix tree that would not be part of the suffix tree. Let p be a
prefix node that is not a suffix node. The node p has exactly one suffix child and one
suffix parent. If the suffix parent or the suffix child of p is also a prefix only node, the
edge length must be one. For the suffix structure, the prefix nodes can thus be clustered
to paths, where the nodes are connected by edges of length one. It suffices to know the
number of nodes in the path to know the string length of the path. What is an edge in
the suffix tree becomes an edge leading to a non-suffix node, a path of prefix nodes,
and a final edge leading again to a suffix node in the affix tree. See Figures 3.1(d)
and 3.1(e) where the nodes are already in boxes corresponding to their paths.

The path structure has the following properties:

• All non-suffix (or non-prefix) nodes in the suffix (or prefix) structure are clus-
tered in paths.

• Accessing the i-th (in particular the first and the last) node takes constant time.

• The first and the last node of each path hold a reference to the path and know
the path length.

• A path can be split into two in constant time similar to an edge. (This is neces-
sary, e.g., when a prefix only node in a path becomes a suffix node.)

• Nodes can be dynamically appended and prepended to a path.

With the first three properties, the affix tree can be traversed in the same asymptotic
time as the corresponding suffix tree and, with the latter two properties, the updating
also works in the same asymptotic time.

The affix tree can be traversed ignoring nodes of the reverse kind: If a non-suffix
node is hit while traversing the suffix part, it must have a pointer to a path. The last
node of that path is again a prefix node with a single suffix node as suffix child. This
is the key to achieving a linear time bound in the construction of affix trees.

CHAPTER 3. LINEAR CONSTRUCTION OF AFFIX TREES 39

3.1.4 Implementation Issues

We briefly take a closer look at the details of the data structures. The edges need
to be traversable in both directions. Therefore, we store a starting and ending point
and the indices (including a flag to mark open edges) in the underlying string at each
edge. To traverse the edges in both directions, we need to store the outgoing suffix
and prefix edges indexed by their starting character and the suffix and prefix parent
edges at the nodes. The first and the last node of a path need to have a reference to the
path. A node cannot be part of two paths, so each node carries a single path pointer.
The type of a path can be derived from the node type, which in turn can be derived
from the number of children of each type. The adjacency list can be stored in various
ways (trees, lists, arrays, hash tables). The optimal storage depends on the application.
For the analysis, the alphabet is assumed to be fixed and the only thing needed is a
procedure getEdge(node, type, starting-character) that returns the edge of the given
type and with the given character.

The paths are stored as one or two dynamic arrays that can grow with constant
amortized cost per operation (see Section 2.2.2). The size of the path is linear in the
number of nodes it contains. Paths never need to be merged: Except for the active
prefix leaf, no nodes are ever deleted. Between the active prefix leaf and the next
prefix node closer to the root, there is always one suffix node (see Theorem 3.3), so
the two clusters can never merge. An inner node that is of suffix type represents a
right-branching substring w of t. Regardless of appending or prepending to t, the
substring w always stays branching.

To be able to split paths, we use path pointers. A path pointer has a reference to
the path, an index to the first node pointer, and a length. When a path is split, two
path pointers share the same dynamic array structure. For example, the nodes ab, aba,
abab, ababa are in a common path in the affix tree for t = aabababa (Figure 3.2(a)).
After the affix tree is extended to t = aabababaa (Figure 3.2(b)), the nodes aba and
ababa are suffix nodes and no longer path members. The nodes ab and abab now
share the same dynamic array, but the array does not need to grow because the nodes
a, aba, and ababa will never be deleted, and no other nodes can be inserted between
them.

The size of an affix tree depends on the way the children of a node are stored.
Assuming a constant size alphabet Σ, it makes no difference to the asymptotic running
time whether we use linear lists, hash tables, or arrays. For a small alphabet Σ (e.g.,
|Σ| = 5) an array is probably the smallest and fastest solution. In that case, the size of
an affix tree for a string of size n can be estimated as follows: Add the size of the two
parent edges to the node to that they lead, so for each node we count the two parent
edges (each with two indices, one open edge flag, one type flag, and two pointers),
the two children arrays (each |Σ| pointers), the two parent pointers (one pointer each),
a path pointer (two indices, one pointer), and a path array structure (two pointers to
dynamic arrays, five indices for size, length and a reference count, and one pointer to
a node). The number of nodes is at most 2n. The size of the underlying string (as a
two way extensible dynamic array structure) is at most 2n characters. The size of the
reference pairs does not contribute asymptotically. An upper bound for the total size
of the affix tree T is then size(T) ≤ n(22 indices + 2 characters + 8 flags + (22 +
4|Σ|) pointers). Assuming a four byte machine architecture (storing flags in a bit of

40 3.2. CONSTRUCTION OF COMPACT SUFFIX TREES

a

b

a

b

a

b

a

b

a

a

b

a

b

a b

a

b

a

b

a

(a)

a

a

b

a

b

a

a

b

a

a b

a

a

a

b

a

b

a

a

a b

a

a

b

a

b

a

(b)

Figure 3.2: The affix trees for aabababa and for aabababaa.

some index or pointer, characters in one byte, and pointers and indices in four bytes)
and a four element alphabet, the size is then at most 250n bytes.

3.2 Construction of Compact Suffix Trees

In order to prepare the construction of affix trees, we briefly describe how to construct
suffix trees by expanding the underlying string once to the right and once to the left.

These problems are solved by two already existing algorithms, namely Ukkonen’s
algorithm [Ukk95] and Weiner’s algorithm [Wei73]. We assume some additional infor-
mation in the latter algorithm readily available when constructing affix trees; therefore,
the described algorithm is not identical to Weiner’s algorithm (but simpler). The re-
sults of this section are due to Ukkonen and Weiner. We replicate them in detail here
to prepare the presentation of the affix tree construction algorithm.

3.2.1 On-Line Construction of Suffix Trees

Ukkonen’s algorithm constructs a suffix tree on-line from left to right, building ST(ta)
from ST(t). The algorithm can intuitively be derived from an algorithm that constructs
atomic suffix trees. It essentially works by lengthening all suffixes represented in
ST(t) by the character a and inserting the empty suffix. Obviously, the resulting tree
is ST(ta).

To analyze the algorithm the suffixes are divided into three different types:

Type 1. Non-nested suffixes of t.

Type 2. Nested suffixes s of t, where sa is a substring of t.

CHAPTER 3. LINEAR CONSTRUCTION OF AFFIX TREES 41

Type 3. Nested suffixes s of t, where sa is not a substring of t. We call sa a relevant
suffix.

To extend t by the character a, we deal with each of these sets of suffixes:

Case 1. For all suffixes s of t of Type 1, sa is non-nested in ta (otherwise sa would
occur elsewhere in t and s were nested). The suffix s was represented by a
leaf (Lemma 3.1) in ST(t) and sa will be represented by a leaf in ST(ta).
With the use of open edges for leaves, all leaves will extend automatically to
the end of the string. Nothing needs to be done for these suffixes.

Case 2. For all suffixes s of t of Type 2, sa is a substring of t. Hence, sa is a nested
suffix of ta. Nothing needs to be done for these suffixes.

Case 3. For all suffixes s of t of Type 3, sa is a non-nested suffix and must thus be
represented by a leaf in ST(ta). The suffix s is not represented by a leaf in
ST(t).

If sa is a relevant suffix (Type 3), then s is a nested suffix of t. Therefore, s must be
a proper suffix of t and s occurs as a substring elsewhere in t. The extended suffix sa
is non-nested in ta, so sa cannot occur in t. Therefore, there is a substring sb in t with
b 6= a. Thus, sa, sb ∈ substrings(t) and s is right-branching in ta. To update ST(t)
with the relevant suffix sa, a node s must be inserted (unless s was right-branching in t
and s already exists) and a new leaf sa must be added at the (possibly new) node s.

Lemma 3.4.

Every relevant suffix sa is a suffix of α(t)a, and α(ta) is a suffix of every relevant

suffix.

Proof. The active suffix α(t) is the longest nested suffix of t. If sa is a relevant suffix, s
is a nested suffix of t. Hence, s is a suffix of α(t) and sa a suffix of α(t)a. The new
active suffix α(ta) cannot be longer than α(t)a. Suppose otherwise that it would be
longer, then α(ta) = vα(t)a for some v ∈ Σ+. Because the new active suffix α(ta)
is nested in the new string ta, we have vα(t)a ∈ psubstrings(ta) ∪ prefixes(ta). It
follows that vα(t) ∈ psubstrings(t)∪prefixes(t) and vα(t) ∈ suffixes(t). The suffix
vα(t) would be nested and longer than α(t). This contradicts the definition of the
active suffix.

Both, α(ta) and α(t)a are suffixes of ta, therefore α(ta) is a suffix of α(t)a.
Because a relevant suffix sa is non-nested in ta, it is longer than α(ta). Hence, α(ta)
is a suffix of sa.

Corollary 3.5.

The new active suffix α(ta) is a suffix of α(t)a.

Let α(t) = tin,n and let α(ta) = tin+1,na. Let us denote the relevant suffixes by
sk = tin+k,n with k ∈ {0, . . . , in+1−in−1} (if in = in+1, there is no relevant suffix).
The (canonical) reference pair aspsuffix(t) = (p, (o, l)) represents the active suffix α(t)
such that α(t) = path(p)to,o+l−1 (here, o + l − 1 = n). Therefore, p represents the
prefix tin,o−1 of α(t). For all relevant suffixes, we can reach the location of sk with
aspsuffix(t) as follows. The first relevant suffix is immediately available because we

42 3.2. CONSTRUCTION OF COMPACT SUFFIX TREES

Procedure 3.3 canonize(reference pair (p, (o, l)))

Parameters: (p, (o, l)) is a reference pair that is to be canonized.

1: if l 6= 0 then {Otherwise the reference pair is already canonical.}
2: e := getEdge(p, SUFFIX, to);
3: k := getLength(e);
4: while k ≤ l do

5: o := o + k;
6: l := l − k;
7: p := getTargetNode(e);
8: e := getEdge(p, SUFFIX, to);
9: k := getLength(e);

have s0 = path(p)to,o+l−1 (with n = o + l − 1). We reach the other locations by
modifying the reference pair. Let (pk, (ok, lk)) be the canonical reference pair1 for the
location of the relevant suffix sk. To reach the location of sk+1 from the reference
pair (pk, (ok, lk)), we have two cases. If pk is not the root, it has a suffix link to
a node q such that path(pk) = tin+kpath(q) and sk+1 = path(q)tok,ok+lk−1 =
tin+k+1,n. The new base is canonized (see Procedure 3.3), which changes the base
to pk+1 and the offset and length to ok+1 and lk+1. Otherwise, if pk is the root, then
sk = tok,ok+lk−1, and we can get to the location of sk+1 by increasing the offset o
and decreasing the length l because we have sk+1 = tok+1,(ok+1)+(lk−1)−1. Again we
invoke the procedure canonize(). The relevant suffixes are thus reached by starting
at aspsuffix(t) and iteratively moving over suffix links and canonizing. It can easily
be determined whether we have reached a non-relevant suffix (Type 2) by checking
whether the current reference pair aspsuffix can be extended by a. If this is the case,
the current represented suffix is nested, and the current reference pair is aspsuffix(ta).

The suffix links for the new nodes can be set during the process or afterwards if we
store each node pk inserted (or found) during the handling of sk on a stack. Node pk

from the k-th iteration of the while loop is linked to the node pk+1 of the following
iteration. The last node pin+1−in−1 gets a suffix link to an already existing node (called
the end point), which represents a string one character shorter than α(ta) and is either
the base of asl suffix(ta) or one edge below the base. By Lemma 3.2, the end point
always exists.

Procedure 3.3 takes a reference pair (p, (o, l)) and changes the base, the offset,
and the length so that the resulting reference pair represents the same string and is
canonical. The process is called canonizing a reference pair. This is done by following
edges that represent suffixes of the string part of the reference pair down the tree until
the node is closest to the represented location.

Lemma 3.6.

The amount of work performed during all calls to canonize() with the reference pair

aspsuffix(t) is O(|t|).
1The reference pairs (pk, (ok, lk)) do not exist on their own but are stages reached by the reference

pair aspsuffix(t) before it becomes aspsuffix(ta).

CHAPTER 3. LINEAR CONSTRUCTION OF AFFIX TREES 43

Proof. Let n = |t|. The amount of work performed during canonizing the reference
pair aspsuffix(t) can be bounded as follows. Each time a character is appended to t, a
coin is put on the character. The reference pair aspsuffix(t) consists of a base p, a start
index o into t, and a length l. The string part of the reference pair is to,n leading to
the implicit location. Each time the base is moved along an edge e down the tree, the
length l is decreased and the index o is increased by the length k of the edge. We take
the coin from character to to pay for the step. Because o is never decreased, there is
always a coin on to. As a result, canonizing takes amortized constant time per call.

Theorem 3.7.

Ukkonen’s algorithm constructs ST(t) on-line in time O(|t|).
Proof. Let n = |t|. The only part with non-constant running time per iteration is the
insertion of the relevant suffixes. The number of nodes of ST(t) is at most 2n, the
number of leaves is at most n (there are at most n leaves, so there cannot be more
than n branching nodes). Each time (but once per iteration) that a suffix link is taken,
at least one leaf is inserted. The number of links taken is therefore less than n. The
amount of work performed during canonizing the reference pair aspsuffix(t) is O(n)
by Lemma 3.6.

See Figure 3.4 which shows the intermediate steps of the on-line construction of
ST(acabaabac) from ST(acabaaba). The reference pair starts out with the base a

and the remaining string ba, e.g., as (a, (6, 2)) (the indices are implementation indices
starting at zero in this example). After the insertion of the new leaf between (b) and (c),
the suffix link from a to the root is taken. The edge starting with b has length six, and
thus no canonizing takes place. After the insertion of the second leaf between (c)
and (d), the offset is increased, the length decreased (instead of taking a suffix link).
The resulting reference pair is (root, (5, 1)) with remaining string a. The reference
pair is then canonized to (a, (6, 0)), where it can be extended to (a, (6, 1)) with the
remaining string c.

3.2.2 Anti-On-Line Suffix Tree Construction with Additional Informa-

tion

Anti-on-line construction builds ST(at) from ST(t). The tree ST(t) already repre-
sents all suffixes of ST(at) except at. Only the suffix at needs to be inserted. The leaf
for at will branch at the location representing α̂(at) in ST(t).

We assume that we have the additional information of knowing the length of α̂(at)
available in each iteration of the following algorithm. With this, we do not need the
“indicator vector” used by Weiner [Wei73] to find the length of the new active prefix.

There are three possibilities. The node location may be represented by an inner
node, the location is implicit in some edge, or the location is represented by a leaf.
In the last case, the new leaf does not add a new branch to the tree but extends an
old leaf that now represents a nested suffix. The node representing the old leaf needs
to be deleted after attaching the new leaf to it (it represents a nested suffix now, see
Lemma 3.1).

Lemma 3.8.

The new active prefix α̂(at) is a prefix of aα̂(t).

44 3.2. CONSTRUCTION OF COMPACT SUFFIX TREES

active suffix
a c a b a a b a

suffix base

a

b

a

b

a

a

b

a

c

a

b

a

a

b

a

a b

a

a

b

a

c

a

b

a

a

b

a

(a)

active suffix
a c a b a a b a c

suffix base

a

b

a

c

b

a

a

b

a

c

c

a

b

a

a

b

a

c

a b

a

a

b

a

c

c

a

b

a

a

b

a

c

(b)

active suffix
a c a b a a b a c

suffix base

a

b

a

c

a

b

a

c

c

b

a

c

a

b

a

a

b

a

c

a b

a

a

b

a

c

c

a

b

a

a

b

a

c

(c)

active suffix
a c a b a a b a c

suffix base

a

b

a

c

a

b

a

c

c

b

a

c

a

b

a

a

b

a

c

a

a

b

a

c

c

b

a

c

a

b

a

a

b

a

c

(d)

active suffix
a c a b a a b a c

suffix base

a

b

a

c

a

b

a

c

c

b

a

c

a

b

a

a

b

a

c

a

a

b

a

c

c

b

a

c

a

b

a

a

b

a

c

(e)

Figure 3.4: Steps of constructing ST(acabaabac) from ST(acabaaba). The active
suffix (as represented by aspsuffix) is shown above each tree. The substring marked as
suffix base is the part of the active suffix that is represented by the base of the (canonical)
reference pair. The offset index of the reference pair points to the character one right of
the substring represented by the base. Figure (a) is the starting point. In Figure (b) the
open edges have grown with the text. Figure (c) shows the tree after the first relevant
suffix has been inserted and the base of the reference pair has been moved over a suffix
link. Figure (d) shows the tree after the second relevant suffix has been inserted, the
reference pair has been shortened at the front, canonized to a, and was enlarged by the
new character. Figure (e) shows the final tree with the updated suffix links.

CHAPTER 3. LINEAR CONSTRUCTION OF AFFIX TREES 45

Procedure 3.5 decanonize(reference pair (p, (o, l)), character a)

Parameters: (p, (o, l)) is a reference pair that is to be decanonized, a is the char-
acter for that a prefix edge is to be found.

1: e := getEdge(p, PREFIX, a); {If there is no edge,then e is nil.}
2: while e = nil or getLength(e) 6= 1 do

3: f := getParent(p, SUFFIX);
4: if f = nil then {If p has no parent, it is the root. The index o should then point

to the beginning of the old string. Make it point to the beginning of the new
string.}

5: o := o − 1;
6: l := l + 1;
7: return;
8: else

9: k := getLength(f);
10: o := o − k;
11: l := l + k;
12: p := getSourceNode(f);
13: e := getEdge(p, PREFIX, a);
14: p := getTargetNode(e);

Proof. Obviously, both strings are prefixes of at. Either α̂(at) is a prefix of aα̂(t),
or aα̂(t) is a proper prefix of α̂(at). If aα̂(t) were a proper prefix of α̂(at), then we
would have α̂(at) = aα̂(t)v for some v ∈ Σ+. Hence, α̂(t)v ∈ prefixes(t) and
aα̂(t)v ∈ psubstrings(t) ∪ suffixes(t), which contradicts the definition of the active
prefix because α̂(t)v would be a longer candidate.

Let t = t−n · · · t−1 and at = t−n−1t−n · · · t−1 (i.e., a = t−n−1). For the purpose
of constructing the suffix tree ST(at) from the suffix tree ST(t), we keep a canoni-
cal reference pair appsuffix(t) for the active prefix α̂(t). Let rn+1 = (pn+1, vn+1) be
a canonical reference pair for α̂(at) = t−1−n,in+1 in ST(t) (the location of the new
active prefix in the current suffix tree). The base pn+1 of rn+1 has a suffix link to a
node p′n+1 (Lemma 3.2). Hence, r′ = (p′n+1, vn+1) is a reference pair for t−n,in+1 ,
which is a prefix of α̂(t) (Lemma 3.8). Let rn = (pn, vn) be the reference pair
appsuffix(t). There exists a path π = (p′n+1, . . . , pn) from p′n+1 to pn in ST(t) (π
might have length 0).

We claim that for any node s on the path π, if s 6= p′n+1 and s 6= pn, then there is
no node q such that there is a suffix link labeled a from q to s.

Assume otherwise that such a node q existed. Because α̂(t) is a prefix of t, path(s)
is also a prefix of t and path(q) = apath(s) is a prefix of at. On the other hand, q
being a leaf proves the existence of path(q) ∈ suffixes(t) and q being an inner node
proves the existence of path(q) ∈ prefixes(t) ∪ psubstrings(t). Hence, we have
path(q) ∈ psubstrings(at)∪ suffixes(at). Therefore, path(q) is a nested-prefix of at
and thus a prefix of α̂(at). Because depth(q) = depth(s) + 1 > depth(p′n+1), this is
a contradiction to rn+1 = (pn+1, vn+1) being a canonical reference pair for α̂(at).

As a result, we have a unique method to find appsuffix(at) from appsuffix(t) by

46 3.2. CONSTRUCTION OF COMPACT SUFFIX TREES

Procedure 3.6 update-new-suffix(reference pair (p, (o, l)), character a, int k)

Parameters: k is the new length of the reference pair after it has been decanon-
ized.

1: decanonize((p, (o, l)), a); {We remember node r at depth k − 1 during canoniz-
ing.}

2: l := k − depth(q)
3: if l = 0 then

4: q := p;
5: else

6: insert a node q at the location of (p, (o, l)) by splitting the edge with starting
character to

7: insert a new leaf r linked to q by an edge with string label (o, n + 1)
8: if q was a leaf then

9: eliminate q
10: else

11: add a suffix link from q to r

decanonizing appsuffix(t) = (p, (i, l)). We start at the base p and walk up towards
the root until a prefix edge (i.e., a reverse suffix link) e labeled with a is found. For
each edge on the way up, we subtract its length from i. Finally, we replace p by the
target q of the prefix edge e (i.e., the source of the suffix link). With the knowledge of
the length of α̂(at), we can set the length l to |α̂(at)| − depth(q) and get a canonical
reference pair for appsuffix(at).

If a new node q is added for appsuffix(at) to insert the leaf representing the suffix at,
we have to set its suffix link to a node r. By Lemma 3.8, we have depth(r) ≤ |α̂(t)|.
At the beginning of the iteration, we have the canonical reference pair rn = (pn, vn)
for α̂(t). Because rn is canonical, we know that depth(r) ≤ depth(pn). On the other
hand, we inserted a new node q above pn+1, thus we have depth(r) = depth(q) −
1 > depth(pn+1) − 1 = depth(p′n+1). Hence, we encounter r on the path π while
searching the suffix link labeled a. We know beforehand that depth(r) = |α̂(at)| − 1,
so r is also easily identified. Procedure 3.6 gives the algorithm in pseudo code and
Procedure 3.5 the details of decanonizing.

Lemma 3.9.

The amount of work performed during all calls to decanonize() with the reference pair

appsuffix(t) is O(|t|).

Proof. We apply amortized analysis as follows: Each time a character is prepended
to t a coin is put on the character. As described above, for each edge the base is
moved upwards, the index o of the string part of the reference pair is decreased.
We take the coin on to to pay for the step. The offset o stays unchanged when the
base is replaced or when the length is adjusted. If decanonize() moves the base of
appsuffix(t) = (p, (o, l)) to a leaf, l must be zero (otherwise there wouldn’t be a loca-
tion for appsuffix(t)). The leaf is deleted when attaching the new suffix to it and the
base of appsuffix(t) is moved up towards the next node, decreasing the offset o. There-
fore, o never increased and there is always a coin on to. As a result, decanonizing has

CHAPTER 3. LINEAR CONSTRUCTION OF AFFIX TREES 47

amortized constant complexity.

Theorem 3.10.

With the additional information of knowing the length of α̂(s) for any suffix s of t
before inserting it, it takes time O(|t|) to construct ST(t) in an anti-on-line manner,

i.e., reading t in reverse direction from right to left.

Proof. Inserting the leaf, inserting an inner branching node, or deleting an old leaf
takes constant time per step. The non-constant part of each iteration is the decan-
onizing of appsuffix(t). By Lemma 3.9, the work can be done in amortized constant
time.

See Figure 3.7, where the construction of ST(cabaabaca) from ST(abaabaca)
is shown. If we do not have prefix links for leaves, the reference pair for appsuffix(t)
is decanonized by moving the base from aba over a to the root, where the offset is
decreased by one. The length is then adjusted to 2. The leaf will be deleted and,
therefore, there is no need to canonize to ca. If we have prefix links for leaves (not
drawn in Figure 3.7), there is a prefix edge labeled c from a to ca, which is found after
moving the base up to a. Before deleting the node ca, the base of the reference pair
needs to be moved back up to the root.

3.3 Constructing Compact Affix Trees On-Line

This section describes the linear-time unidirectional construction of affix trees. We
emphasize the derivation from merging the two algorithms of the previous section.
The algorithm is best understood as interleaving the steps of these algorithms together
with the use of paths so that the two algorithms never notice each other.

3.3.1 Overview

The algorithm is dual by design. The necessary steps to construct AT(ta) from AT(t)
are the same as for constructing AT(at) from AT(t), we only have to exchange “suf-
fix” and “prefix” in the description and swap the reference pairs. For the sake of clarity,
we assume the view of constructing AT(ta) from AT(t). We call this a suffix iteration,
whereas constructing AT(at) from AT(t) is called a prefix iteration.

The affix tree for t consists of the suffix structure that is equivalent to the suffix tree
ST(t) and the prefix structure that is equivalent to the prefix tree ST(tR). To create
the affix tree AT(ta) from the affix tree AT(t), we apply the algorithm described in
Section 3.2.1 (Ukkonen) to the suffix structure and apply the algorithm described in
Section 3.2.2 (Weiner′) to the prefix structure. We need to take precaution so that one
algorithm does not disturb the other when they are merged together (the algorithms
need to “see” the correct view). Additionally, the path structures must be updated
correctly.

To achieve a linear running time, we treat paths as edges. Function 3.8 shows how
prefix nodes clustered in a path can be treated as a single edge (in constant time). All
other functions on edges can be implemented for paths in a similar way with constant
running times.

48 3.3. CONSTRUCTING COMPACT AFFIX TREES ON-LINE

active prefix
a b a a b a c a

suffix base

a

b

a

c

a

a

b

a

c

a

c

a

b

a

c

a

a

a

b

a

c

a

c

a

b

a

c

a

(a)

active prefix
c a b a a b a c a

suffix base

a

b

a

c

a

a

b

a

c

a

c

a

b

a

c

a

a

a

b

a

c

a

c

a

b

a

c

a

(b)

active prefix
c a b a a b a c a

suffix base

a

b

a

c

a

a

b

a

c

a

c

a

b

a

c

a

a

a

b

a

c

a

c

a

b

a

b

a

a

b

a

c

a

c

a

(c)

active prefix
c a b a a b a c a

suffix base

a

b

a

c

a

a

b

a

c

a

c

a

b

a

c

a

a

a

b

a

c

a

c

a

b

a

c

a

b

a

a

b

a

c

a

(d)

Figure 3.7: Steps of constructing ST(cabaabaca) from ST(abaabaca). The active
prefix (as represented by appsuffix) is shown above each tree. The substring marked as
prefix base is the part of the active prefix that is represented by the base of the (canonical)
reference pair. The offset index of the reference pair points to the character one right
of the substring represented by the base. Figure (a) is the starting point. In Figure (b),
the appsuffix has been decanonized and the location of α̂(cabaabaca) has been found.
Figure (c) shows the tree with the new suffix inserted. It was added at a leaf, which is then
deleted to give the final tree in Figure (d).

CHAPTER 3. LINEAR CONSTRUCTION OF AFFIX TREES 49

Function 3.8 getTargetNodeVirtualEdge(edge e) returns node

Parameters: e is a suffix edge that possibly ends in a prefix node.

1: p := getTargetNode(e);
2: if p has only one suffix child then {Node p is a prefix node.}
3: π = getPath(p); {Node p is contained in a path π.}
4: q = getLast(π); {Node q is the last node of path π.}
5: f = getOnlyEdge(q, SUFFIX); {Node q is a prefix node (in π) and has only

one suffix child.}
6: r = getTargetNode(f);
7: return(r);
8: else

9: return(p); {There is no path for suffix nodes.}

Each iteration (which consists of all necessary updating steps to append a character
to t) of the algorithms consists of the following steps:

Step 1. Let p be the prefix parent of asl suffix(t). Remove the prefix edge that leads
from p to asl suffix(t). Remember the node p.

Step 2. Lengthen the text, thereby automatically extending all open edges.

Step 3. Insert a prefix node for t as suffix parent of ta.

Step 4. Insert the relevant suffixes and update the suffix links using aspsuffix(t). Re-
store the prefix structure to include the prefix t.

Step 5. Decanonize aspprefix(t) to find aspprefix(ta), make its location explicit, and
add a prefix edge to the current asl suffix. If the location of aspprefix(ta) is
a prefix leaf, then the leaf must be deleted because it has become a non-
branching inner node in this step.

3.3.2 Detailed Description

Step 1 is necessary because the suffix edge is an open edge and automatically grows
when the string is enlarged, while the prefix edge is not an open edge. After this step,
the prefix structure is still complete except for the prefix for t, which is no longer
represented. The step can easily be implemented in constant time.

The underlying string can be implemented as a dynamically growing array (see
Section 2.2.2). When a character is appended in Step 2, all open edges and thus all
suffixes of Type 1 (see Section 3.2.1) grow automatically. The prefix link of the active
suffix leaf was deleted in the previous step because otherwise depth(asl suffix) would
be different in the prefix and in the suffix part of the affix tree.

Step 3 reinserts the prefix node for t (but without linking it in the prefix structure
yet). The prefix edge will be inserted in the next step. We can find the correct location
to insert the new node easily if we keep a reference to the node that represents the
complete string (the end node). The node will never change and automatically grows

50 3.3. CONSTRUCTING COMPACT AFFIX TREES ON-LINE

by its open edge. It can never be deleted because in Step 5 leaves are only deleted
if they become nested. The new prefix node for t is not a suffix node (it cannot be
branching and it is not a leaf) and is therefore added to a path. If t is not the only prefix
leaf representing a proper non-nested prefix of the complete string, there is a prefix
leaf r representing t0,n−1 and the new leaf can be added to r’s path.

Step 4 is basically the same as the algorithm described in Section 3.2.1. For each
new suffix leaf, a prefix edge to the current asl suffix is inserted and the new leaf be-
comes the asl suffix.

Although the location referenced by aspsuffix may be implicit in the suffix structure,
each time a new node would be inserted for a suffix tree, there can be an existing node p
that represents a left-branching substring of t and belongs to the prefix structure. In
this case, the path that contains p must be split and p must thus be made visible in
the suffix structure. This corresponds to splitting an edge and can be implemented in
constant time analogously to Function 3.8.

The newly inserted inner nodes must be threaded in the prefix structure which
corresponds to setting their suffix links. By Lemma 3.2, there is always an end point
(the suffix parent to the last node where a leaf was added), which can be used as a
starting point. If new nodes were inserted, these belong to the suffix structure only and
the corresponding paths must be added or changed.

The procedure update-relevant-suffixes(aspsuffix, a) is modified to put the tra-
versed nodes on a stack, and their suffix links are set in reverse order while the paths
are augmented at the same time. By traversing the nodes in reverse order, we can as-
sure that we are able to grow existing paths. When setting the suffix links and adding
nodes to paths, we must check whether old prefix edges between these nodes existed
and if so remove them. This can be done while the nodes are put on the stack. The
next two lemmas give some hints on how to reconstruct the prefix structure.

Lemma 3.11.

Let p be a (new) branching node to that a relevant suffix is attached. Then p is a prefix

parent or prefix ancestor of the prefix leaf representing t.

Proof. Let p be as in the prerequisite. Then p represents a string w = path(p) that
was a nested suffix of t, but wa is not nested in ta. Because w is a suffix of t, there is
a prefix path from p to t.

Thus, all inserted nodes represent suffixes of t.

Lemma 3.12.

The string path(p) represented by the node p remembered in Step 1 is a suffix of α(t).

Proof. The node p is the prefix parent of asl suffix(t). Therefore, path(p) is a suffix of
path(asl suffix(t)). Because path(asl suffix(t)) is a suffix of t, so is path(p). The node p
is either an inner prefix node or an inner suffix node. In both cases, it represents a
nested substring of t (by Lemma 3.1). We have |path(p)| ≤ |α(t)| because α(t) is the
largest nested suffix of t. Hence, path(p) is a suffix of α(t).

Let q be the first node that was either inserted or that resulted from a split path (in
which case q was a prefix but no suffix node in AT(t)). Let p be the node remembered
in Step 1. Note that all nodes inserted after node q represent suffixes of path(q),

CHAPTER 3. LINEAR CONSTRUCTION OF AFFIX TREES 51

and path(q) is a suffix of t. Furthermore, path(p) is nested in t and thus shorter
than path(q), which is also a suffix of t. Because p was the direct prefix parent of
asl suffix(t), there is no other suffix of t represented by a node in AT(t). It follows
that q (representing α(t)) is either a descendant of p or equals p and that we have thus
already inserted a chain of suffix links from q to p. Hence, we insert a prefix edge
from q to the node inserted for t in Step 3. If no relevant suffixes were inserted, we
add a prefix edge from node p to the prefix node for t.

While the prefix t was removed from the prefix structure in Step 1, it is now in-
serted again. The newly inserted inner nodes are in the suffix structure only and are
hidden in paths. After this step, the prefix structure corresponds to ST(tR) again.

Step 5 inserts the prefix ta and basically corresponds to the algorithm described
in Section 3.2.2. The suffix location is easily found with aspsuffix(ta) and so the node
can be inserted in the suffix structure, too (possibly in a path). The length of α̂(ta) is
the same as the length of α(ta) and the information is taken from the previous step.

If a new prefix node is inserted, it may either be added to a path on its own or to
the path of its suffix parent. If the location is a prefix leaf, it must be removed from the
path that contains all the leaves before it is deleted.

All suffix leaves are suffixes of ta. They are connected by prefix edges labeled
with the first characters of ta. For example, the largest suffix is t0 · · · tna, the second
largest suffix is t1 · · · tna. They are connected by a prefix edge labeled with t0. Hence,
the prefix edges connecting the k + 1 largest suffix leaves describe the prefix t0 · · · tk.
All leaves but the leaf for ta are in a path and not visible in the prefix tree. They are
the end of the largest prefix ta. Linking asl suffix, the shortest suffix leaf, to the location
aspprefix(ta) is equivalent to inserting a new prefix leaf for ta.

Hence, Step 5 correctly updates the prefix structure of the affix tree and the result-
ing tree is AT(ta).

3.3.3 An Example Iteration

Figures 3.9 and 3.10 show an example iteration of building AT(acabaabac) from
AT(acabaaba). Figure 3.9 shows the suffix view, and Figure 3.10 shows the prefix
view. The trees correspond to each other. Figure (a) shows the affix tree for the string
acabaaba. After Step 1 the prefix link of asl suffix (in the suffix view aaba) to p (in the
suffix view aba) is removed. The prefix for t = acabaaba is no longer represented
anymore, which is shown in Figure (b). Figure (c) shows the tree after the string has
grown in Step 2. As the character was appended to the right, this has no effect on the
prefix structure while all suffix leaves grow by the open edges. Step 3 reinserts the node
for the prefix location of t. The node is added to the path that contains the prefix leaves
as shown in Figure (d). The first relevant suffix is inserted resulting in Figure (e). The
branching node q = aba would have been inserted in a suffix tree construction. In the
affix tree, the node already exists and is only made a suffix node by removing it from
the path. This has no effect on the prefix structure. Figure (f) shows the tree after the
second relevant suffix has been inserted. A new branching node q = ba was created
in the suffix structure. The new node is not a prefix node and will thus be added to a
path. It appears—hidden in a path—in the prefix structure after the new nodes have
been threaded in from the stack. This can be seen in Figure (g), which shows the tree
after Step 4. The reference pair aspprefix is decanonized, its base moves from aba to a,

52 3.3. CONSTRUCTING COMPACT AFFIX TREES ON-LINE

active suffix

a c a b a a b a
suffix base

prefix base

a

b

a a

b

a

a

b

a

b

a

a

b

a

c

a b

a

a

b

a

c

a

b

a

a

b

a

(a)

active suffix

a c a b a a b a
suffix base

prefix base

a

b

a a

b

a

a

b

a

b

a

a

b

a

c

a b

a

a

b

a

c

a

b

a

a

b

a

(b)

active suffix

a c a b a a b a c
suffix base

prefix base

a

b

a

c

a

b

a

c

a

b

a

c

b

a

a

b

a

c

a b

a

a

b

a

c

c

a

b

a

a

b

a

c

(c)

active suffix

a c a b a a b a c
suffix base

prefix base

a

b

a

c

a

b

a

c

a

b

c

a

b

a

a

b

a

c

a b

a

a

b

a

c

c

a

b

a

a

b

a

c

(d)

active suffix

a c a b a a b a c
suffix base

prefix base

a

b

a

c

a

b

a

c

c

a

b

c

a

b

a

a

b

a

c

a b

a

a

b

a

c

c

a

b

a

a

b

a

c

(e)

active suffix

a c a b a a b a c
suffix base

prefix base

a

b

a

c

a

b

a

c

c

a

b

c

a

b

a

a

b

a

c

a

a

b

a

c

c

b

a

c

a

b

a

a

b

a

c

(f)

active suffix

a c a b a a b a c
suffix base

prefix base

a

b

a

c

a

b

a

c

c

a

b

c

a

b

a

a

b

a

c

a

a

b

a

c

c

b

a

c

a

b

a

a

b

a

c

(g)

active suffix

a c a b a a b a c
suffix base

prefix base

a

b

a

c

a

b

a

c

c

a

b

c

a

b

a

a

b

a

c

a

a

b

a

c

c

b

a

c

a

b

a

a

b

a

c

(h)

active suffix

a c a b a a b a c
suffix base

prefix base

a

b

a

c

a

b

a

c

c

a

b

c

a

b

a

a

b

c

a

a

a

b

a

c

c

b

a

c

a

b

a

a

b

a

c

(i)

Figure 3.9: Steps of an iteration from AT(acabaaba) to AT(acabaabac) in the suf-
fix view. The figures show the affix tree (a) AT(acabaaba), (b) after Step 1, (c) after
Step 2, (d) after Step 3, (e) after inserting the first relevant suffix, (f) after inserting the
second relevant suffix, (g) after Step 4, (h) after decanonizing aspprefix and inserting the
prefix location of ta, and (i) after the prefix leaf has been deleted. The resulting tree is
AT(acabaabac).

CHAPTER 3. LINEAR CONSTRUCTION OF AFFIX TREES 53

active suffix

a c a b a a b a
suffix base

prefix base

a

b

a

c

a

a

c

a

b

a c

a

b

a

c

a

a

a

b

a

c

a

c

a

b

a

c

a

(a)

active suffix

a c a b a a b a
suffix base

prefix base

a

b

a

c

a

c

a

b

a

c

a

a

a

b

a

c

a

c

a

b

a

c

a

(b)

active suffix

a c a b a a b a c
suffix base

prefix base

a

b

a

c

a

c

a

b

a

c

a

a

a

b

a

c

a

c

a

b

a

c

a

(c)

active suffix

a c a b a a b a c
suffix base

prefix base

a

b

a

c

a

c

a

b

a

c

a

a

a

b

a

c

a

c

a

b

a

c

a

(d)

active suffix

a c a b a a b a c
suffix base

prefix base

a

b

a

c

a

c

a

b

a

c

a

a

a

b

a

c

a

c

a

b

a

c

a

(e)

active suffix

a c a b a a b a c
suffix base

prefix base

a

b

a

c

a

c

a

b

a

c

a

a

a

b

a

c

a

c

a

b

a

c

a

(f)

active suffix

a c a b a a b a c
suffix base

prefix base

a

b

a

c

a

a

b

a

c

a

c

a

a

b c

a

a

a

b

a

c

a

c

a

b

a

c

a

(g)

active suffix

a c a b a a b a c
suffix base

prefix base

a

b

a

c

a

a

b

a

c

a

c

a

a

b c

a

a

a

b

a

c

a

c

a

b

a

a

c

a

b

a

a

b

c

a

(h)

active suffix

a c a b a a b a c
suffix base

prefix base

a

b

a

c

a

a

b

a

c

a

c

a

a

b c

a

a

a

b

a

c

a

c

a

b

a

a

c

a

b

a

a

c

a

b

(i)

Figure 3.10: Steps of an iteration from AT(acabaaba) to AT(acabaabac) in the pre-
fix view. The figures show the affix tree (a) AT(acabaaba), (b) after Step 1, (c) after
Step 2, (d) after Step 3, (e) after inserting the first relevant suffix, (f) after inserting the
second relevant suffix, (g) after Step 4, (h) after decanonizing aspprefix and inserting the
prefix location of ta, and (i) after the prefix leaf has been deleted. The resulting tree is
AT(acabaabac).

54 3.4. BIDIRECTIONAL CONSTRUCTION OF COMPACT AFFIX TREES

where a suffix edge leads to ca, which becomes the new base. The new length is set
to two, and a prefix edge is inserted to asl suffix = cab. The resulting tree is shown in
Figure (h). Because ca was a prefix leaf, it needs to be deleted. Finally, the resulting
tree AT(acabaabac) is shown in Figure (i).

3.3.4 Complexity

Theorem 3.13 (Complexity of the unidirectional construction).

The affix tree AT(t) for the string t can be constructed in an on-line manner from left

to right or from right to left in time O(|t|).
Proof. The algorithm is dual, so it does not matter whether we always append to the
right or always append to the left. Exchanging the words “suffix” and “prefix” in the
description of the algorithm does not change it.

With the use of paths (see Function 3.8 for an example), Step 4 only sees nodes
that would be in the corresponding suffix tree. The other nodes are hidden in paths and
are skipped like edges. Similarly, Step 5 only works with nodes that would be in the
corresponding prefix tree. New nodes are added to paths and so this invariant is kept.
Therefore, Lemma 3.6 and Lemma 3.9 can be applied and both steps take amortized
constant time. If we use the index transformation as described in Section 3.1.3, we do
not even need to change the amortized analysis of Lemma 3.9—the coins are simply
taken from t−1−o (recall that o is the offset of the reference pair aspprefix). Because o
only decreases, −1 − o only increases. We always put a coin on a newly added char-
acter. Hence, there is always a coin on t−1−o. The other three Steps (1, 2, and 3) take
constant time each. As a result, the algorithm runs in linear time.

Remark 3.14.

As already stated, the algorithm is on-line: The k-th step results in the affix tree for the
prefix of length k of the string. Assuming the input string has length n, the complexity
of an individual step can well be Θ(n). Consider the last step of building the affix tree
for aaa· · ·aaab. The string aaa· · ·aaa has no right- or left-branching substrings, but
the final string has n − 2 right-branching substrings, thus Θ(n) new inner nodes have
to be created.

3.4 Bidirectional Construction of Compact Affix Trees

So far, we have only considered the question whether it is at all possible to construct an
affix tree in linear time. We answered the question in the positive. We even have an on-
line algorithm with amortized constant cost per step that constructs a completely dual
data structure. This naturally raises the question what happens if the on-line construc-
tion is done in both directions. This bidirectional construction is on-line by adding
characters at both sides of the string in arbitrary order. Besides the need to update the
important locations for both sides (e.g., the reference pair for the active prefix point),
additional measures must be taken to achieve a linear running time. Lemmas 3.15
and 3.16 can be found in a similar form in [Sto95] and are replicated for a better un-
derstanding, clarity, and completeness. The importance of Lemma 3.16 reveals itself
only in the context of the amortized analysis for the linear bidirectional construction
of compact affix trees.

CHAPTER 3. LINEAR CONSTRUCTION OF AFFIX TREES 55

3.4.1 Additional Steps

The affix tree construction algorithm is dual, so the tree can be constructed by append-
ing characters at the end or at the front of the underlying string. To be able to do this
interchangeably, we need to remember the reference pairs for the active prefix point
(appprefix and appsuffix), too, and we need to keep them canonical and up-to-date. For
this, we add a new step to the steps described in Section 3.3:

Step 6. Update the active prefix.

By appending a character a to the end of t the active prefix α̂(·) cannot become
smaller. The active prefix α̂(t) stays a prefix in ta and, if it is nested in t, it is also
nested in ta. Therefore, the active prefix can grow at most by one character if it is a
prefix and a suffix of t and the prefix is followed by a, i.e., α̂(t)a ∈ prefixes(t) and
α̂(t) ∈ suffixes(t). The following lemma can be used to determine if the active prefix
grows.

Lemma 3.15.

The active prefix grows by one character if and only if the prefix location of the new

active suffix is represented by a prefix leaf in Step 5 of the algorithm.

Proof. If the prefix location of the new active suffix is a prefix leaf, then the new active
suffix is also a prefix of ta. We have α(ta) ∈ prefixes(ta) and α(ta) ∈ suffixes(ta).
Obviously, α(ta) is a nested prefix. Because v = α(ta) is represented by a prefix leaf
in AT(t), the string v was a non-nested prefix of t before. Therefore, the active prefix
α̂(t) was smaller than v. Due to the fact that v is a nested prefix of ta, the new active
prefix α̂(ta) must be at least as large as v. We only add one character to t, thus all new
substrings of ta not in t are substrings of t appended by a. Therefore, the active prefix
cannot grow by more than a single character.

For the other direction of this proof, assume that the active prefix grows by one
character. Then its new larger second occurrence in ta must be a suffix. Hence, we
have α̂(ta) ∈ prefixes(ta) and α̂(ta) ∈ suffixes(ta). The new active prefix α̂(ta) is
a nested suffix of ta and therefore a suffix of α(ta). We claim that α̂(ta) = α(ta).
For the sake of contradiction, suppose that the active suffix is larger, then we have
vα̂(ta) = α(ta) for some v ∈ Σ+. There must be a second occurrence of the active
suffix vα̂(ta) in ta that is not a suffix. If vα̂(ta) is also a prefix, then it is a candidate
for the active suffix contradicting our assumptions about α̂(ta). Therefore, vα̂(ta) is a
proper substring of ta and consequently also a non-prefix substring of t. The situation
is described by

α̂ (ta) ∈ prefixes (t) and α̂ (ta) ∈ psubstrings (t) ∪ suffixes (t) . (3.6)

Hence, α̂(ta) is a nested prefix of t and, as such, a candidate for the active prefix
of t larger than the active prefix itself—a contradiction. Therefore, we must have
α̂(ta) = α(ta). Because the new active prefix is longer than the old one, α̂(ta) is a
non-nested prefix in t, and it is represented by a prefix leaf in AT(t).

We find the prefix location of the new active suffix in Step 5. We then check
explicitly whether it is a prefix leaf (and whether we must delete it) or not. Step 6 is

56 3.4. BIDIRECTIONAL CONSTRUCTION OF COMPACT AFFIX TREES

easily implemented by canonizing both reference pairs if no node is deleted in Step 5
(we canonize because nodes might have been inserted), and by lengthening the active
prefix when a leaf is deleted. We now detail the lengthening step.

If the active prefix grows, we must keep its reference pairs up-to-date. In that case,
we also know that α̂(ta) = α̂(t)a. To find the prefix location appprefix(ta) of α̂(ta)
from appprefix(t), we must find a suffix edge labeled a to move its base so that the
new character can be prepended. This can be done with the already known procedure
decanonize(aspprefix(t), a). The location of appsuffix(ta) can be found by lengthening
appsuffix(t) by the character a. After that, we use canonize(appsuffix(ta)) to keep the
reference pair canonical.

If the active prefix does not grow, it is still necessary to canonize appprefix(t) and
appsuffix(t) because prefix and suffix nodes might have been inserted. Calling canonize
at the end of an iteration is equivalent to simply testing whether a newly inserted suffix
(prefix) node is the new canonical base of appsuffix (aspprefix) each time a new node is
added. This adds only constant overhead to the insertion of nodes. Step 6 hence adds
the additional overhead of canonizing appsuffix(t) and decanonizing aspprefix(t).

Thus, we can construct affix trees bidirectional and on-line. To achieve a linear-
time behavior, we need to apply some more changes as explained next.

3.4.2 Improving the Running Time

If the algorithm is executed as described above, a linear time bound cannot be guar-
anteed if characters are appended and prepended in arbitrary order. As an illustration,
suppose that after some iterations where characters were appended to the string, char-
acters are now prepended. In such a “reverse” iteration, the active suffix might grow.
In Step 6 of the reverse iteration, the reference pair aspsuffix = (p, (o, l)) is decanon-
ized. Thus, its index o into the string is decreased and Lemma 3.6 cannot be applied
anymore. Similar conditions may increase the index o of aspprefix and Lemma 3.9
cannot be applied.

To prevent costly oscillation of the indices and to reduce work to amortized linear
time, we must conserve some work. An amortized analysis will then result in the
desired complexity. We introduce two improvements to Step 5 and to Step 6 that
ensure a linear time bound.

Extension 1.

If the new prefix location of the active suffix is already explicit as a prefix node q, this
node must occur in a path starting below the base p of the aspsuffix = (p, (o, l)). We
can get to the node in constant time by retrieving the (l − 1)-th element in the path
starting at the child to of p. In Step 5, we decanonize only if the node cannot be found
in constant time by the method described above.

In the example shown in Figures 3.9 and 3.10, the canonical suffix reference pair
aspsuffix(ta) after Step 4 (see Figure (g)) has the base a and the length 1. This location
is represented by the prefix node ca in the prefix structure and can be retrieved in
constant time from node a.

The following lemma will make Step 6 run in constant time altogether.

CHAPTER 3. LINEAR CONSTRUCTION OF AFFIX TREES 57

Lemma 3.16.

If the active prefix α̂(t) grows, the new active prefix α̂(ta) is equal to the new active

suffix α(ta).

Proof. If the active prefix grows from t to ta, then α̂(t)a must be a prefix and α̂(t)
a suffix of the original string, and there may not be any other occurrence of α̂(t)a
anywhere in t (otherwise α̂(t)a is a larger nested prefix—a contradiction to α̂(t) being
the active prefix of t). The new string ta has the suffix α̂(t)a and the prefix α̂(t)a.
Hence, α̂(t)a is a nested suffix.

Suppose there is a larger nested suffix w = vα̂(t)a of ta. Then w is a suffix
of ta, and there must be an additional occurrence of w in ta, i.e., w ∈ prefixes(ta) ∪
psubstrings(ta). Hence, the suffix α̂(t)a of w must be either a proper substring or
a suffix of t. But then we have α̂(t)a ∈ prefixes(t) and α̂(t)a ∈ psubstrings(t) ∪
suffixes(t), so α̂(t)a is a candidate for the active prefix of t—a contradiction. As a
result, α̂(ta) = α̂(t)a = α(ta).

This yields our second improvement.

Extension 2.

If the active prefix grows, we assign aspsuffix(ta) to appsuffix(ta) and aspprefix(ta) to
appprefix(ta). By Lemma 3.16, this is correct, and Step 6 thus runs in constant time.

3.4.3 Analysis of the Bidirectional Construction

By Extension 2, Step 6 runs in constant time. The cost of canonizing aspprefix and
appsuffix when the active prefix does not grow can simply be assigned to the insertion
cost of a node at no further asymptotic charge (only one or two reference pairs need to
be checked for each newly inserted node). Hence, all that is left to take care of are the
side effects that a reverse iteration has on later iterations. Because the reference pairs
are all kept up-to-date and the upkeeping of aspprefix and appsuffix comes for free, the
main concern lies on changes of the reference pairs for the active suffix in iterations
where characters are appended to the front of the underlying string.

3.4.3.1 Overview

The bidirectional version of the algorithm has four steps that do not run in constant
time. These are Steps 4 and 5 in the suffix and in the prefix iteration (the procedures
canonize() and decanonize()). We distinguish between a suffix iteration (a “normal
iteration”) where a character a is appended to t resulting in ta, and a prefix iteration (a
“reverse iteration”) where a character a is prepended to t resulting in at.

We need to show that all executions of canonize() and of decanonize() in the
prefix and in the suffix iteration have constant amortized cost. To show this, we use
the accounting method of amortized analysis and assign to each character of t four
purses or accounts:

• A “suffix/canonize” purse,

• a “suffix/decanonize” purse,

• a “prefix/canonize” purse, and

58 3.4. BIDIRECTIONAL CONSTRUCTION OF COMPACT AFFIX TREES

• a “prefix/decanonize” purse.

In the suffix iterations, the cost of a repetition of the while loop in canonize() is
payed from a “suffix/canonize” purse and the cost of a repetition of the while loop
in decanonize() is payed from a “suffix/decanonize” purse. Analogously, in prefix
iterations, the “prefix/canonize” and the “prefix/decanonize” purses are used. The
purses are filled when characters are appended or prepended to the string or when
new nodes are inserted into the tree (the details of the latter are given further below).
The following invariants are kept throughout the algorithm. They guarantee a linear
behavior.

Invariant I Whenever the body of the while loop of canonize() in a suffix iteration
is executed, there is a coin in the “suffix/canonize” purse of character to,
where o is the offset index of aspsuffix.

Invariant II Whenever the body of the while loop of decanonize() in a suffix it-
eration is executed, there is a coin in the “suffix/decanonize” purse of
character to, where o is the offset index of aspprefix.

Invariant III Whenever the body of the while loop of canonize() in a prefix iteration
is executed, there is a coin in the “prefix/canonize” purse of character
to, where o is the offset index of appprefix.

Invariant IV Whenever the body of the while loop of decanonize() in a prefix it-
eration is executed, there is a coin in the “prefix/decanonize” purse of
character to, where o is the offset index of appsuffix.

Theorem 3.17 (Complexity of bidirectional construction of affix trees).

If the Invariants I, II, III, and IV are true, then the bidirectional construction of the

affix tree for the string t has linear running time O(|t|).

Proof. Let n = |t|. If the above four conditions are met, then each call to one of
the procedures has constant amortized cost. In each iteration, at most one call to
decanonize() is made and for each suffix leaf inserted in a suffix iteration and each
prefix leaf inserted in a prefix iteration at most one call is made to canonize(). Because
there are at most n iterations, no more than n leaves can be deleted. The final affix tree
has at most n suffix leaves and at most n prefix leaves. Hence, the number of leaves
ever inserted is O(n) and there are no more than O(n) calls to canonize().

As a result of the above theorem, each iteration has constant amortized cost.
We show that, even though an arbitrary number of reverse iterations is executed

between normal iterations, there is always a coin in the “suffix/canonize” purse of
character to when the body of the while loop of canonize() in a suffix iteration is exe-
cuted and there is always a coin in the “suffix/decanonize” purse of character to, when
the body of while loop of decanonize() in a suffix iteration is executed (Invariants I
and II). By the duality of the algorithm, this will show that all four invariants are true
throughout the algorithm and that the algorithm is linear in the length |t| of the final
string t.

We initialize each purse as follows:

CHAPTER 3. LINEAR CONSTRUCTION OF AFFIX TREES 59

• If a character a is appended to t, then the new string is t0 · · · tntn+1 (with
a = tn+1), and we put a coin in the “suffix/canonize” purse of tn+1 and in
the “suffix/decanonize” purse of tn+1.

• If a character a is prepended to t, then the new string is t−1t0 · · · tn (with
a = t−1), and we put a coin in the “prefix/canonize” purse of t−1 and in the
“prefix/decanonize” purse of t−1.

If we solely perform suffix iterations, the offset index o of aspsuffix is only in-
creased and the offset index o′ of aspprefix is only decreased (so that the transformed
index −1 − o′ is only increased). If no reverse iterations are performed, only the In-
variants I and II (or III and IV) are relevant, and Lemma 3.18 tells us, that they are
always fulfilled. Therefore, the construction is linear in time.

Lemma 3.18.

If the offset index o of aspsuffix and of appprefix increases only, Invariants I and III are

always fulfilled.

If the offset index o′ of aspprefix and of appsuffix decreases only, Invariants II and IV

are always fulfilled.

Proof. Characters appended to the underlying string appear at higher indices than the
index offset o of aspsuffix and at smaller indices (in the reverse view of the string)
than the index o′ of appprefix. Similarly, characters prepended to the underlying string
appear at higher indices (in the reverse view of the string) than the index offset o of
aspprefix and at smaller indices than the index o′ of appsuffix.

If intermediate prefix iterations are performed, the offset indices of aspsuffix and
appprefix can decrease (respectively increase). We have to prove that the additional
coins needed can be put into the purses with amortized constant extra cost. The re-
maining two sections will show how this is done and complete the proof.

3.4.3.2 Changes to aspsuffix in a Reverse Iteration—Invariant I

Changes to aspsuffix concern Invariant I only. The following results can be applied
analogously to appprefix (by exchanging “suffix” and “prefix”) and Invariant III.

Lemma 3.19.

Assigning appsuffix(at) to aspsuffix(ta) in Step 6 adds amortized constant overhead to

successive calls to canonize(aspsuffix) and keeps Invariant I.

Proof. In a prefix iteration t = t−m · · · tn to at = t−m−1 · · · tn (where the character
t−m−1 = a was prepended), the active suffix may grow by one. Although aspsuffix(t)
is not decanonized explicitly (Extension 2), it is changed as if it had been decanonized.
Let psuff

new be the new base of aspsuffix(at) and let psuff
old be the old base, then there is a

suffix node q such that q is the prefix parent of psuff
new (the prefix edge is labeled by

the prepended character a), and psuff
old is a suffix descendant of q. (See Figure 3.10(g),

where the active prefix grows from a to ac. We have psuff
old = aba, q = root, and

psuff
new = root because of the special case in decanonize.) Let Vsuff = {q1, . . . , qk}

be the nodes that are on the path from q to psuff
old (Vsuff = {a} in our example). In

the next call to canonize() in a suffix iteration, the nodes in Vsuff have to be traversed

60 3.4. BIDIRECTIONAL CONSTRUCTION OF COMPACT AFFIX TREES

additionally. The purses that are expected to have a coin are assigned to the characters
with the indices Isuff = {ij |ij = n − |α(t)| + depth(qj) + 1, qj ∈ Vsuff}. We now
show that the coins come from the reverse iteration.

In the reverse iteration, aspsuffix was changed by an assignment from appsuffix.
Usually, appsuffix is decanonized in Step 5 of the reverse iteration. In the case, that
the active suffix grows in a reverse iteration, the suffix location of appsuffix is rep-
resented by a suffix leaf (by Lemma 3.15). The node is found in constant time by
Extension 1. Hence, there are coins that are not used in “prefix/decanonize” purses
because decanonize() is not executed. (In the example, these are the coins that would

be needed to decanonize over a). Let ppref
old be the base of appsuffix(t) and ppref

new be

the base of appsuffix(at). We know that ppref
new = psuff

new and, by Corollary 3.5, we have

|α(t)|+ 1 = |α(ta)| = |α̂(ta)| ≤ |α̂(t)|+ 1, so |α(t)| ≤ |α̂(t)|, and ppref
old is a descen-

dant or equals to psuff
old . Therefore, if we had decanonized appsuffix (instead of assigning

it directly to the suffix leaf), the nodes Vpref (Vpref = {a} in the example) that we would
have met in decanonize() would be a superset of the nodes in Vsuff (i.e., Vsuff ⊆ Vpref).
The string indices are Ipref = {ij |ij = −m + |α̂(t)| − depth(qj) + 1, qj ∈ Vpref}.
Obviously, |Ipref | ≥ |Isuff | and, because the coins were not needed for decanonizing
appsuffix, we can take the money from the “prefix/decanonize” purses of the characters
with indices Ipref and put one coin in the “suffix/canonize” purse of each character with
an index in Isuff . (In the analysis of decanonize(), we assumed that the coin from the
characters with indices Ipref were used because we moved the offset index over them,
but decanonize() was not executed.) As a result, Invariant I is kept and the additional
work can be payed for.

Further prefix iterations, which occur before canonize() is called in a suffix it-
eration, can lengthen the active suffix again, leading to the same money transfer. In
iterations where the active suffix is unchanged, only new suffix nodes can be inserted.

Lemma 3.20.

Only constant work is needed to keep Invariant I when adding additional suffix nodes

in prefix iterations.

Proof. Let psuff
new, psuff

old , q be the nodes of a previous prefix iteration t = t−m . . . tn to
at = t−m−1 . . . tn as described above in the proof of Lemma 3.19 (where the active
suffix has grown and the active suffix has not been canonized yet). For each node r
that is inserted between q and psuff

old , an additional repetition of the while loop is needed
in a successive call to canonize() (Vsuff grows). The index of the character with the
“suffix/canonize” purse to that a coin has to be added is ir = n−|α(t)|+depth(r)+1.

The new suffix node cannot lie between two different psuff
old , q pairs. Suppose p′suff

old

and q′ are the nodes of the next case where the active suffix was lengthened with
psuff

new = p′suff
old . A node r between p′suff

old ,q′ and psuff
old , q must have depth d with d >

depth(q) = depth(psuff
new) − 1 = depth(p′suff

old) − 1 and d < depth(p′suff
old). This is not

possible.
There is at most one suffix node inserted per reverse iteration, so paying the addi-

tional coin only adds constant extra cost.

Note that suffix iterations cannot insert any such nodes because all nodes are in-
serted above or at the base of the aspsuffix.

CHAPTER 3. LINEAR CONSTRUCTION OF AFFIX TREES 61

Lemma 3.21.

Canonizing aspsuffix(ta) during prefix iterations keeps Invariant I.

Proof. Canonizing increases the offset index o towards the end of the string, so no
positions without coins are introduced.

As a result, Invariant I is always kept valid.

3.4.3.3 Changes to aspprefix in a Reverse Iteration—Invariant II

Changes to aspprefix concern Invariant II only. The following results can be applied
analogously to appsuffix (by exchanging “suffix” and “prefix”) and Invariant IV.

By Lemma 3.18, the invariant might only be destroyed if the offset index o of
aspprefix is increased (in the prefix view of the string).

Lemma 3.22.

Assigning appprefix(at) to aspprefix(at) in Step 6 adds amortized constant overhead to

successive calls to decanonize(aspprefix) and keeps Invariant II.

Proof. Let t = t−m · · · tn. All prefix nodes that might have been added during
Step 4 in this prefix iteration (if any) are added at a depth larger than the length of
α(at). Assigning appprefix(at) to aspprefix(at) is equivalent to increasing the length
of aspprefix(t) by one. If aspprefix(t) was canonical with base pold, then the base
pnew of the canonical reference pair aspprefix(ta) is either the same as pold or a child
of pold. In the latter case, depth(pnew) = |α(at)| because there cannot be a node q
with depth(q) ≤ |α(t)| if aspprefix(t) was canonical. We can put a coin in the “suf-
fix/decanonize” purse of tn to keep Invariant II. Because we need to put at most one
additional coin in a “suffix/decanonize” per iteration, this adds at most constant over-
head.

We look at canonizing aspprefix when the active suffix does not grow. We only
need to canonize if new prefix nodes are inserted. The canonization can be seen as
taking place each time a new node is inserted. For each new node, we check whether
the node is the new canonical base for aspprefix. The following lemma deals with all
inserted nodes.

Lemma 3.23.

Only amortized constant work is needed to keep Invariant II when adding additional

prefix nodes in prefix iterations.

Proof. Let omin be the minimal value that the offset index ever had in all previous
iterations. For a node q, let iq be the index with which it would appear in a call to
decanonize() (in a suffix iteration). We have iq = n− depth(q)− 1 (the transformed
index for the prefix view is −1− iq = depth(q)−n, whereas n−depth(q)− 1 is the
real index). Let r be the node with the largest string depth such that −1 − ir < omin,
and let p be the current base of aspprefix.

A node q inserted below r does not destroy Invariant II because there is still the
originally inserted coin on character tiq . We need to provide extra money for the
nodes inserted above r to keep the invariant. Let q be inserted above r and below p
with −1 − iq ≥ omin. We add a coin to the “suffix/decanonize” purse of character tiq

62 3.4. BIDIRECTIONAL CONSTRUCTION OF COMPACT AFFIX TREES

(prefix view of the string). If q is inserted above p so that aspprefix is canonized to
the new base p′ = q, we add a coin to the “suffix/decanonize” purse of character tip ,
and q becomes the new base. By the above accounting, we have now the situation that
below omin there is a coin in every character’s purse, and there is a coin in each purse
for a character corresponding to a node between omin and o.

When decanonize() is called on aspprefix and we move over a node q in the while-
loop whilst o is still larger than omin, the above payment guarantees that there is a coin
in the “suffix/decanonize” purse of character to. We prove by induction.

Base case. We have not yet moved over a prefix edge. In this case, we meet exactly the
same nodes for that we have added the coins for the corresponding characters.

Inductive case. We have moved over a prefix edge before. We have iq = n −
depth(q) − 1 and q is a prefix node. Let q′ be the suffix parent of q. By
Lemma 3.2, there is a suffix parent and depth(q) = depth(q′) + 1. By in-
duction, there is a coin in the “suffix/decanonize” purse of character iq′ . The
index is iq′ = n′ − depth(q′) − 1, where n′ was the rightmost string index in
the step when the base was moved along the prefix edge the last time.

The base of aspprefix is moved over a prefix edge only if a character is appended.
Hence, we have n′ = n−1 and iq′ = n−1−depth(q′)−1 = n−1−(depth(q)−
1) − 1 = n − depth(q) − 1. Thus, there is a coin in the “suffix/decanonize”
purse of character tiq .

For a string t of length n, we insert at most 2n prefix nodes in reverse iterations, thus
we only pay an amortized constant amount of additional coins.

Note again that suffix iterations cannot insert any such prefix nodes because all
prefix nodes are inserted above or at the base of the aspprefix.

As a result, Invariant II is always kept valid.

Chapter 4

Average-Case Analysis of

Approximate Trie Search

In this chapter, we study the average-case behavior of searching in a dictionary (a
set S) of strings allowing a certain number d of errors under a comparison-based
string distance (see Section 2.1.3). In the notation of the classification scheme from
Section 2.4, we look at indexing problems of the type 〈P(Σ∗)|d|f(n)|doc|all〉 and
〈P(Σ∗)|d|f(n)|doc|pref〉, where d is any comparison-based string distance, n = |S|
is the number of indexed strings, and d = f(n) is the number of mismatches allowed,
which we study as a function of n. Dictionary indexing is a well-known task, e.g.,
for looking up misspelled words. There exist very fast on-line search algorithms. For
example, for comparison-based string distances, a search pattern u of length m can
be interpreted as a deterministic finite-state automaton with (m + 1)(d + 1) states.
The automaton has a very regular structure, and it is possible to implement it by fast
register operations. Starting the automaton on each string in S can—depending on
the string distance and the number of allowed mismatches—thus be very fast. On the
other hand, using a trie has the advantage that the prefixes of strings in S are combined.
When we compare a prefix v of length k of the search pattern with a path spelling out
the word w in the trie, we have effectively compared the prefix v with all strings in S
having prefix w. In terms of the number of comparisons, this is always more efficient.
In practice, traversing a trie has some extra overhead, e.g., in random-accesses to the
memory, while comparing the pattern with a string is very simple. Thus, the latter
approach can be implemented with a smaller constant in the asymptotic running time
(and also with less space). We expect to see some trade-off or a threshold where one
method outperforms the other.

To analyze the relative performance of the algorithms, we look at the average-
case number of comparisons performed. We present a very exact analysis for that
the constants in the asymptotics can be computed exactly for any concrete instance of
the problem. A worst-case comparison cannot be used for a meaningful comparative
analysis because it only deals with a small subset of possible inputs. An individual
analysis of the algorithm implementations can contribute the constant factors involved
in a single comparison. Thus, our analysis helps to decide which algorithm should be
used for any concrete instance.

We discuss alternative algorithms in the introduction and a concrete alternative (for

63

64 4.1. PROBLEM STATEMENT

Algorithm 4.1 LS(set S, string w, integer d)

Parameters: S = {t1, . . . , tn} is the collection of strings to be searched, w is the
search pattern, and d the error bound.

1: for j from 1 to n do

2: i := 1
3: c := 0
4: l := min{|w|, |tj |}
5: while c ≤ d do

6: while i ≤ l and d (wi, t
j
i) = 0 do

7: i := i + 1
8: c := c + 1
9: i := i + 1

10: if i = |w| then

11: report a match for tj

a constant number of errors) in Chapter 5.

4.1 Problem Statement

Let S = {t1, . . . , tn} ⊂ Σ∗ be a collection of strings to be indexed with n = |S|. In
the context of tries or direct comparison, checking whether a prefix tj−,i of a string
tj ∈ S is the complete string is an easy task. The algorithms considered in this chapter
can provide solutions to 〈P(Σ∗)|d|f(n)|doc|all〉 and 〈P(Σ∗)|d|f(n)|doc|pref〉 with
only a minor modification of the reporting function. We therefore consider only the
latter problem and report a document if a prefix is matched.

We assume that all strings are generated independently at random by a memory-
less source with uniform probabilities, i.e., the probability that a is the i-th character
of the j-th string is given by Pr{tji = a} = 1

|Σ| . We will be using the size of the al-

phabet |Σ| a lot, and therefore abbreviate it by σ = |Σ|. For the average-case analysis,
it is convenient to assume that we deal with strings of infinite length. Having strings
of finite length in practice has only a negligible impact on the validity of our analysis:
If the end of a string is reached, no more comparisons take place, thus the theoreti-
cal model gives an upper bound. Furthermore, if the strings are sufficiently large, the
probability of ever reaching the end is very small.

We assume that the search pattern w is also generated independently at random by
a memoryless source with uniform probabilities. Comparison-based string distances
are completely defined at the character level. For a given distance d, the parameters
relevant to our analysis are thus the probabilities of a match or a mismatch given by

q =
1

σ2

∑

a∈Σ

∑

b∈Σ

d (a, b) and p =
1

σ2

∑

a∈Σ

∑

b∈Σ

(1 − d (a, b)) = 1 − q . (4.1)

For example, for Hamming distance, we have a mismatch probability of q = 1 − 1
σ

and a match probability of p = 1
σ .

Pseudo code for both algorithms is given in Figures 4.1 and 4.2. The LS algorithm
(for “Linear Search”) just compares the search pattern with each string. The TS algo-

CHAPTER 4. APPROXIMATE TRIE SEARCH 65

Algorithm 4.2 TS(trie T , node v, string w, integer i, integer c)

Parameters: T is a trie for the collection of strings S = {t1, . . . , tn}, v is a node
of T (in the first call v is the root), w is search pattern, i is the current
position in w (zero in the first call), and c is the maximal number of
mismatches allowed (in the first call we have c = d).

1: if c ≥ 0 then

2: if v is a leaf then

3: report match for tvalue(v)

4: else if i > |w| then

5: for all leaves u in the subtree Tv rooted at v do

6: report match for tvalue(u)

7: else

8: for each child u of v do

9: let a be the edge label of the edge (u, v)
10: if d (wi, a) = 0 then

11: TS(T , u, w, i + 1, c)
12: else

13: TS(T , u, w, i + 1, c − 1)

rithm (for “Trie Search”) uses a previously constructed trie to reduce the number of
comparisons. We store value(v) = i at leaf v if the path to v spells out the string ti.
On a random set S, let Ld

n be the number of comparisons made by the LS algorithm
and T d

n be the number of comparisons made by the TS algorithm using a trie as an
index. We are interested in the average-case; therefore, we compute bounds on the
expected values E[Ld

n] and E[T d
n]. In the analysis, we assume that q and p are given

parameters and look at the behavior for different d. What is the threshold for d (seen as
a function d = f(n)) up to where the average E[T d

n] is asymptotically smaller than the
average E[Ld

n]? What is the effect of different mismatch probabilities? The answers to
these questions give us the clues needed to choose the more efficient of both methods
in various situations.

4.2 Average-Case Analysis of the LS Algorithm

Computing the expected behavior of Ld
n involves only some basic algebra with gener-

ating functions. Because of our assumptions, we can also derive convergence probabil-
ities for the behavior of Ld

n. It indeed comes as no surprise that Ld
n is so well behaved

because we are in essence dealing with a huge amount of independent Bernoulli trials
so that the Law of Large Numbers results in a very predictable (in the sense of likely)
behavior.

If we only have one string, the probability that Algorithm 4.1 makes k comparisons
is given by

Pr
{

Ld
1 = k

}

=

(
k − 1

d

)

qd+1pk−d−1 . (4.2)

For n strings, we have to sum over all possibilities to distribute the k comparisons over

66 4.2. AVERAGE-CASE ANALYSIS OF THE LS ALGORITHM

the strings. Because
(
k
l

)
= 0 for k < l, we get

Pr
{

Ld
n = k

}

=
∑

i1+···+in=k

n∏

j=1

(
ij − 1

d

)

qd+1pij−d−1 . (4.3)

We use this equation to derive the probability generating function gLd
n
(z):

gLd
n
(z) = E

[

zLd
n

]

=
∞∑

k=0

Pr
{

Ld
n = k

}

zk

=
∞∑

k=0

∑

i1+...+in=k

n∏

j=1

(
ij − 1

d

)

qd+1pij−d−1zk

=

(∞∑

k=0

(
k − 1

d

)

qd+1pk−d−1zk

)n

=

(
zq

1 − zp

)n(d+1)

. (4.4)

Thus, we find the expectation and variance of Ld
n to be

E

[

Ld
n

]

=
d + 1

q
n and V

[

Ld
n

]

=
(d + 1)p

q2
n . (4.5)

As already mentioned, the stochastic process is very stable. We can use Cheby-
shev’s inequality to derive convergence in probability of Ld

n to its mean.

Pr

{∣
∣
∣
∣

Ld
n

n(d + 1)
− 1

q

∣
∣
∣
∣
> ǫ

}

= Pr

{∣
∣
∣
∣
Ld

n − n(d + 1)

q

∣
∣
∣
∣
> ǫn(d + 1)

}

<
p

q2ǫ2n(d + 1)
. (4.6)

Hence, we have proven convergence in probability for

lim
n→∞

Ld
n

n(d + 1)
=

1

q
(pr) .

Note that, if d = f(n) is a function of n, then we already have almost sure con-
vergence if f(n) = ω(log1+δ n) for some δ > 0 by a simply application of the Borel-
Cantelli Lemma (see, e.g., [Kal02]) and the fact that

∞∑

n=0

Pr

{∣
∣
∣
∣

Ld
n

n(d + 1)
− 1

q

∣
∣
∣
∣
> ǫ

}

<
∞∑

n=0

p

q2ǫ2n log1+δ n
< ∞ (4.7)

because
∑

n≥0 n−1 log−(1+ǫ) n is convergent. Using a method of Kesten and Kingman
(see [Kin73] or [Szp00]), this can be extended to almost sure convergence: First, note
that Ld

n < Ld
n+1, so Ld

n is non-decreasing. For any positive constant s let r = r(n) be
the largest integer with rs ≤ n, then Ld

rs ≤ Ld
n ≤ Ld

(r+1)s , and thus

lim sup
n→∞

Ld
n

n(d + 1)
≤ lim sup

r→∞

Ld
rs

(r + 1)s(d + 1)

= lim sup
r→∞

Ld
rs

rs(d + 1)

rs

(r + 1)s
≤ lim sup

r→∞

Ld
rs

rs(d + 1)
(4.8)

CHAPTER 4. APPROXIMATE TRIE SEARCH 67

and equally

lim inf
n→∞

Ld
n

n(d + 1)
≥ lim inf

r→∞

Ld
(r+1)s

rs(d + 1)

= lim inf
r→∞

Ld
(r+1)s

(r + 1)s(d + 1)

(r + 1)s

rs
≥ lim inf

r→∞

Ld
(r+1)s

(r + 1)s(d + 1)
. (4.9)

By the Borel-Cantelli Lemma,
Ld

rs

rs(d+1) converges to 1
q almost surely, because for all

s ≥ 1 + ǫ we have

∞∑

r=0

Pr

{∣
∣
∣
∣

Ld
rs

rs(d + 1)
− 1

q

∣
∣
∣
∣
≥ ǫ

}

≤
∞∑

r=0

p

q2ǫ2(d + 1)rs
=

p

q2ǫ2(d + 1)
ζ(s) < ∞

(4.10)
(where ζ(s) is the Riemann zeta function), and thus

lim
r→∞

Ld
rs

rs(d + 1)
=

1

q
(a.s.) . (4.11)

As a result, we find that

lim
n→∞

Ld
n

n(d + 1)
=

1

q
(a.s.) .

Note that, interpreting d = f(n) as a function of n, this also holds for f(n) = Ω(1).

4.3 Average-Case Analysis of the TS Algorithm

The behavior of T d
n is somewhat harder to analyze. We pursue the following plan: We

start by setting up a recursive equation for the expected number of comparisons. Using
some algebra on generating functions, we arrive at an exact formula. Unfortunately,
the formula requires a summation over n terms of exponential size and with alternat-
ing signs. Therefore, we apply some more advanced methods from complex function
analysis to derive an asymptotic bound. The number of terms in the exact formula for
the bound is polynomial in d (where one term is itself an infinite sum), but it gives us
precise bounds using the highest order terms and will enable us to determine parameter
ranges for that the TS algorithm is the better choice.

Instead of counting the number of comparisons, it is easier to examine the number
of nodes visited in the trie. Observe that the number of nodes visited is by one larger
than the number of character comparisons. We denote the number of nodes visited by
the process in a trie for n strings allowing d mismatches by T ′d

n .

4.3.1 An Exact Formula

We derive a recursive equation for the expected number of nodes visited. Let gd
n =

E[T ′d
n] = E[T d

n] + 1. At any node u, we have at most σ children v1, . . . , vσ. Each
child is the root of a subtree having ij children. Let d be the number of allowed
mismatches at node u. When the algorithm examines node vj , the number of allowed

68 4.3. AVERAGE-CASE ANALYSIS OF THE TS ALGORITHM

mismatches is either d with probability p, or it is d − 1 with probability q. Thus, we
get the desired recursive equation by summing over all possibilities to partition the n
strings in the subtree of u into the children’s subtrees. The probability for a partition
into subtrees of sizes i1, i2, . . . , iσ is

Pr {i1 + i2 + · · · + iσ = n} =
n!

i1! · · · iσ!

1

σn
=

(
n

i1, . . . , iσ

)

σ−n . (4.12)

The following recursive equation is valid for n > 0 and d ≥ 0:

gd
n = 1 +

∑

i1+···+iσ=n

(
n

i1, . . . , iσ

)

σ−n



q
σ∑

j=1

gd−1
ij

+ p
σ∑

j=1

gd
ij



 . (4.13)

If there is no string represented in a subtree, we make no comparisons. Hence,
we have gd

0 = 0 for all d. If we reach a node with d = −1, we had a mismatch in
the last character comparison and do not continue (line one of Algorithm 4.2); there-
fore, we have g−1

n = 1. We can easily check that, if there is only one string left, by
equation (4.13), we make gd

1 = 1 + d+1
q comparisons. This agrees with 1 + E[Ld

1].

We derive the exponential generating function of gd
n by summing both sides of

equation (4.13) for n ≥ 0. We account the case n = 0, which in equation (4.13)
wrongly gives gd

0 = 1, by subtracting one on the right hand side. Thus, the equation
for Gd(z) =

∑

n≥0 gd
n

zn

n! is

Gd(z) = ez + q
σ∑

j=1

Gd−1

(z

σ

)

e(1−
1
σ)z + p

σ∑

j=1

Gd

(z

σ

)

e(1−
1
σ)z − 1 . (4.14)

In the above, we have already simplified the σ-fold

∑

n≥0

∑

i1+···+iσ=n

(
n

i1, . . . , iσ

)

σ−nGd
ij

zn

n!

=
∑

n≥0

∑

i1+···+iσ=n

zi1

σi1i1!
· · ·

Gd
ij

zij

σij ij !
· · · ziσ

σiσ iσ!

= Gd

(z

σ

)

e(1−
1
σ)z . (4.15)

We multiply both sides by e−z (which corresponds to applying some kind of binomial
inversion) and define G̃d(z) = Gd(z)e−z . We now have

G̃d(z) = 1 − e−z + σqG̃d−1

(z

σ

)

+ σpG̃d

(z

σ

)

. (4.16)

Let g̃d
n be the coefficients of G̃d(z). Then we have

g̃d
n = (−1)n

n∑

k=0

(
n

k

)

(−1)kgd
k and gd

n =
n∑

k=0

(
n

k

)

g̃d
k . (4.17)

For g̃d
n, we get the boundary conditions g̃d

1 = 1 + (d+1)
q , g̃d

0 = 0, g̃−1
n = (−1)n−1

for n > 0, and g̃−1
0 = 0. Comparing coefficients in equation (4.16), we find for n > 1

that

CHAPTER 4. APPROXIMATE TRIE SEARCH 69

g̃d
n =

(−1)n−1 + g̃d−1
n σ1−nq

1 − σ1−np
, (4.18)

which by iteration (on d) leads to

g̃d
n =

(−1)n

1 − σ1−n

(

σ1−n

(
σ1−nq

1 − σ1−np

)d+1

− 1

)

. (4.19)

Finally, combining equations (4.17) and (4.18) proves the following lemma.

Lemma 4.1 (Exact expected number of nodes visited by Algorithm 4.2).

The expected number of nodes visited by Algorithm 4.2 on a random trie of n strings

with a random pattern is

gd
n = n

(

1 +
d + 1

q

)

−
n∑

k=2

(
n

k

)
(−1)k

1 − σ1−k

+
n∑

k=2

(
n

k

)
(−1)k

σk−1 − 1

(
qσ1−k

1 − pσ1−k

)d+1

. (4.20)

We can divide (4.20) into three parts. Each part has its own interpretation and will
be handled separately:

gd
n = 1 +

d + 1

q
n

︸ ︷︷ ︸

1+E[Ld
n]

+ (n − 1) −
n∑

k=2

(
n

k

)
(−1)k

1 − σ1−k

︸ ︷︷ ︸

−An

+
n∑

k=2

(
n

k

)
(−1)k

σk−1 − 1

(
qσ1−k

1 − pσ1−k

)d+1

︸ ︷︷ ︸

Sd
n

. (4.21)

This finishes the first part of our derivation. We handle the two sums in equa-
tion (4.20) separately starting with an excursion on An. We use Rice’s integrals to
tackle both sums. Before embarking on these tasks, we describe a general scheme how
to translate these sums into integrals involving only the Gamma function (instead of
the Beta function). This makes the problem easier. Along the way, we will also see
how the sum can be described by a simple line integral.

4.3.2 Approximation of Integrals with the Beta Function

Using Theorem 2.2 on equation (4.21) yields a path integral involving the Beta func-
tion. The evaluation of the residues involving the Beta function is tricky. There-
fore, we approximate the Beta function using the asymptotic expansion given by equa-
tion (2.32) introduced in Section 2.5. Using this approximation was already suggested
by Szpankowski [Szp88a]—although without commenting on validity conditions. In
the following, we will lay a rigorous basis for it. The main idea is to replace the Beta
function in an integral of the form

1

2πı

∮

C
f(n, z)B(n + 1,−z)dz , (4.22)

70 4.3. AVERAGE-CASE ANALYSIS OF THE TS ALGORITHM

where C is a path encircling some poles of B(n+1,−z) at {a, . . . , b}, by a polynomial
in z and the Gamma function. This can be done using the asymptotic expansion given
in equation (2.32). We assume in the following that f(n, z) is a function of polynomial
growth in n and constant growth in z, i.e., |f(n, z)| = O(nr) for a constant r, then

|f(n, z)| = O(1) for z → ∞. The growth of B(n + 1,−z) = (−1)nn!
z(z−1)···(z−n) is

O(z−n−1) as z → ∞ (in relation to z, n can be considered as a constant). The first
step is to bound the value of the integral along a circle with large radius.

Lemma 4.2 (The Beta function integral along arcs with large radius).

Let f(n, z) be a function such that |f(n, z)| = O(nr) for a constant r. Let C be

a path corresponding to a part of a circle in the complex plane with radius m, i.e.,

C = {p | p = m·eıt for a ≤ t ≤ b} where a, b ∈ [0, π), and assume that C is such that

it avoids any singularities. Then

∣
∣
∣
∣

1

2πı

∫

C
f(n, z)B(n + 1,−z)dz

∣
∣
∣
∣
−−−−→
m→∞

0 . (4.23)

Proof. The proof follows easily from

∣
∣
∣
∣

1

2πı

∫

C
f(n, z)B(n + 1,−z)dz

∣
∣
∣
∣

=

∣
∣
∣
∣

1

2π

∫ b

a
f(n, z)

(−1)nn!

meıt(meıt − 1) · · · (meıt − n)
dt

∣
∣
∣
∣

≤ 1

2π

∫ b

a
|f(n, z)|

∣
∣
∣
∣

(−1)nn!

meıt(meıt − 1) · · · (meıt − n)

∣
∣
∣
∣
dt

≤ c(b − a)

2π
nr n!

(m − n)n+1
−−−−→
m→∞

0 . (4.24)

A simple consequence of the above lemma for equation (4.22) is the following:
Assume that the path C encircles the poles at {a, . . . , b} and that there are no other
singularities in the half-plane ℜ(z) ≥ a− ǫ for some ǫ > 0, then we can extend C to a
vertical line at ℜ(z) = a − ǫ and a half-circle with radius m → ∞ such that

1

2πı

∮

C
f(n, z)B(n + 1,−z)dz =

1

2πı

∫ a−ǫ−ı∞

a−ǫ+ı∞
f(n, z)B(n + 1,−z)dz . (4.25)

The simple line integral allows us to apply the approximation. We can then return
to a path integral later.

Lemma 4.3 (Asymptotic approximation of a Beta function integral).

For real constant x 6∈ {0,−1,−2, . . .}, we have

∫ ∞

−∞
|B(n, x + ıy)|dy = O

(
n−x

)
. (4.26)

Proof. The plan of the proof is as follows. We rewrite the Beta function as ratio of
Gamma functions. Then we use Stirling’s formula to approximate these. The resulting

CHAPTER 4. APPROXIMATE TRIE SEARCH 71

integral has four different factors in the integrand, for which we make a case distinc-
tion, depending on the range of y with respect to n.

We start simplifying by applying Stirling’s formula:

∫ ∞

−∞
|B(n, x + ıy)|dy = 2

∫ ∞

0
|B(n, x + ıy)|dy

= 2

∫ ∞

0

Γ(n)|Γ(x + ıy)|
|Γ(n + x + ıy)| dy = 2

∫ ∞

0

√
2π

(
n

|n + x + ıy|

)n− 1
2

·
(|x + ıy|
|n + x + ıy|

)x 1
√

|x + ıy|
e−yφ(n,x,y)dy

(
1 + O

(
n−1

))
, (4.27)

where 0 ≤ sgn(y)φ(n, x, y) = sgn(y)(arg(x+ ıy)−arg(x+n+ ıy)) < π. The latter
follows from the fact that, for y 6= 0, we have

|cos(φ(n, x, y))| =

∣
∣
∣
∣
∣

nx + x2 + y2

√

x2 + y2
√

n2 + 2nx + x2 + y2

∣
∣
∣
∣
∣
< 1 . (4.28)

Because arg(z) < 0 for ℑ(z) = y < 0, we analyze φ(n, x, y) as a function φ(y)
of y for y ≥ 0. Note that cos(φ(y)) grows inverse to φ(y) on [0, π]. The derivative of
cos(φ(y)) is

d

dy
cos(φ(n, x, y)) =

yn2(−nx − x2 + y2)

(x2 + y2)
3
2 (n2 + 2nx + x2 + y2)

3
2

, (4.29)

which is zero for y = 0 and for y =
√

nx + x2. The latter is impossible for x < 0
and |x| < n. For x < 0 and |x| < n, we have cos(φ(y)) = −1 and φ(y) = π

2 for
y = 0. Otherwise we have cos(φ(y)) = 1 and φ(y) = 0 at y = 0. As y → ∞ we have
cos(φ(y)) → 1 and similarly φ(y) → 0. We consider x a constant with respect to n.
Thus, for x < 0, φ(y) decreases from π to zero and, for x > 0, φ(y) grows from zero
to a maximum at y =

√
nx + x2 and then decreases back to zero. As a result, the term

e−yφ(n,x,y) is monotonically decreasing in y.

The term n
|n+x+ıy| is monotonically decreasing in y and tends to zero. The term

|x+ıy|
|n+x+ıy| is monotonically increasing in y and tends to one.

We make a case distinction for the integration interval. For x > 0, we find that

∫ x

0

(
n

|n + x + ıy|

)n− 1
2
(|x + ıy|
|n + x + ıy|

)x 1
√

|x + ıy|
e−yφ(n,x,y)dy

≤
(

n

n + x

)n− 1
2

(√

x2 + x2

n2 + 2nx + 2x2

)x
1√
x

∫ x

0
e0dy

≤
(√

2x
)x

n−x√x = O
(
n−x

)
. (4.30)

72 4.3. AVERAGE-CASE ANALYSIS OF THE TS ALGORITHM

Secondly, for n large enough, we have

∫ n

x

(
n

|n + x + ıy|

)n− 1
2
(|x + ıy|
|n + x + ıy|

)x 1
√

|x + ıy|
e−yφ(n,x,y)dy

≤
(√

n2

(n + x)2 + x2

)n− 1
2

1√
2x

∫ n

x

(√

x2 + y2

n2

)x

e−yφ(n,x,y)dy

≤ n−x

√
2x

∫ n

x

(√
2y
)x

e−y π
5 dy

≤ n−x

√
2x

5

π

(√
2
5

π

)x

Γ(x + 1) = O
(
n−x

)
, (4.31)

because φ(n, x, x) −−−→
n→∞

arccos
(

1√
2

)

= π
4 and φ(n, x, n) −−−→

n→∞
arccos

(
1√
2

)

=
π
4 , so we have φ(n, x, y) > π

5 for some n large enough. The third range is

∫ n2

n

(
n

|n + x + ıy|

)n− 1
2
(|x + ıy|
|n + x + ıy|

)x 1
√

|x + ıy|
e−yφ(n,x,y)dy

≤
(√

n2

(n + x)2 + n2

)n− 1
2
(√

x2 + n4

(n + x)2 + n4

)x

(x2 + n2)−
1
4 n2

= O
(

2−
n
2 n2
)

. (4.32)

Finally, for the last part we have

∫ ∞

n2

(
n

|n + x + ıy|

)n− 1
2
(|x + ıy|
|n + x + ıy|

)x 1
√

|x + ıy|
e−yφ(n,x,y)dy

≤
∫ ∞

n2

(√

n2

(n + x)2 + yn2

)n− 1
2

1√
y
dy

≤
∫ ∞

n2

y−
n
2
− 1

4 dy = O
(

n−n− 1
2

)

. (4.33)

Thus, the whole integral is O(n−x).
For x < 0 (−x 6∈ N), the derivation is almost the same. We start with a slightly

larger range:

∫ n

0

(
n

|n + x + ıy|

)n− 1
2
(|x + ıy|
|n + x + ıy|

)x 1
√

|x + ıy|
e−yφ(n,x,y)dy

≤
√

n

n + x

(
n

n + x

)n ∫ n

0

(|x + ıy|
|n + x + ıy|

)x 1
√

|x + ıy|
e−yφ(n,x,y)dy

≤ 4e−xxx (2n)−x 1√
x

∫ n

0
e−y π

5 dy

= n−x 4(2e)−xxx

√
x

−5

π
(e−

1
5
nπ − 1) = O

(
n−x

)
, (4.34)

CHAPTER 4. APPROXIMATE TRIE SEARCH 73

because
(

n
n+x

)n
< 2e−x,

√
n

n+x < 2, and φ(n, x, y) > π
5 for some n large enough

(with φ(n, x, n) −−−→
n→∞

= π
4 and φ(n, x, 0) = π). The second part is

∫ n2

n

(
n

|n + x + ıy|

)n− 1
2
(|n + x + ıy|

|x + ıy|

)−x 1
√

|x + ıy|
e−yφ(n,x,y)dy

≤
(√

n2

(n + x)2 + n2

)n− 1
2
(√

(n + x)2 + n2

x2 + n2

)−x

(x2 + n2)−
1
4 n2

≤
(√

n2

3
2n2

)n− 1
2

2−
x
2 n2 = O

((
3

2

)−n
2

n2

)

. (4.35)

The final part is

∫ ∞

n2

(
n

|n + x + ıy|

)n− 1
2
(|n + x + ıy|

|x + ıy|

)−x 1
√

|x + ıy|
e−yφ(n,x,y)dy

≤
∫ ∞

n2

(

n
√

(n + x)2 + y2

)n− 1
2
(√

2y2

y2

)−x

1√
y
e−yφ(n,x,y)dy

≤ 2−
x
2

∫ ∞

n2

y−
n
2
− 1

4 dy

= O
(

n−n− 1
2

)

. (4.36)

This finishes the proof.

The above proof relies on the fact that the Beta function becomes very small very
quickly along the imaginary axis. The next lemma details this.

Lemma 4.4 (Tail of a Beta function integral).

For x < 0 and any strictly positive function f(n) ∈ ω(1), we have
∫ ∞

f(n) ln n
|B(n, x + ıy)|dy = O

(

n−f(n)(π
4
−ǫ)−x

)

, (4.37)

for some real constant ǫ > 0.

Proof. We use the same derivations as in Lemma 4.3 together with the asymptotic
behavior φ(n, x, n) −−−→

n→∞
= π

4 . Thus, we find that

∫ n

f(n) ln n

(
n

|n + x + ıy|

)n− 1
2
(|n + x + ıy|

|x + ıy|

)−x 1
√

|x + ıy|
e−yφ(n,x,y)dy

≤ e−x

(
f(n) ln n√

2n

)x

(lnn)−
1+ǫ
2

∫ n

f(n) ln n
e−y(π

4
−ǫ)dy

≤ e−x

(
f(n) lnn√

2n

)x

(f(n) lnn)−
1
2

1
(

π
4 − ǫ

)e−f(n) ln n(π
4
−ǫ)

= O
(

n−f(n)(π
4
−ǫ)−x

)

. (4.38)

74 4.3. AVERAGE-CASE ANALYSIS OF THE TS ALGORITHM

Lemma 4.5 (Approximation of Beta function integrals).

Let f(n, z) be a function such that |f(n, z)| = O(nr) for a constant r (i.e., f(n, z) is

of constant growth with respect to z). Let z = x + ıy. For x < 0, we can approximate

for some constant c and fixed n

∫ x+ı∞

x−ı∞
f(n, z)B(n, z)dz

=
N−1∑

k=0

∫ x+ı∞

x−ı∞
f(n, z)

(−1)kB
(1−z)
k (1)

k!
Γ(z + k)n−k−zdz

+ c

∫ x+ı∞

x−ı∞
f(n, z)n−N−zΓ(z)dz + o(1) . (4.39)

Proof. The proof relies on the standard expansion of the ratio of two Gamma func-
tions ([TE51, AS65], see equation (2.32) in Section 2.5). We use the fact that the ex-
pansion is uniform [Fie70] and that the tails of the integrands are exponentially small
(Lemma 4.4).

By equation (2.32), we can approximate B(n, x + ıy) ≤ gN (n, x + ıy) on the

interval 0 ≤ y ≤ n
1
3 by

gN (n, x + ıy) =
N−1∑

k=0

(−1)kB
(1−x−ıy)
k (1)

k!
Γ(x + ıy + k)n−k−x−ıy

+ cn−N−x−ıy|y|2NΓ(x + ıy) . (4.40)

For y > n
1
3 , we use Lemma 4.4 and get

∫ ∞

n
1
3

|f(n, z)B(n, x + ıy)|dy = O (nr)

∫ ∞

n
1
3

|B(n, x + ıy)|dy

= O

(

e−n
1
3 (π

4
−ǫ)n−x+r

)

. (4.41)

The terms of f(n, z)gN (n, x+ıy) are of the type nr−k−x−ıyΓ(x+ıy+k)(x + ıy)l

(for some l ≤ k). Recall that l, k, x have to be considered as constant and that x < 0.
Integrating over a term like this yields

∫ ∞

n
1
3

∣
∣
∣nr−k−x−ıyΓ(x + ıy + k)(x + ıy)l

∣
∣
∣dy

≤
√

2πnr−k−xxl

∫ ∞

n
1
3

yl|x + ıy + k|x+k− 1
2 e

−y arg(x+k+ıy)−x−k+ x+k

12((x+k)2+y2) dy

≤
√

2πe−x−knr−k−xxl|x + k|x+k
∫ ∞

n
1
3

yx+k+le−y arg(x+k+ıy)dy

= O
(

nr−k−x
)∫ ∞

n
1
3

y2ke−y π
3 dy = O

(

nr−k−x
)∫ ∞

π
3
n

1
3

y2ke−ydy

= O

(

nr−k−x+ 2
3
ke−

π
3
n

1
3

)

, (4.42)

CHAPTER 4. APPROXIMATE TRIE SEARCH 75

because we have arg(x + k + ıy) ≥ π
3 sgn(y), and

∫ ∞

π
3
n

1
3

u2ke−udu ≤ 2
(π

3
n

1
3

)2k
e−

π
3
n

1
3 (4.43)

by iterated integration (for n large enough). Hence, the error on the tail y > n
1
3 is

exponentially small in n. Thus, the expansion is valid throughout the whole range.

Lemma 4.5 allows us to convert a line integral over a Beta function into one involv-
ing the Gamma function. The residues of the Gamma function are easier to evaluate.
Therefore, we need to go back to a path integral. By Lemma 4.2, we are able to convert
the integral in equation (4.22), where C encircles the poles at {a, . . . , b} and f(n, z)
has no singularities in the half plane ℜ(z) ≥ a − ǫ, into a line integral along the line
ℜ(z) = a− ǫ. By Lemma 4.5, we approximate the integral into a sum of line integrals
over the Gamma function:

1

2πı

∮

C
f(n, z)B(n + 1,−z)dz ∼

∑

k,l

ck,l

∫ a−ǫ−ı∞

a−ǫ+ı∞
f(n, z)n−k+zΓ(−z + k)zldz .

(4.44)

To evaluate the integrals on the right hand side, again the residue theorem is used.
The integrals on the right side are converted into closed-path integrals by showing that
the missing parts of the path are “small”.1 Because we started out with the poles at
{a, . . . , b} and assumed that there are no other singularities in the half plane ℜ(z) ≥
a − ǫ, the line is usually completed into a box to the left around different poles. By
Stirling’s formula,2 for z = x + ıy with y → ∞ and bounded x, we have

|Γ(x + ıy)| ∼
√

2π

|x + ıy|e
−x|x + ıy|xe−y arg(x+ıy) ∼

√
2πe−x|y|x−

1
2 e−

π
2
|y| .

(4.45)
Thus, we can bound an integral for a path parallel to the x-axis for some α ≤ β and
|m| > max{|α|, |β|} by

∣
∣
∣
∣

∫ β±ım

α±ım
f(n, z)n−k+zΓ(−z + k)zldz

∣
∣
∣
∣

≤ cnr−k+β(β + m)l

√

2π

|x + ıy|e
−x(β − α)|β + m|βe−m π

4 −−−−→
m→∞

0 , (4.46)

for a suitable constant c.

To close the box, we need an integral parallel to the y-axis. We can bound the

1Derivations similar to the following can be found in [Knu98], Section 5.2.2.
2Which—in one of its many forms—is Γ(z) =

√
2πzz− 1

2 e−z(1 + O(1
|z|

)).

76 4.3. AVERAGE-CASE ANALYSIS OF THE TS ALGORITHM

(a) (b) (c) (d)

Figure 4.3: Illustration of the transformation of the integrals in the complex plane for the
proof of Lemma 4.6. The Rice’s integral (a) is transformed into a huge half-circle (b).
The circle is extended to infinity, which leads to a line integral (c). The latter is extended
into a box around different poles (d).

value of it for any constant α by

∣
∣
∣
∣

∫ α+ı∞

α−ı∞
f(n, z)n−k+zΓ(−z + k)zldz

∣
∣
∣
∣
≤ cnr−k+α

∫ +∞

−∞

∣
∣
∣Γ(k − α + ıy)(α + y)l

∣
∣
∣dy

≤ c′nr−k+α

∫ +∞

−∞

√

2π

|k − α + ıy|e
−k+α|k − α + ıy|k−αe−y arg(k−α+ıy)|α + ıy|ldy

= O
(

nr−k+α
)

(4.47)

because the integral converges to a constant due to the exponential decrease in |y|. As
a result, choosing α < −r + k yields a sub-constant growth in n. Thus, we have just
proven the following approximation lemma as a specialized and extended version of
Rice’s integrals (Theorem 2.2). The general idea is sketched in Figure 4.3.

Lemma 4.6 (Extended Rice’s integrals).

Let f(n, z) be an analytic continuation of f(k, n) = fk,n that contains the half line

[m,∞). Assume further that for some ǫ > 0 the function f(n, z) has no singularities

anywhere in the half plane ℜ(z) ≥ m − ǫ and that f(z, n) = O(nr) for some con-

stant r (i.e., f(n, z) is of constant growth with respect to z). Then for some constant N ,

we have

n∑

k=m

(−1)k

(
n

k

)

fk,n =
1

2π

N−1∑

k=0

∮

B
f(n, z)

(−1)kB
(1+z)
k (1)

k!
Γ(−z + k)n−k−zdz

+ c

∮

B
f(n, z)n−N+zΓ(−z)dz + o(1) , (4.48)

where B is a negatively oriented box of infinite height, right border at m − ǫ, and left

border a < −r + N and c is an appropriate constant.

The general method to use Rice’s integrals for sums exhibiting the exponential
cancellation effect is not new. Almost the same approach is taken in [Szp88a] (Theo-
rem 2.2). No proof is given for the validity of the approach to approximate the Beta

CHAPTER 4. APPROXIMATE TRIE SEARCH 77

function with a Gamma function in [Szp88a]. Therefore, we derived the necessary
bounds in this section. The two crucial points are the uniform expansion [Fie70] and
the negligible tails.

A very early use of the method can be found in the third volume of the famous
books by Knuth [Knu97a, Knu97b, Knu98]. The difference to our approach is that the
Gamma function comes into play via a special identity for the exponential function.

4.3.3 The Average Compactification Number

In this section, we analyze the part labeled An of equation (4.21). It turns out that this
has an interesting interpretation of its own. We call An the average compactification
number. With “compactification” we want to describe the relation between the trie for
the set S and the set itself. When the strings in S are inserted in the trie, common
prefixes are merged. An edge starting at the root labeled a represents all strings in S
that start with the character a. If there are na such strings, the edge “hides” na − 1
of these. Assume that we count all characters that we encounter by traversing the
complete trie for S. Then these would be An less characters than ‖S‖ (the number
of characters in S). Hence, n(d + 1)/q − An is an upper bound for the average
performance of the TS algorithm. We give a brief derivation of the asymptotics for An.
This is somewhat redundant because the approach is very much the same and the
derivation is much easier. We give the details nevertheless; they also serve as a primer
to the technique.

We derive a recursive equation for An in analogy to Section 4.3.1. Again it is
simpler to attach the counting to the nodes of the trie. At the node v with n leaves in
the subtree, we have n−1 “hidden” characters in the edge leading to v. When counting
this way, we overshoot the actual result by n − 1. Hence, let an = An + n − 1. We
then have to sum over all possibilities to partition n (see equation (4.12)). For n > 1,
this yields the formula

an = n − 1 +
∑

i1+···+iσ=n

(
n

i1, . . . , iσ

)

σ−n
σ∑

j=1

aij , (4.49)

with a0 = 0 and a1 = 0 (because neither the empty trie nor the trie containing only one
string hides any characters). The exponential generating function A(z) =

∑

n≥0 an
zn

n!
is then recursively defined by

A(z) = zez − ez +

σ∑

i=1

A
(z

σ

)

e(1−
1
σ)z + 1 . (4.50)

Note that we again had to accommodate for the case n = 0 by adding one. Multiplying
both sides by e−z we get (with Ã(z) = A(z)e−z)

Ã(z) = z − 1 +
σ∑

i=1

Ã
(z

σ

)

+ e−z . (4.51)

From the binomial transform (see equation (4.17)) we compute ã0 = 0 and ã1 = 0.
For n > 1, we compare coefficients in equation (4.51) and find that

ãn =
(−1)n

1 − σ1−n
. (4.52)

78 4.3. AVERAGE-CASE ANALYSIS OF THE TS ALGORITHM

Translating this back, we get

an =
n∑

k=2

(
n

k

)
(−1)k

1 − σ1−k
. (4.53)

This agrees with equation (4.21) because An = an − (n − 1). The large terms in the

sum can be as big as |
(

n
n/2

) (−1)k

1−σ1−k | ∼ 2n√
n

. By the sign changes, these exponential

values cancel out. This is often called an “exponential cancellation process”. For
these sums, Rice’s integrals are the method of choice, and we use the results from the
previous section. Because 1

1−σ1−z = O(1) for |z| → ∞, we can apply Lemma 4.6 to
find that

an =
1

2π

N−1∑

k=0

∮

B

1

1 − σ1−z

(−1)kB
(1+z)
k (1)

k!
Γ(−z + k)n−k+zdz

+ c

∮

B

1

1 − σ1−z
n−N+zΓ(−z)dz + o(1) , (4.54)

where B is a box-path with the right border ℜ(z) = 3
2 . Each term of the expansion

is smaller by a factor of n and possibly more due to additional terms z in the gener-

alized Bernoulli polynomials B
(1−z)
k (1). To evaluate equation (4.54), we compute the

residues left of the line ℜ(z) = 3
2 . Because B is negatively oriented, we have to take

the negative of the sum of the residues. We first consider the main term

1

2πı

∮

B

1

1 − σ1−z
Γ(−z)nzdz . (4.55)

The residues of 1
1−σ1−z Γ(−z)nz are

res

[
1

1 − σ1−z
Γ(−z)nz, z = 0

]

= − 1

σ − 1
, (4.56)

res

[
1

1 − σ1−z
Γ(−z)nz, z = 1

]

= −n

2
− γ − 1

lnσ
n − n logσ n , (4.57)

and

∑

k∈Z\{0}
res

[
1

1 − σ1−z
Γ(−z)nz, z = 1 +

2πık

lnσ

]

= − n

lnσ

∑

k∈Z\{0}
n− 2πık

ln σ Γ

(

−1 +
2πık

lnσ

)

. (4.58)

The sum in the last equation is a small oscillating term that is bounded by a small
constant. These sums are frequently encountered throughout this type of problems.

The second term in the approximation (4.54) is 1
1−σ1−z Γ(−z + 1)nz−1 1−z

2 . Here,
we have the residues

res

[
1

1 − σ1−z
Γ(−z + 1)nz−1 1 − z

2
, z = 1

]

=
1

2 lnσ
, (4.59)

CHAPTER 4. APPROXIMATE TRIE SEARCH 79

and

∑

k∈Z\{0}
res

[
1

1 − σ1−z
Γ(−z + 1)nz−1 1 − z

2
, z = 1 +

2πık

lnσ

]

=

−
∑

k∈Z\{0}

kπı

(lnσ)2
n− 2πık

ln σ Γ

(

−1 +
2πık

lnσ

)

, (4.60)

which are O(1) together. Hence, we find (recall that we have to take the negative of
the sum of all residues) that

an = n logσ n + n




1

2
− 1 − γ

lnσ
+

∑

k∈Z\{0} n− 2πık
ln σ Γ

(
−1 + 2πık

ln σ

)

lnσ



+ O (1) ,

(4.61)
which proves the following lemma.

Lemma 4.7 (Asymptotic behavior of the compactification number).

The asymptotic behavior of An is

An = n logσ n

+ n



−1

2
− 1 − γ

lnσ
+

∑

k∈Z\{0} n− 2πık
ln σ Γ

(
−1 + 2πık

ln σ

)

lnσ



+ O (1) . (4.62)

4.3.4 Allowing a Constant Number of Errors

We now turn to the evaluation of the sum

Sd
n =

n∑

k=2

(
n

k

)
(−1)k

σk−1 − 1

(
q

σk−1 − p

)d+1

, (4.63)

at first for constant d. For this case, we apply Lemma 4.6. Hence,

Sd
n =

1

2π

N−1∑

k=0

∮

B

1

σz−1 − 1

(
q

σz−1 − p

)d+1 (−1)kB
(1+z)
k (1)

k!
Γ(−z + k)n−k+zdz

+ c

∮

B

1

σz−1 − 1

(
q

σz−1 − p

)d+1

n−N+zΓ(−z)dz + o(1) ,

(4.64)

where B is again a box-path with the right border ℜ(z) = 3
2 . We concentrate on the

main term of the approximation because the other terms are smaller by a factor of n
or more (see also the previous section). By Lemma 4.6, B is negatively oriented. We
simply change the orientation by substituting −z for z. The integral considered for the
remainder of this section is thus

Id
n = − 1

2πı

∫

B

1

σ−z−1 − 1

(
q

σ−z−1 − p

)d+1

Γ(z)n−zdz , (4.65)

80 4.3. AVERAGE-CASE ANALYSIS OF THE TS ALGORITHM

where B is now a positively oriented box around all poles right of the line ℜ(z) = −3
2 .

We evaluate equation (4.65) by its residues. Their locations in the complex plane are
depicted in Figure 4.4. The poles are located at z = −1, z = 0, z = −1 ± 2πık

ln σ ,

and z = − logσ p − 1 ± 2πık
ln σ , k ∈ Z. The real part of the latter ranges from −1 +

logσ (σ2 − 1) > −1 to one under the assumption that σ−2 ≤ p ≤ 1 − σ−2. The latter
is fulfilled if there can be at least one mismatch and at least one match (otherwise, the
whole analysis becomes trivial anyway).

Lemma 4.8 (Residues at z = −1 ±
2πık

ln σ
).

Let g(z) := 1
σ−z−1−1

(
q

σ−z−1−p

)d+1
Γ(z)n−z . The residues of g(z) at z = −1 ± 2πık

ln σ
are

res [g(z), z = −1] = n

(
1 − γ

lnσ
− logσ n +

1

2
+

(d + 1)

q

)

(4.66)

and

∑

k∈Z\{0}
res

[

g(z), z = −1 +
2πık

lnσ

]

=
1

lnσ

∑

k∈Z\{0}
−Γ

(

−1 +
2πkı

lnσ

)

n1− 2πkı
ln σ .

(4.67)

Proof. The residue can be derived easiest from the series decompositions. These are
at z = −1 + 2πık

ln σ

1

σ−1−z − 1
=

∞∑

l=−1

(− lnσ)lBl+1

(l + 1)!

(

z + 1 − 2πık

lnσ

)l

(4.68)

=
−1

lnσ
(
z + 1 − 2πık

ln σ

) − 1

2
(4.69)

+ O

((

z + 1 − 2πık

lnσ

))

(4.70)

(
q

σ−z−1 − p

)d+1

= 1 +
(d + 1) lnσ

q

(

z + 1 − 2πık

lnσ

)

(4.71)

+ O

((

z + 1 − 2πık

lnσ

)2
)

(4.72)

n−z = n
∞∑

l=0

n− 2πık
ln σ

(− lnn)l

l!

(

z + 1 − 2πık

lnσ

)l

. (4.73)

For the Gamma function, we have a pole at −1 but not at the other points −1 + 2πık
ln σ .

For k 6= 0, we have

Γ(z) =
∞∑

l=−1

γ
(−1)
l (z + 1)l =

−1

z + 1
+ (γ − 1) + O ((z + 1)) (4.74)

and, for k = 0, we have

∞∑

l=0

γ
(−1+ 2πık

ln σ)
l

(

z + 1 − 2πık

lnσ

)l

, (4.75)

CHAPTER 4. APPROXIMATE TRIE SEARCH 81

−1σ−z−1
1

Poles of (z)

Poles of

Poles of)(σ−z−1

1−p

−p

d+1

Γ

Real values depend on p

Figure 4.4: Location of poles of 1

σ−z−1
−1

(
q

σ−z−1
−p

)d+1

Γ(z)n−z in the complex plane.

where γx0
l is the l-th coefficient of the series expansion of the Gamma function at the

point x0. The Bl are the Bernoulli numbers (see equation (2.34)). Note that γ
(−1)
1 =

γ ≈ 0.577 and γ
(−1+ 2πık

ln σ
)

0 = Γ
(
−1 + 2πkı

ln σ

)
.

The next term in the approximation series in equation (4.64) includes the additional

factor n−1B
(1−z)
1 (1) = n−1(−1−z

2 + 1). The factor z cancels any single pole, leaving
only the simple pole at z = −1. The residues are derived in a similar manner from the
series representations, but the order may be decreased by canceling a factor z, z + 1,
or similar. Furthermore, the results from the series decomposition are divided by the
factor n, thus the residues are negligible.

Observe that

res [g(z), z = −1] +
∑

k∈Z\{0}
res

[

g(z), z = −1 +
2πık

lnσ

]

=
d + 1

q
n

︸ ︷︷ ︸

E[Ld
n]

−



n logσ n − 1

2
n − 1 − γ

lnσ
n − n

∑

k∈Z\{0} n− 2πık
ln σ Γ

(
−1 + 2πık

ln σ

)

lnσ





︸ ︷︷ ︸

−An+O(1)

, (4.76)

thus the residues at ℜ(z) = −1 cancel the first terms in the total complexity of the TS
algorithm (see equation (4.21) and Lemma 4.7). When allowing a constant number of
errors, the complexity depends upon the residues at − logσ p − 1 ± 2πık

ln σ and at zero.
If − logσ p − 1 6= 0 then there is a single residue due to the Gamma function at zero.

Lemma 4.9 (Residue at z = 0).

Let g(z) := 1
σ−z−1−1

(
q

σ−z−1−p

)d+1
Γ(z)n−z . If − logσ p− 1 6= 0 the residue of g(z)

at z = 0 is

−res [g(z), z = 0] =
σ

σ − 1

(
qσ

1 − pσ

)d+1

. (4.77)

82 4.3. AVERAGE-CASE ANALYSIS OF THE TS ALGORITHM

Proof. The residue at this single pole is again evaluated by the series decomposition.
For the Gamma function, the coefficient of the z−1-term is one. The other terms are
just the function values at z = 0. The residue is the product of these and results in
equation (4.77).

The remaining residues at − logσ p − 1 ± 2πık
ln σ (including the case z = 0 for

− logσ p − 1 = 0) are computed in the next step.

Lemma 4.10 (Residues at z = 0, z = − logσ p − 1 + 2πık

ln σ
).

Let g(z) := 1
σ−1−z−1

(
q

σ−z−1−p

)d+1
Γ(z)n−z . If we have p = σ−1, g(z) has the

residue

res [g(z), z = 0] =
d+1∑

l=0

(σ − 1)d+1(−1)−lB
(−l+d+1)
d+1

(−l + d + 1)!

·
l∑

i=0





i∑

j=0

Aj

(
σ−1

)

j!(i − j)!

(
σ

1 − σ

)j+1(

− lnn

lnσ

)i−j



γ

(0)
l−i−1

(lnσ)l−i
(4.78)

at z = 0. For k ∈ Z and k 6= 0 or p 6= σ−1, g(z) has the residues

res

[

g(z), z = − logσ p − 1 +
2πık

lnσ

]

=
d∑

l=0

(
1 − p

p

)d+1 (− lnσ)−lB
(d+1)
−l+d

(−l + d)!

·
l∑

i=0





i∑

j=0

−Aj (p)(− lnσ)j

(1 − p)j+1j!
nlogσ p+1− 2πık

ln σ
(− lnn)i−j

(i − j)!



 γ
(− logσ p−1+ 2πık

ln σ)
l−i .

(4.79)

The B
(a)
k are generalized Bernoulli numbers, the Al(x) are Eulerian polynomials, and

the γ
(x0)
l are the coefficients of the series for Γ(z) at z = x0.

Proof. We compute the residues at z = 0 and z = − logσ p − 1 + 2πık
ln σ . If p 6= σ−1,

then the residue at z = 0 is given by equation (4.77). Otherwise we have a higher
order pole at z = 0. Therefore, we need to use a different series expansion for the
term (q

σ−z−1−p
)d+1. We find the following series representations. The pole is of order

d + 1 or d + 2 (depending on whether p = σ−1) so we only give the abstract sums
and do not bother with evaluating the first terms (as in the proof of Lemma 4.8). Let
ak = logσ p + 1 − 2πık

ln σ .

1

σ−1−z − 1
=

∞∑

l=0

−Al (p)(− lnσ)l

(1 − p)l+1l!
(z + ak)

l (4.80)

(
q

σ−z−1 − p

)d+1

=

∞∑

l=−d−1

(
1 − p

p

)d+1 (− lnσ)lB
(d+1)
l+d+1

(l + d + 1)!
(z + ak)

l (4.81)

n−z =
∞∑

l=0

n1+logσ pn− 2πık
ln σ

(− lnn)l

l!
(z + ak)

l . (4.82)

CHAPTER 4. APPROXIMATE TRIE SEARCH 83

For the Gamma function, we have a pole at zero but not at the other points z = −ak.
For p = σ−1 and k = 0, we have

Γ(z) =
∞∑

l=−1

γ
(0)
l zl , (4.83)

and, for k 6= 0 or p 6= σ−1, we have

Γ(z) =
∞∑

l=0

γ
(−ak)
l (z + ak)

l . (4.84)

The γ
(−ak)
l are just the result of a simple Taylor series. The relevant poles are

of order d + 1 (or d + 2 for p = σ−1). The residue is the sum of all combinations
of coefficients such that the power of (z + ak) is −1. The series lead directly to the
residues.

Remark 4.11.

One can show that |γ(0)
l − (−1)l| <

(
1
2 + ǫ

)l
as follows: By subtracting the poles

at zero and −1 from Γ(z), we get a function Γ(z) − 1
z + 1

z+1 which is analytical

for |z| < 2. Because −1
z + 1

z+1 = −1
z −∑∞

l=0 (−1)lzl, we know that the series
∑∞

l=0(γ
(0)
l −(−1)l)zl is convergent with a radius of convergence of two, which proves

our claim.

We can now determine the exact complexity for any constant value of d by evalu-
ating the sum (possible with the help of a computer algebra system). The number of
terms in equations (4.78) and (4.79) is polynomial in d, so the sums are more “effi-
cient” than equation (4.20). For most purposes, the term with the largest growth in n
should suffice. If p = σ−1, this term is

−σ(σ − 1)d

(d + 1)!
(logσ n)d+1 . (4.85)

Otherwise this term is

−(1 − p)d

d!pd+1
(logσ n)dn1+logσ p

∑

k∈Z

n− 2πık
ln σ Γ

(

− logσ p − 1 +
2πık

lnσ

)

. (4.86)

The infinite sum is somewhat dissatisfactory, but it is bounded by a constant (due to
the behavior of the Gamma function along an imaginary line), and these sums do occur
in a lot of problems of this kind. Note that the negative sign cancels with the sign in
equation (4.65). The result is summarized in the following theorem.

Theorem 4.12 (Searching with a constant bound).

Let d = O(1), then

E

[

T d
n

]

=







O
(

(log n)d+1
)

for p = σ−1 ,

O
(

(logσ n)dn1+logσ p
)

for p > σ−1 ,

O (1) otherwise .

(4.87)

Note that 1 + logσ p < 1 for p < 1. Thus, for a constant number of mismatches
and almost any model, the TS algorithm is more efficient than the LS algorithm.

84 4.3. AVERAGE-CASE ANALYSIS OF THE TS ALGORITHM

4.3.5 Allowing a Logarithmic Number of Errors

Whereas for small d it is still feasible to evaluate the sum in Lemma 4.10, it is not
satisfactory for d = f(n) as a function of n. In this section, we also answer the
question for which choice of d the LS algorithm is asymptotically as efficient as the
TS algorithm (on average). The sums in Lemma 4.10 are rather hard to evaluate for
growing d. We look at the integral (4.65) as a line integral. Instead of computing
the residues, we bound the integral, possibly first sweeping over some residues. This
technique has a strong resemblance to the application of the Mellin transform although
we used Rice’s integrals (see also the remarks in [Szp88a] and [FS95]).

The integral Id
n defined in equation (4.65) gives the highest order term of the

sum Sd
n of equation (4.63). By equations (4.46) and (4.47) we find that

Id
n = Id

ξ,n =
1

2πı

∫ ξ+ı∞

ξ−ı∞

1

σ−z−1 − 1

(
q

σ−z−1 − p

)d+1

Γ(z)n−zdz , (4.88)

where ξ = −3
2 . In fact, we can move the line of integration freely between −2

and −1 because the function under the integral is analytic in this strip. When tak-
ing the residues at ℜ(z) = −1 and possibly at ℜ(z) = 0 into account we can move the
line of integration even further. Thus, we have (taking into account equation (4.76))

Id
n =







Id
ξ,n , for − 2 < ξ < −1

Id
ξ,n + E

[
Ld

n

]
−An + O (1) , for − 1 < ξ < −1 − logσ p ≤ 0

Id
ξ,n + E

[
Ld

n

]
−An

+ σ
σ−1

(
qσ

1−pσ

)d+1
+ O (1) , for 0 < ξ < −1 − logσ p .

(4.89)

In the following, we show that Id
ξ,n is sublinear for certain choices of ξ depending

on q, p, and d. To this end, we assume that d+1 = c logσ n and bound the integral Id
ξ,n

as an exponent of n. We find that

∣
∣
∣Id

ξ,n

∣
∣
∣ =

∣
∣
∣
∣
∣

1

2πı

∫ ξ+ı∞

ξ−ı∞

1

σ−z−1 − 1

(
q

σ−z−1 − p

)c logσ n

Γ(z)n−zdz

∣
∣
∣
∣
∣

≤ 1

2π

1

σ−ξ−1 − 1

(
q

σ−ξ−1 − p

)c logσ n

n−ξ

∫ ξ+ı∞

ξ−ı∞
|Γ(z)|dz

= O

(

n
−ξ+c logσ

“

q

σ−ξ−1−p

”)

, (4.90)

because p and one are real values, the maxima of | 1
σ−z−1−1

| and | q
σ−z−1−p

| are taken
for arg z = 0, i.e., z = ξ. This can easily be seen as follows. The maximum is
taken for the minimum of the denominator. The denominator describes a circle with
center −1 or −p and radius σ−ξ−1 in the complex plane. The closest distance to zero
is then attained at the intersection with the real line left of the center. Let

Ec,p,ξ = c logσ

(
1 − p

σ−ξ−1 − p

)

− ξ (4.91)

be the exponent. We can bound it as follows.

CHAPTER 4. APPROXIMATE TRIE SEARCH 85

Lemma 4.13.

For 0 < p < 1, c ≥ 0, and c 6= 1 − p, there exists a ξ > −2 such that Ec,p,ξ < 1.

If c < 1, then Ec,p,ξ has a minimum at ξ∗ = logσ (1 − c) − logσ p − 1. If c ≥ 1 or

ξ∗ ≤ − 2, then some value ξ ∈ (−2,−1) satisfies Ec,p,ξ < 1.

Proof. We examine the growth of Ec,p,ξ with respect to ξ. The derivatives are

d

dξ
Ec,p,ξ = −1 +

c

1 − pσξ+1
and

d2

dξ2
Ec,p,ξ =

cpσξ+1 lnσ

(1 − pσξ+1)
2 , (4.92)

which shows that, for c > 0, the exponent has at most one local extreme value for
real ξ at ξ∗ = logσ (1 − c) − logσ p − 1, which is a minimum with value

c logσ

(
q(1 − c)

pc

)

+ logσ

(
p

1 − c

)

+ 1 . (4.93)

Assume c < 1 and let c = 1 − σ−x, then the exponent has a minimum at
ξ∗ = −x − 1 − logσ p, where it takes the value

(
1 − σ−x

)
(

logσ

(
q

p

)

− logσ (σx − 1)

)

+ x + 1 + logσ p . (4.94)

With respect to x, the exponent has derivative

σ−x lnσ

(

logσ

(
q

p

)

− logσ (σx − 1)

)







> 0 , for x < − logσ p

= 0 , for x = − logσ p

< 0 , for x > − logσ p .

(4.95)

Hence, there is a single extreme value, a maximum at x∗ = − logσ p, where the ex-
ponent takes the value one. For all other values of x, the exponent is smaller than
one. Thus, for ξ∗ > −2, the exponent is smaller than one if x 6= − logσ p, which is
equivalent to c 6= 1 − p. This proves our claim for ξ∗ > −2 and c < 1.

For ξ∗ ≤ − 2, we find that c > 1 − p
σ . The minimum value of the exponent is

taken for some ǫ > 0 at ξ = −2 + ǫ. Because, for small ǫ, we have

c logσ

(
1 − p

σ1−ǫ − p

)

< c logσ 1 = 0 . (4.96)

Thus, we find that

Ec,p,−2+ǫ <
(

1 − p

σ

)

logσ

(
1 − p

σ1−ǫ − p

)

+ 2 − ǫ . (4.97)

The derivative of the right hand side of equation (4.97) with respect to p is

−1

σ
logσ

(
1 − p

σ1−ǫ − p

)

+
(

1 − p

σ

)(

− σ1−ǫ − 1

(σ1−ǫ − p)(1 − p) lnσ

)

. (4.98)

The second derivative is

2

σ

(
σ1−ǫ − 1

(σ1−ǫ − p)(1 − p) lnσ

)

−
(

1 − p

σ

)
(

(σ1−ǫ − 1)
(
(1 − p) + (σ1−ǫ − p)

)

(σ1−ǫ − p)2(1 − p)2 lnσ

)

,

(4.99)

86 4.3. AVERAGE-CASE ANALYSIS OF THE TS ALGORITHM

which is smaller than zero for

p <
σ2−ǫ + σ − 2σ1−ǫ

−1 + 2σ − σ1−ǫ
−−→
ǫ→0

σ . (4.100)

Therefore, the first derivative is decreasing for p < σ − ǫ, and it is maximal at p = 0.
Here we have a value of

(1 − ǫ) lnσ − σ + σǫ

σ lnσ
−−→
ǫ→0

lnσ − σ + 1

σ lnσ
, (4.101)

which is smaller than zero for σ ≥ 2. Therefore, the right hand side of equation (4.97)
is decreasing in p, and the maximal value is attained at p = 0, where we have a value
of one. Because p < 1, we have an exponent of Ec,p,−2+ǫ < 1 for some small ǫ > 0.

Finally, for c ≥ 1 there is no minimum value ξ∗. The derivative of the exponent
Ec,p,ξ with respect to ξ is

cσ−ξ−1

σ−ξ−1 − p
− 1 ≥ 1

1 − pσξ+1
− 1 , (4.102)

which is strictly positive for ξ > −1 − logσ p. Thus, the minimum is attained at the
smallest possible value for ξ in the interval (−2,∞), say at ξ = −2 + ǫ. Again the

term logσ

(
1−p

σ1−ǫ−p

)

is negative so that

Ec,p,1−ǫ = c logσ

(
1 − p

σ1−ǫ − p

)

+ 2 − ǫ ≤ logσ

(
1 − p

σ1−ǫ − p

)

+ 2 − ǫ . (4.103)

With respect to p, the right hand side has the derivative

− σ1−ǫ − 1

(σ1−ǫ − p)(1 − p) lnσ
< 0 , (4.104)

so the maximal value is again obtained at p = 0, where we already know that the
exponent has a value of one. Hence, we have Ec,p,−2+ǫ < 1 for p > 0. This finishes
the proof.

The bounds immediately yield the following theorem.

Theorem 4.14 (Searching with a logarithmic bound).

If d + 1 = c logσ n, then we have

E

[

T d
n

]

=

{

o(n), for c < q

Θ(n log n), for c > q .
(4.105)

Proof. By Lemma 4.13 and equation (4.90), we can bound Id
ξ,n. The minimum of the

exponent—if it exists—is at ξ∗ = logσ (1 − c)− logσ p− 1 < − logσ p− 1. We make
a case distinction on ξ∗.

Case 1. The minimum ξ∗ exists and ξ∗ > −1. Here, we move the line of integration
to ξ = ξ∗. By Lemma 4.13, we have Id

ξ,n = o(n). By equation (4.89), we find
that

E

[

T d
n

]

= o(n) , (4.106)

CHAPTER 4. APPROXIMATE TRIE SEARCH 87

if we can bound the term

σ

σ − 1

(
qσ

1 − pσ

)d+1

(4.107)

for ξ∗ > 0 by o(n). Note that ξ∗ > 0 implies c < 1 − pσ and also p < σ−1

because c > 0. We bound equation (4.107) by

σ

σ − 1

(
qσ

1 − pσ

)d+1

=
σ

σ − 1
n

c logσ

“

1−p

σ−1−p

”

<
σ

σ − 1
n

(1−pσ) logσ

“

1−p

σ−1−p

”

.

(4.108)

The exponent (1 − pσ) logσ

(
1−p

σ−1−p

)

can be bounded by one from above: Its

derivative with respect to p is

−σ logσ

(
1 − p

σ−1 − p

)

+ σ
1 − σ−1

(1 − p) lnσ
, (4.109)

which is strictly less than zero because 1−p
σ−1−p

> σ and 1−σ−1

1−p < 1 (note again

that p < σ−1). At p = 0, the exponent has value one. Hence, it must be smaller
for p > 0.

Case 2. The minimum ξ∗ exists and −2 < ξ∗ < −1. We move the line of integration
to ξ∗ and find that

E

[

T d
n

]

= E

[

Ld
n

]

−An + o(n) = Θ(n log n) (4.110)

because ξ∗ < −1 implies c > q, and so

E

[

Ld
n

]

−An = n

(
c logσ n

q
− logσ n + O (1)

)

= ǫn logσ n + O (n) = Θ(n log n) (4.111)

for ǫ = c
q − 1.

Case 3. No minimum ξ∗ exists or the minimum exists with ξ∗ < −2. In this case, we
have either c > 1 or ξ∗ < −2, and we move the line of integration to a value
−2 < ξ < −1 where, by Lemma 4.13, we find that Id

ξ,n = o(n). Because

ξ∗ < −2 implies c > 1 − pσ−1 > q and the non-existence of a minimum im-
plies c > 1 > q, equation (4.110) and as a consequence equation (4.111) also
hold.

As a result, we have a linear-logarithmic behavior in Cases 2 and 3 and a sub-
linear behavior in Case 1. The latter occurs if and only if ξ∗ > −1, which is
equivalent to c > q.

Figure 4.5 illustrates the proof idea.

4.3.6 Remarks on the Complexity of the TS Algorithm

To guide the selection between the two algorithms and to improve the understanding of
the TS algorithm, we detail the exponent ǫ in the sublinear growth term O(nǫ) = o(n)
and the influence of the error model.

88 4.3. AVERAGE-CASE ANALYSIS OF THE TS ALGORITHM

*ξ

−1σ−z−1

Minimum depends
on p and c

Real values depend on p

Poles of

Poles of

Poles of (z)

1
(σ−z−1−p)

d+1
1−p

Γ

Figure 4.5: Illustration for Theorem 4.14.

4.3.6.1 Explicit Computation of the Exponent

It is possible to determine concrete values for the exponent of n when E[T d
n] has sub-

linear growth. This is the case for 0 < c < 1 − p. Either by Lemma 4.13 or by
Lemma 4.9, the complexity is bounded by O(nEc,p,min(ξ∗,0)) where

Ec,p,min(ξ∗,0) =

{

logσ

(

(1 − c)c−1c−cσp1−c(1 − p)c
)

for 1 − pσ < c < 1 − p ,

logσ

(
(1 − p)cσc(1 − pσ)−c) for 0 ≤ c ≤ 1 − pσ .

(4.112)
The first line is from Lemma 4.13, the second, for the case ξ∗ > 0, follows from
Lemma 4.9. The second term is larger than the first because

logσ

(
(1 − p)cσc(1 − pσ)−c)− logσ

(

(1 − c)c−1c−cσp1−c(1 − p)c
)

= c logσ

(
pσc

(1 − pσ)(1 − c)

)

+ logσ

(
1 − c

σp

)

(4.113)

has value zero at c = 1 − pσ and derivative

logσ

(
pσc

(1 − pσ)(1 − c)

)







> 0 for c > 1 − pσ ,

= 0 for c = 1 − pσ ,

< 0 for c < 1 − pσ .

(4.114)

Thus, there is a local minimum at c = 1 − pσ. On the other hand, the second term is
hidden in the first for c > 1 − pσ.

The exponent is growing in p (which should not be surprising). The first term has
derivative 1−c

p − c
1−p with respect to p, which is positive for c < 1 − p. The second

term’s derivative with respect to p is −c
1−p + σc

1−σp , which is always positive.

For p = σ−1 (Hamming distance), the exponent is H(c)
ln σ + c logσ (σ − 1), where

H(x) = −x ln(x)− (1−x) ln(1−x) is the entropy function. The exponent is zero at

CHAPTER 4. APPROXIMATE TRIE SEARCH 89

c = 0 and one at c = 1 − p. Thus, for σ = 2, we have a scaled entropy function. With
growing σ, the linear part dominates more and more while the entropy part diminishes,
i.e., the behavior of the exponent converges to a linear function. As a result, we can
estimate that the running time can be bounded by a function between O(nH(c)/ ln 2)
and O(nc).

4.3.6.2 Relation between the Error Probability and the Number of Errors

For the LS algorithm, we can double the number of allowed errors and the error proba-
bility and get the same asymptotic running time. For the TS algorithm, in the parameter
range with sublinear behavior, this is different. Here, a higher variance in the length
that a string is matched by the pattern increases the expected running time. This be-
havior is explained by the difference in savings or expenses of an early or late end
in matching a pattern against a string. Because of the trie structure, characters at the
beginning of the strings are more compacted (see Section 4.3.3) whereas characters at
the end are less compacted. Thus, not comparing some characters early in the string
in exchange for comparing some characters more towards the end of another string is
disadvantageous. The savings in the earlier characters correspond to fewer nodes than
the extra cost in the characters towards the end. In our formula for the exponent given
by equation (4.112), this can be seen when replacing c by ct and q by qt:

Ect,1−tq,min(ξ∗,0) =







logσ

(
σ(1−tq)1−tc(tq)tc

(1−tc)1−tc(tc)tc

)

, for 1 − (1 − tq)σ ≤ c < tq

tc logσ

(
tqσ

1−(1−tq)σ

)

, for 0 ≤ c < 1 − (1 − tq)σ .

(4.115)
The derivative (with respect to t) of the above is always negative when t, c, and q result
in valid parameters. For the second line, we have the derivative

c logσ

(
tqσ

1 − σ + tqσ

)

︸ ︷︷ ︸

≥0

+
tc

lnσ
︸︷︷︸

≥0

1 − σ + tqσ

tqσ
︸ ︷︷ ︸

≥1

≥0
︷︸︸︷
qσ

<0
︷ ︸︸ ︷

(1 − σ)

(1 − σ + tqσ)2
︸ ︷︷ ︸

≥0

< 0 . (4.116)

For the first line, we find that the derivative is

c logσ

(
q − tqc

c − tqc

)

+
c − q

(1 − tq) lnσ
, (4.117)

which is negative if

c logσ (q − tqc) − q

(1 − tq) lnσ
< c logσ (c − tqc) − c

(1 − tq) lnσ
. (4.118)

The function
x → c logσ (x − tqc) − x

(1 − tq) lnσ
(4.119)

decreases for c ≤ x ≤ q because the derivative with respect to x is

c

(x − tqc) lnσ
− c

(c − tqc) lnσ
, (4.120)

which is negative or zero because c ≤ x and 1 − tq > 0.

90 4.3. AVERAGE-CASE ANALYSIS OF THE TS ALGORITHM

4.3.6.3 Interpretation

In summary, the average-case complexity of the TS algorithm is

E

[

T d
n

]

=







O
(

(log n)d+1
)

, for d = O (1) and p = σ−1

O
(

(log n)dn1+logσ p
)

, for d = O (1) and p > σ−1

O (1), for d = O (1) and p < σ−1

o(n), for d + 1 < q logσ n

Θ(dn) = Ω (n logσ n) , for d + 1 > q logσ n .

(4.121)

It is well known that the average height of a trie is asymptotically equal to logσ n
(see, e.g., [Pit86, Szp88b]). When no more branching takes place, the TS algorithm
and the LS algorithm behave the same; both algorithms perform a constant number
of comparisons on average. If we allow enough errors to go beyond the height of the
trie, they should perform similar. With an error probability of q we expect to make
qm errors on m characters. It is therefore not a big surprise that there is a threshold at
d + 1 = q logσ n.

With respect to the matching probability p, we have a different behavior for the
three cases p < σ−1, p = σ−1, and p > σ−1. To explain this phenomenon, we
look at the conditional probability of a match for an already chosen character. If we
have p < σ−1, then the conditional probability must be smaller than one, i.e., with
some probability independent of the pattern we have a mismatch and thus restrict the
search independently of the pattern. If we have p > σ−1, the conditional probability
must be greater than one. Hence, with some probability independent of the pattern
character we have a match and thereby extend our search. This restriction or extension
is independent of the number of errors allowed; hence, there is the additional factor
of nǫ in the complexity.

It is interesting to look at some concrete and important examples of comparison-
based string distances. We already mentioned the Hamming distance and its extension
with don’t-care symbols in Section 2.1.3. Another model used, e.g., in [BT03, BTG03]
is a kind of arithmetic distance. Here, we assume that Σ = [0, . . . , σ − 1] is ordered
and that k < σ−1

2 is a constant. For i, j ∈ Σ let a(i, j) = max(i, j)−min(i, j). Then
let the arithmetic distance be defined by

d (i, j) =

{

1 if min (a(i, j), σ − a(i, j)) > k ,

0 otherwise .
(4.122)

For example, let Σ be the discretization of all angles between zero and 2π, then d (i, j)
measures whether two angles are not “too far apart”.

The match and mismatch parameters are given in Table 4.6. Especially for constant
size d, we find that the introduction of don’t cares makes a huge difference in the
complexity, i.e., the complexity jumps from O(logd+1 n) to O(nlogσ(3−2/σ) logd n).
For logarithmically growing d, we already computed the exponent for the Hamming
distance to be H(c)/ lnσ+c logσ (σ − 1), where H(x) = −x ln(x)−(1−x) ln(1−x)
is the entropy function. The introduction of don’t-care symbols changes the exponent
to H(c)/ lnσ + c logσ (σ2 − 3σ + 2)− c logσ (3σ − 2) + logσ(3− 2

σ), i.e., a slightly
smaller linear term in c but with the additional term logσ(3 − 2

σ). Note also that the
range for that we have sublinear growth is larger for the Hamming distance.

CHAPTER 4. APPROXIMATE TRIE SEARCH 91

Distance p q

Hamming distance 1
σ

σ−1
σ

Hamming distance with
don’t care symbols

3σ−2
σ2

σ2−3σ−2
σ2

Arithmetic distance 2i+1
σ

σ−2i−1
σ

Figure 4.6: Match and mismatch probabilities for selected comparison-based string dis-
tances.

4.4 Applications

Our research was also motivated by a project for the control of animal breeding via
single nucleotide polymorphisms (SNPs) [WDH+04]. An SNP is a location on the
DNA sequence of a species that varies among the population but is stable through
inheritance. In [WDH+04], a sequence of SNPs is encoded as a string to identify
individuals. In particular, the SNPs have one of the types “heterozygous”, “homozy-
gous 1”, “homozygous 2”, and “assay failure”, which is encoded in an alphabet of size
four. Because of errors, the search in the dataset of all individuals needs to be able to
deal with mismatches and don’t cares (corresponding to “assay failure”). The nature
of the data allows a very efficient binary encoding with two bits per SNP. This yields
a reasonable fast algorithm that just compares a pattern to each string in the set (the
LS algorithm described and analyzed above). On the other hand, a trie can be used as
an index for the data. Although a trie has the same worst-case look-up time, we can
expect to save some work because fewer comparisons are necessary. As a drawback,
the constants in the algorithm are a bit higher due to the tree structure involved. To
choose the optimal algorithm, a more detailed analysis was needed, which we have
presented in this chapter.

In the concrete case of the above application, the search is controlled by bounding
the number of don’t cares and the number of mismatches. We find that the average-case
behavior, bounding only the don’t cares, is approximately O((log n)dn0.585) when al-
lowing d don’t cares. Bounding only the number of mismatches would result in Ham-
ming distance, but in this application a don’t care character cannot induce a mismatch.
Therefore, the average-case complexity is approximately O((log n)dn0.661) when al-
lowing d mismatches. This is significantly worse than Hamming distance alone, which
yields a search time of O((log n)d+1). It also dominates the bound on the number of
don’t cares. When deciding whether the LS or the TS algorithm should be used in this
problem, we find that for d > (3/8) log4 n − 1 the LS algorithm will outperform the
TS algorithm.

The results of this chapter can also be used to estimate the running time of the
search methods described by Buchner et al. [BT03, BTG03]. They use a general-
ized suffix tree built on the strings representing the discretized angles of the three-
dimensional structure of proteins. Searches are performed allowing some deviations.
This is captured using the arithmetic distance defined in the previous section, a distance
function that we can handle with our approach. In particular, the full range of 360 de-

92 4.4. APPLICATIONS

grees is discretized into an alphabet Σ = {[0, 15), . . . , [345, 360)} of size twenty-four.
The algorithm then searches a protein substructure by considering all angles within i
intervals to the left and right, i.e., for i = 2 intervals to both sides, the interval [0, 15)
matches the intervals [330, 345), [345, 360), [0, 15), [15, 30), and [30, 45). The proba-
bility of a match is thus 2i+1

|Σ| . In their application, Buchner et al. [BT03, BTG03] allow
no mismatch, i.e., the search is stopped if the angle is not within the specified range.
The asymptotic running time can thus be estimated to be O(nlog|Σ| (2i+1)). Although
a suffix tree is used, and we do not expect the underlying distribution of angles to be
uniform and memoryless, this result can be used as a (rough) estimate, especially to
understand the effect of different choices of i. The results in [AS92, JS94, JMS04],
which point out a relation between the two trees at least for a memoryless source,
support this claim.

Chapter 5

Text Indexing with Errors

In the last chapter, we saw how using a trie for the approximate text indexing problems
〈P(Σ∗)|d|f(n)|doc|all〉 and 〈P(Σ∗)|d|f(n)|doc|pref〉 sped up searches over the naive
method of comparing each string with the search pattern. The search time, however,
depended on the size of the index, respectively the text corpus. In Chapter 2, we
discussed the solution to some exact text indexing problems using (generalized) suffix
trees. For this case, we were able to achieve a query time that was independent of the
size of the text corpus. In fact, the algorithms were linear in the number of reported
hits and the size of the search pattern, i.e., output sensitive. This is the best we can
hope for in any text indexing problem. In this chapter, we present a data structure and
corresponding algorithms for text indexing that are also output sensitive. This behavior
comes at the cost of a larger index size. In the worst-case, the index may become very
large, but we are able to bound the size on average and with high probability. The
method can also be modified so that the size is bounded in the worst-case, although
the algorithm is only output sensitive on average in this case.

We illustrate the basic idea for the approximate dictionary indexing problem al-
lowing d mismatches. For a set S of cardinality n, the possible outputs for any query
are the different strings matching a pattern w. For the empty string, we report all of S.
When reading a pattern string from left to right, we can (possibly) exclude some strings
from S for each character we have read because they cannot match the pattern with d
or fewer mismatches. In particular, the prefix we have currently read from the pattern
must match a prefix of a string with at most d mismatches.

To demonstrate the principle, assume that we perform the trie search of the previ-
ous chapter in a breadth first instead of a depth first manner. In the first round, we have
not yet read anything, and the possible hits are all strings represented by the root of the
tree. In a later round, we have read a prefix of length i of the pattern. The possible hits
are represented by all subtrees of nodes at depth i that were reached with d or fewer
mismatches. In the next round, we move to those children of the current nodes for that
we still have at most d mismatches. Unless this applies to all children, they represent
a subset of the strings of the previous step. We have eliminated from our current set
those strings belonging to child nodes where we reached the limit of d mismatches.

The idea to achieve an optimal query time is to reduce the number of nodes actually
visited to a constant number per examined pattern character. To this end, we need more

93

94

nodes to represent the different search states. Typically, we expect that after examining
O(log n) characters of the pattern, there should not be more than a constant number
of possible output candidates, which we can check in output optimal time. For pattern
prefixes of length c log n, there can be at most |Σ|c log n = nc log |Σ| different states. We
show that the number of states is even smaller on average, thus yielding an expected
index size of O(n logd n).

We elaborate the idea by distinguishing cases for the number of errors i from zero
to d. For i errors, there is a threshold hi for that no two strings in the set can be
matched by the same string of length hi with i errors. If the pattern is larger, there is at
most one occurrence that we can check “manually”. For shorter strings, we compute
and store all possible string sets in a trie discounting the cases we already solved for
smaller i. These tries are called error trees. The threshold hi is the height of the i-th
error tree.

At first glance, the idea may be reminiscent of the approach taken in [GMRS03]
with the “repetition index” playing the role of our threshold. Conceptually, the main
difference is that our approach is that of an index (or “register”), i.e., if the pattern is
small, we can directly read the occurrences from the index structure, while the method
described in [GMRS03] works more like a filter (or “accelerator”) that reports areas of
the strings with one or more matches. As a result, in contrast to [GMRS03], we can
guarantee a worst-case look-up time.

The main text indexing data structure in [CGL04] is also based on error trees
(called k-errata trees). In contrast to our approach, where all strings are merged into a
single new tree, the trees in [CGL04] are recursively decomposed into centroid paths,
and merging only takes place along these paths. A centroid path is a path that contains
at each node the edge that leads to the subtree with the most leaves. Any path in a tree
with n leaves can pass at most log n centroid paths. For each path, separate processing
is done. On the one hand, this bounds the index size in the worst-case. On the other
hand, this also requires to handle the paths separately during the search. Furthermore,
it complicates the process of eliminating duplicate reports of occurrences.

The analysis of our error trees shows that they have a logarithmic height. This is
used to bound the size of the trees on average. The intuition for this idea draws from the
very detailed analysis of digital search trees. In particular, tries and suffix trees have an
expected height of O(log n) (see, e.g., [Knu98, Pit85, KP86, JS91, Szp93a, Szp93b]).
This height reflects the length of longest repeated substring in random sequences
of length n. Even when allowing some errors, the length of such repeats is still
O(log n) [ŁS97]. It is thus reasonable to suspect that error trees created by allow-
ing a constant number of errors in prefixes up to the height of the suffix tree or trie
behave similarly well and have a height of O(log n).

This chapter is organized as follows: After the formal problem definition, we take
a closer look at the edit distance because it is inherently ambiguous. We then define
a relaxed version of Σ+-trees, which we need to realize a trade-off between time and
space. Our basic indexing data structure is described next, followed by the search
algorithm. Then the average size and the preprocessing for the data structure are ana-
lyzed. Finally, we present a trade-off between time and space, which allows to bound
the size in the worst-case in exchange for a “weakening” of the query time bound from
a worst-case to an average-case bound.

CHAPTER 5. TEXT INDEXING WITH ERRORS 95

5.1 Definitions and Data Structures

Our indexing scheme can be applied to a variety of problems. The two basic parame-
ters are a set S of strings, from which we build the index, and a criterion that we use
to select leaves from subtrees.

Our basic data structures are representations of modified Σ+-trees based on sets of
strings. For any set of strings S, in the modified Σ+-tree T corresponding to S, the
number of leaves corresponds to the cardinality of S. The size of the data structure
thus depends only on the cardinality of the set. By using different sets, we are able
to solve different indexing problems. In all cases relevant here, the cardinality of the
set is upper bounded by the size of any representation of the set. Therefore, as a
unifying view in the description of the algorithm, we assume that we are given a set S
of strings, called the base set. In particular, our data structure can be adapted to solve
the following problems:

• For 〈Σ∗|edit|k|occ|all〉 (approximate text indexing with occurrence reporting),
the base set S is the set of suffixes of a string.

• For 〈Σ∗|edit|k|pos|pref〉 (approximate text indexing with position reporting),
the base set S is the set of suffixes of a string.

• For 〈P(Σ∗)|edit|k|doc|all〉 (approximate dictionary querying), the base set S is
a set of independent strings.

• For 〈P(Σ∗)|edit|k|doc|pref〉 (approximate dictionary prefix querying), the base
set S is a set of independent strings.

• For 〈P(Σ∗)|edit|k|doc|substr〉 (approximate document collection indexing with
document reporting), the base set S is a set of suffixes of independent strings.

• For 〈P(Σ∗)|edit|k|pos|pref〉 (approximate document collection indexing with
position reporting), the base set S is a set of suffixes of independent strings.

• For 〈P(Σ∗)|edit|k|occ|all〉 (approximate document collection indexing with oc-
currence reporting), the base set S is a set of suffixes of independent strings.

Before we can detail the selection process, we need some more definitions regard-
ing the edit distance, the modified Σ+-trees, and their representation. In the following,
we assume that we are working with a set S of strings as specified above.

5.1.1 A Closer Look at the Edit Distance

The algorithms presented here work for edit distance with unit cost up to a constant
number d of errors. Any submodel of edit distance can be used as well, but we only
describe the edit distance version. To understand the basic ideas first, it might be
helpful to read this chapter replacing edit distance by Hamming distance.

Our indexing structure is based on the idea of computing certain strings that are
within a specified distance to elements from our base set S or sets derived from S

96 5.1. DEFINITIONS AND DATA STRUCTURES

d d d d d d d d d d d d d

i m

d d d d d d d

m

d d d d

i i m

d d d

m

d d d d

m

d d

i i i m

d d d d

m

d d d d d

i i i i m

d d d d d d d d d

i i i i i m

d d d d d d d d

i i i i i i s m

d d d d

m

d

i i i i i i i i s s s s s s

i i i i i i i i m s s s s s

i i i i i i i i i m

d d d d

i i i i i i i i i i m

d d d

i i i i i i m i i i i m

d d

s

d

d

d

d

d

d d d d d

dddd

m

m s

s

s

s
s

s
s

s

d

m

d

0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 0 1 2 3 4 5 6 7 8 9 10 11 12

2 1 0 1 2 3 4 5 6 7 8 9 10 11

3 2 1 0 1 2 3 4 5 6 7 8 9 10

4 3 2 1 0 1 2 3 4 5 6 7 8 9

5 4 3 2 1 0 1 2 3 4 5 6 7 8

6 5 4 3 2 1 1 1 2 3 4 5 6 7

7 6 5 4 3 2 2 2 2 3 4 5 6 7

8 7 6 5 4 3 3 3 2 3 4 5 6 7

9 8 7 6 5 4 4 4 3 2 3 4 5 6

10 9 8 7 6 5 5 5 4 3 2 3 4 5

11 10 9 8 7 6 5 6 5 4 3 2 3 4

i n t e r n a t i o n a l

i

n

t

e

r

a

c

t

i

o

n

Figure 5.1: Example of a relevant edit graph Grel
international,interaction for transforming

the string international into the string interaction. Only relevant arcs are drawn,
i.e., those arcs belonging to some shortest path. The edit paths between the two strings
are marked in bold. An s indicates a substitution, a d a deletion, an i an insertion, and
an m a match.

where the errors occur in prefixes of a bounded length. Therefore, we have to establish
close ties between the length of minimal prefixes and the number of errors therein.

The following definition captures the minimal prefix length of a string u that con-
tains all errors with respect to a string v.

Definition 5.1 (k-Minimal prefix length).

For two strings u, v ∈ Σ∗ with d (u, v) = k, we define

minprefk,u (v)

= min
{
l
∣
∣ d
(
u−,l, v−,l+|v|−|u|

)
= k and ul+1,− = vl+|v|−|u|+1,−

}
. (5.1)

Note that, for the Hamming distance, minprefk,u(v) is the position of the last
mismatch.

For a more detailed understanding of edit distance, it is helpful to consider the edit
graph. The edit graph for the transformation of the string u into the string v contains
a vertex1 for each pair of prefixes (s, t) with s ∈ prefixes(u) and t ∈ prefixes(v). An

1To avoid confusion, we call elements of the edit graph vertices and arcs and elements of the trees of
our index data structure nodes and edges.

CHAPTER 5. TEXT INDEXING WITH ERRORS 97

arc connects two vertices if the prefixes represented by the vertices differ by at most
one character. Each arc is labeled by a weight corresponding to equation (2.9), i.e.,
the weight is zero if and only if the prefixes of the source vertex are both extended
by the same character to form the prefixes of the target vertex (a match). Otherwise
the weight of the arc is one, corresponding to a substitution (diagonal arcs), a deletion
(horizontal arcs), or an insertion (vertical arcs). The vertex representing the empty
prefixes (ε, ε) is the start vertex and it is labeled with weight zero. Each vertex in the
edit graph is labeled with the weight of a lightest (or shortest if we consider weights as
distances) path connecting it to the start vertex. The vertex representing both strings
(u, v) completely is the end vertex. Its label is the edit distance between both strings.
We call an arc relevant if it lies on a shortest path from the start vertex to another
vertex. The relevant edit graph contains only the relevant arcs. We denote the relevant
edit graph for transforming u into v by Grel

u,v. An edit path is any path in the relevant
edit graph connecting the start with the end vertex. Figure 5.1 shows an example.
Each path connecting the start with the end vertex corresponds to a minimal set of edit
operations to transform one string into the other.

Recall that in Section 2.1.3 the edit distance is defined as the minimal number of
operations necessary to transform a string u into another string v. It is convenient
to define the operators del, ins, and sub of type Σ ∪ {ε} → Σ ∪ {ε}. If we have
distance d (u, v) = k for two strings u, v ∈ Σ∗, then there exist one or more se-
quences of operations (op1, op2, . . . , opk) with opi ∈ {del, ins, sub} such that v =
opk(opk−1(· · · op1(u) · · ·)). We call u(i) = opi(· · · op1(u) · · ·) the i-th edit stage.
Each operation opi in the sequence changes the current string at a position pos (opi).
An insertion changing u = u1 · · ·ui−1uiui+1 · · ·um into u1 · · ·ui−1aui · · ·um has
position i, a deletion changing u into u1 · · ·ui−1ui+1 · · ·um has position i, and a
substitution changing u into u1 · · ·ui−1aui+1 · · ·um also has position i. We call a
sequence ρ(u, v) = (op1, op2, . . . , opk) of edit operations an ordered edit sequence
if the operations are applied from left to right, that is, for opi and opi+1, we have
pos (opi) ≤ pos (opi+1) if opi is a deletion, and pos (opi) < pos (opi+1) otherwise.
There are two different paths to transform international into interaction with
four operations in the example in Figure 5.1: either replace n by a, replace a by c and
delete a and l; or delete n, insert c, and delete a and l. For each set of operations,
there is also a number of different possibilities to create an edit sequence. There are
two ordered edit sequences: sub6,a, sub7,c, del12, del12 and del6, ins7,c, del12, del12.
But the edit sequence del12, del12, ins8,c, del6 also transforms international into
interaction. Observe how changing the order of the operations also effects the po-
sitions in the string where the operations apply. For a fixed set of operations, there
is a unique order (except for swapping identical deli-operations). The charm of or-
dered edit sequences lies in the fact that they transform one string into another in a
well-defined way.

Note that there may be exponentially (in the number of errors) many edit paths:
Consider the strings bam

b and ba
n
b, which have distance k = n − m for n > m.

There are
(
n−2

k

)
possibilities to remove the additional as and thus equally many edit

paths.

Lemma 5.2 (One-to-one mapping between paths and edit sequences).

Let u, v ∈ Σ∗ be such that d (u, v) = k. Each ordered edit sequence ρ(u, v) =

98 5.1. DEFINITIONS AND DATA STRUCTURES

(op1, . . . , opk) corresponds uniquely to an edit path π = (p1, . . . , pm) in Grel
u,v.

Proof. Let π be an edit path from the start to the end vertex in the relevant edit graph.
We construct an ordered edit sequence ρ by adding one operation for each arc with
non-zero weight encountered on π. Because π has weight k, there are k non-zero arcs
corresponding to k operations. Let pji

be the source and pji+1 the target vertex of
the arc corresponding to the i-th operation. Let the row and column numbers of pji

be r and c. The path to pji
has weight i − 1, so we have d (u−,c, v−,r) = i − 1.

The first i − 1 operations transform u−,c to v−,r. The position of the i-th operation
is pos (opi) = r + 1, because it transforms u−,c+1 to v−,r+1 (a substitution), u−,c+1

to v−,r (a deletion), or u−,c to v−,r+1 (an insertion). The row numbers on the path are
strictly increasing except for the case of two deletions following immediately one after
another. But, for two deletions opi and opi+1 occurring directly in a row, we have the
same positions pos (opi) = pos (opi+1). Therefore, the ordered edit sequence derived
from the path is unique.

By induction on the number of operations, we show that each ordered edit se-
quence ρ corresponds uniquely to a path in the relevant edit graph. The start vertex
corresponds surely to the edit sequence with no operations. Assume that we have
found a unique path for the first i operations leading to a vertex p with row and col-
umn numbers r and c in the relevant edit graph such that the weight of its predecessor
in the path is smaller than i (or p is the start vertex) and the first i operations trans-
form u−,c to v−,r. Thus, vertex p must be labeled with weight i, which is optimal,
and d (u−,c, v−,r) = i. The position of the i-th operation (if i > 0) is either r for
a substitution or an insertion, or it is r + 1 for a deletion. Let the position of opi+1

be pos (opi+1) = r′ (i.e., we either replace or delete the r′-th character, or we insert
another character in its place). Note that r′ ≥ r + 1 because we have r′ ≥ r + 1
if opi+1 is a deletion, and r′ > r (hence r′ ≥ r + 1) if opi+1 is a substitution or an
insertion. Because we have d (u−,c, v−,r) = i and pos (opi+1) = r′, the intermediate
substrings must be equal: uc,c+r′−1−r = vr,r′−1. Thus, we must have zero-weight arcs
from the vertex p to a vertex q with row and column numbers r′−1 and c+ r′−1− r.
The weight of q is optimal because the weight of p is optimal by the induction hy-
pothesis. The vertex q represents the prefixes v−,r′−1 and u−,c+r′−1−r, which have
distance i. With the next operation, the first i + 1 operations transform u−,d into v−,s,
where d = c + r′ − r and s = r′ − 1 for a deletion, d = c + r′ − r and s = r′ for
a substitution, or d = c + r′ − 1 − r and s = r′ for an insertion. From q, there is
an arc corresponding to the next operation to a vertex p′ with row and column num-
bers s and d: Each arc adds at most weight one. The path to p′ is therefore optimal
because the existence of a path to p′ with less weight would prove the existence of
an ordered edit sequence with fewer operations for the two prefixes. Thus, we could
transform u−,d into v−,s with fewer than i + 1, and ud+1,− into vs+1,− with k − i− 1
operations. This would contradict d (u, v) = k.

Note that the position of the i-th operation opi derived from the edit path was
pos (opi) = r + 1, where r was the row number of the source vertex of the arc
representing opi in the first construction. Thus, if the operations have the positions
r1 + 1, . . . , rk + 1, then the row numbers of the source vertices of non-zero weight
arcs are r1, . . . , rk. In the second construction, we derived the existence of a vertex at
the start of an arc representing the (i + 1)-th operation with row and column numbers

CHAPTER 5. TEXT INDEXING WITH ERRORS 99

r′ − 1 and c + r′ − 1 − r, where r′ was the position of the (i + 1)-th operation. Thus,
if the non-zero weight arcs on the edit path start at the row numbers r1, . . . , rk, then
the operations have the positions r1 + 1, . . . , rk + 1. As a result, we have a one-to-one
mapping.

Now, we can make the desired connection from the sequence of operations to the
k-minimal prefix lengths.

Lemma 5.3 (Edit stages of ordered edit sequences).

Let u, v ∈ Σ∗ be such that d (u, v) = k. Let ρ(u, v) = (op1, . . . , opk) be an ordered

edit sequence, and let u(i) = opi(· · · op1(u) · · ·) be the i-th edit stage. If we have

minprefi,u(i)(u) > h + 1, then there exists an j > h with v−,j = u(i − 1)−,j .

Proof. By Lemma 5.2, there is a unique path π(u, v) in the relevant edit graph corre-
sponding to the sequence ρ(u, v). The same holds for any subsequence ρi(u, u(i)) =
(op1, . . . , opi). Because there are no more operations when transforming u into u(i),
the remaining path that is not identical with the path for ρ(u, v) must be made up of
zero-weight arcs. Let p be the source vertex of the arc for the i-th operation on the
edit path in the relevant edit graph Grel

u,u(i). The vertex p must have weight i− 1. Let q

be the target vertex of the arc for the (i − 1)-th operation. Up to vertex q, the edit
paths in the relevant edit graphs Grel

u,u(i) and Grel
u,u(i−1) are equal. Thus, they are equal

up to vertex p because there are only zero-weight arcs between q and p in the relevant
edit graphs transforming u into u(i). Furthermore, the same path is also found in the
relevant edit graph Grel

u,v. Let the row and column numbers of p be r and c. Thus, p
represents the prefixes u−,c and

v−,r = u(i)−,r = u(i − 1)−,r . (5.2)

Let p′ be the next vertex in the edit path following p, and let p′ have row and column
numbers r′ and c′. Because p′ has weight i, the distance between the represented
prefixes is d (u(i)−,r′ , u−,c′) = i. Hence, we have minprefi,u(i)(u) ≤ r′. Because
r′ ≤ r + 1, we find that

h + 1 < minprefi,u(i) (u) ≤ r′ ≤ r + 1 , (5.3)

and thus we have r > h. Equations (5.2) and (5.3) prove our claim.

When looking at the edit graph, one can also see how it is possible to compute
the edit distance in time O(mk) for a pattern of length m and k errors. Because each
vertical or horizontal edge increases the number of errors by one, there can be at most k
such edges in any edit path from the start to the end vertex. Therefore, we only have to
consider 2k + 1 diagonals of length m. We call this a k-bounded computation of the
edit distance (see also [Ukk85]).

5.1.2 Weak Tries

We basically assume that all Σ+-trees are represented by compact tries or by the simi-
lar weak tries. Therefore, we consider the strings in underlying sets to be independent
and make no use of any intrinsic relations among them. A suffix tree for the string t

100 5.1. DEFINITIONS AND DATA STRUCTURES

can also be regarded as a trie for the set S = suffixes(t), which can be represented
in size O(|t|). The major advantage of the suffix tree is that (by using the properties
of S) it can be built in time O(|t|), whereas building a trie for suffixes(t) may take
time O(l|t|), where l is the length of the longest common repeated substring in t. For
our index data structure, this additional cost will only be marginal. Therefore, for the
construction, we just regard all Σ+-trees as compact tries and make no use of internal
relations among the strings. In the following, let T (S) denote the compact trie for the
string set S ⊂ Σ+.

To reduce the size of our index in the worst-case, we later restrict the search to
patterns with maximal length l. We then only need to search the tries up to depth l. The
structure from this threshold to the leaves is not important. This concept is captured in
the following definition of weak Σ+-trees.

Definition 5.4 (l-Weak Σ+-tree).

For l > 0, an l-weak Σ+-tree T is a rooted, directed tree with edge labels from Σ+.

For every node p with depth(p) < l, there is at most one outgoing edge for each a ∈ Σ
whose label starts with the character a (relaxed unique branching criterion).

Although there is no one-to-one correspondence between strings and nodes in the
l-weak Σ+-tree, the definitions for the path of a node, the depth of a node, and the
word set of the tree as given in Section 2.1.2 apply.

A weak trie is the representation of a compact weak Σ+-tree for a set of strings S.2

Indeed, as argued in Section 2.1.2, if we use virtual nodes, it makes no conceptual
difference whether we compactify our trees or not. Thus, we will not be too rigid on
this subject where it is not needed.

Definition 5.5 (l-Weak trie).

For a set of strings S, the l-weak trie Wl(S) is a compact implementation of an l-weak

Σ+-tree such that

• it contains exactly one leaf for each string in S, and

• there is either a single branching node at depth l, under which all leaves are

attached, or there is only a single leaf and no branching after depth l.

In any case, the largest depth of a branching node in an l-weak trie is l. Figure 5.2
shows examples of weak tries derived from the examples in Section 2.3.1. The height
of the trie in Figure 5.2(a) is three, thus the 3-weak trie is the same as the compact
trie. Because maxpref(S) is the height of the trie for the string set S, the weak trie
Wmaxpref(S)(S) is just the compact trie T (S).

The l-weak trie for a set S can easily be implemented in size O(|S|) by represent-
ing edge labels with pointers into the strings of S: Each string in S generates a leaf,
and so there are at most O(|S|) leaves, O(|S|) inner nodes, and O(|S|) edges.

Definition 5.5 guarantees that weak tries are unique with respect to a string set S:
Because the trie is compact (by the unique branching criterion), the nodes up to depth l
are uniquely defined by the prefixes of length l of the strings in S. Each element in S
has a prefix of length l that uniquely corresponds to a path of length l. If there is more
than one string with a certain prefix u, then these are all represented by leaves under a
node p with path(p) = u.

2The term “weak compact trie” would be more exact, but we prefer to use the shorter term.

CHAPTER 5. TEXT INDEXING WITH ERRORS 101

ar

ll

e

id

ll

y

ub

ell

ck

p

to

s

0

1

2

4

6

8

9

11

12

13

16

18

20

21

(a) Compact trie

ar

ll

e

id

ll

y

ub

ell

ock

op

t

s

0

1

2

4

6

8

9

11

12

13

16

18

20

21

(b) 2-Weak trie

id

b

ell

s

ell

ea
r

ull

uy

tock

top

0

1

4

6

8

11

12

13

16

20

21

(c) 1-Weak trie

Figure 5.2: Examples of a compact trie, a 1-weak trie, and a 2-weak trie for the prefix-free
set of strings bear, bell, bid, bull, buy, sell, stock, stop.

5.2 Main Indexing Data Structure

In order to answer a query for any of our indexing problems, we have to find prefixes
of strings in S that match the search pattern w with at most k errors. Assume that
S ⊂ Σ∗ and w ∈ Σ∗ are given. We call s ∈ S a k-error length-l occurrence of w if
d (s−,l, w) = k. We then also say that w matches s up to length l with k errors. We
will omit the length l if it is either clear from the context or irrelevant. To solve the
indexing problems defined in Section 5.1 in optimal time, we need to be able to find
all d-error occurrences of the search pattern w in time O(|w|). For that purpose, we
will define error trees so that leaves in certain subtrees contain the possible matches.
From these, we select the desired output using range queries.

On an abstract level, the basic idea of the index for d errors is the following: A
single string s ∈ S can be compared to the pattern w to check whether w matches a
prefix of s with at most d errors in time O(d|w|) as described in Section 5.1.1. On
the other hand, a precomputed index of all strings within edit distance d of S (e.g.,
a trie containing all strings r for which r matches a prefix of a string s ∈ S with at
most d errors) allows a linear look-up time. Both methods are relatively useless by
themselves: The index would be prohibitively large, whereas comparing the pattern to
each string would take too long. Therefore, we take a balanced approach by precom-
puting some of the neighboring strings and directly computing the distance for others.
In particular, we inductively define sets of strings W0, . . . , Wd, where, for 0 ≤ i ≤ d,
the set Wi consists of strings with edit distance i to some string in S. We begin with
S = W0. Parameters h0, . . . , hd are used to control the precomputing. As an exam-
ple, W1 consists of all strings r = u′v such that d (r, s) = 1 for some s = uv ∈ W0

and |u′| ≤ h0 +1, i.e., we apply all possible edit operations to strings s ∈ S that result

102 5.2. MAIN INDEXING DATA STRUCTURE

in a modified prefix of length h0 + 1. The partitioning into d + 1 sets allows searching
with different error bounds up to d.

5.2.1 Intuition

The intuitive idea is as follows: If the search pattern w matches a prefix s of some string
in S with no errors, we find it in the trie T for S. If w matches s with one error, then
there are two possibilities depending on the position of the error: Either the error lies
above the height h0 of the trie T or below. If it lies above, we find a prefix of w in the
trie reaching a leaf edge. Thus, we can simply check the single string corresponding to
the leaf by a k-bounded computation of the edit distance (with k = 1) in time O(|w|).
Otherwise the error lies below the height of the trie and is covered by precomputing.
For this case, we compute all strings r that are within distance one to a string in S such
that the position of the error is in a prefix of length h0 + 1 of r. At each position, we
can have at most 2|Σ| errors (|Σ| insertions, |Σ| − 1 substitutions, one deletion). Thus,
for each string S, we generate O(h0) new strings (remember that we consider |Σ| to
be constant). The new strings are inserted in a trie T ′ with height h1. For the second
case, we find all matches of w in the subtree T ′

w.3

We extend this scheme to two errors as follows. Assume that w matches a prefix
s ∈ prefixes(S) of a string in the base set with two errors. There are three cases
depending on the positions of the errors (of an ordered edit script). If the first error
occurs above the height h0 of the trie T , then we find a prefix of w in T leading to
a leaf edge. Again, we can check the single string corresponding to this edge in time
O(|w|) as above. If the first error occurs below height h0 + 1, then we have inserted a
string r into the trie T ′ that reflects this first error. We are left with two cases: Either
the second error occurs above the height h1 of T ′ or below. In the first case, there is a
leaf representing a single string4, which we can check in time O(|w|). Finally, for the
case that the second error occurs below h1, we generate O(h1) new strings for each
string in T ′ in the same manner as before. The new strings are inserted in a trie T ′′

with height h2. Again, we find all matches of w in the subtree T ′′
w .

The idea can be carried on to any (constant) number of errors d, each time making
a case distinction on the position of the next error.

5.2.2 Definition of the Basic Data Structure

We now rigidly lay out the idea. There are some more obstacles that we have to
overcome when generating new strings from a set Wi: We have to avoid generating a
string by doing a reverse error, i.e., undoing an error from a previous step. In addition,
to ease representation, we allow all errors on prefixes of strings that lead to a new
prefix of maximal length hi−1 + 1. In particular, this also captures all operations with
positions up to hi−1 + 1. (See the proof of Lemma 5.2: The position of an operation
corresponds to one plus the row number of the source vertex in the edit graph. The
resulting string has length at most one plus this row number.) The key property of the
following inductively defined sets W0, . . . , Wd is that we have at least one error before

3Note, though, that some leaves in T ′
w may not be one-error matches of w because the error may be

after the position |w|. We later employ range queries to select the correct subset of leaves.
4We have to relax this later so that a leaf in the trie for i errors might represent 2i + 1 strings.

CHAPTER 5. TEXT INDEXING WITH ERRORS 103

h0 + 1, two errors before h1 + 1, and so on until we have d errors before hd−1 + 1
in Wd.

Definition 5.6 (Error sets).

For 0 ≤ i ≤ d, the error set Wi is defined inductively. The first error set W0 is defined

by W0 = S. The other sets are defined by the recursive equation

Wi = Γhi−1(Wi−1) ∩ Si , (5.4)

where Γl is an operator on sets of strings defined for A ⊂ Σ∗ by

Γl = {op(u)v | uv ∈ A, |op(u)| ≤ l + 1, op ∈ {del, ins, sub}} , (5.5)

the set Si is defined as

Si = {r | there exists s ∈ S such that d (s, r) = i} (5.6)

(i.e., the strings that are within distance i of the string in S), and hi are integer pa-

rameters (that may depend on Wi).

We say that r ∈ Wi stems from s ∈ S if r = opi(· · · op1(s) · · ·). If the base
set S contains suffixes of a string u, then the same string r ∈ Wi may stem from
multiple strings s, t ∈ S. For example, if we have t = av and s = v, then bs has
distance one to both t and s. When generating Wi from Wi−1, it is therefore necessary
to eliminate duplicates. On the other hand, we do not want to eliminate duplicates
generated from independent strings. Therefore, we introduce sentinels and extend the
distance function d. Each string is appended with a different sentinel, and the distance
function is extended in such a way that the cost of applying an operation to a sentinel
is at least 2d + 1. To avoid the introduction of a sentinel for each string, we can use
logical sentinels: We define the distance between the sentinel and itself to be either
zero if the sentinels come from the same string, or to be at least 2d + 1 if the sentinels
come from two different strings.

With the scheme we just described, we can eliminate duplicates by finding all those
newly generated strings t and s that stem from the same string or from different suffixes
of the same string u ∈ Wi−1, have the same length, and share a common prefix. The
following property will be useful to devise an efficient algorithm in the next section.

Lemma 5.7 (Error positions in error sets).

Assume that the string r ∈ Wi stems from the string u ∈ S by a sequence of opera-

tions op1, . . . , opi. If the parameters hi are strictly increasing for 0 ≤ i ≤ d, then

rhi−1+2,− = uhi−1+2,− and rhi+1,− = uhi+1,−.

Proof. We claim that any changed, inserted, or deleted character in r occurs in a prefix
of length hi−1 + 1 ≤ hi of r. By assumption, r = opi(· · · op1(u) · · ·). Let r(j) =
opj(· · · op1(u) · · ·) be the edit stages. In the j-th step, the position of the applied
operation is pos (opj), thus opj has changed or inserted the pos (opj)-th character in
string r(j), or it has deleted a character from position pos (opj) of the string r(j − 1).
We denote this position by pj (for r(j − 1) we have pj = pos (opj), but the position
changes with respect to later stages). Consecutive operations may influence pj , i.e.,
a deletion can decrease and an insertion increase pj from r(j) to r(j + 1) by one.

104 5.2. MAIN INDEXING DATA STRUCTURE

Thus, after i − j operations, pj ≤ pos (opj) + i − j. By Definition 5.6, we have
pos (opj) ≤ hj−1 + 1. Therefore, in step i, we have pj ≤ hj−1 + 1 + i − j. Because
the hi are strictly increasing, we have hj−1 + 1 ≤ hj ≤ hj+1 − 1 ≤ · · · ≤ hi−1 + 1−
i + j ≤ hi − i + j. As a result, for any position in r, where a character was changed,
we have pj ≤ hi−1 + 1 ≤ hi.

To search the error sets efficiently and to facilitate the elimination of duplicates,
we use weak tries, which we call error trees.

Definition 5.8 (Error trees).

The i-th error tree eti(S) is defined as the weak trie Whi
(Wi). Each leaf p of eti(S)

is labeled with (ids, l), for each string s ∈ S, where ids is an identifier for s and

l = minprefi,path(p)(s).

To capture the intuition first, it is easier to assume that we set hi = maxpref(Wi),
i.e., the maximal length of a common prefix of any two strings in Wi. For this case,
the error trees become compact tries.

A leaf may be labeled multiple times if it represents different strings in S (but
only once per string). For i errors, the number of suffixes of a string t that may be
represented by a leaf p is bounded by 2i+1: The leaf p represents a path path(p) = u
and any string matching u with i errors has to have a length between |u|− i and |u|+ i.
We assumed that i ≤ d is constant, thus a leaf has at most constantly many labels. The
labels can easily be computed while eliminating duplicates during the generation of
the set Wi.

5.2.3 Construction and Size

To allow d errors, we build d + 1 error trees et0(S), . . . , etd(S). We start constructing
the trees from the given base set S. Each element r ∈ Wi is implemented by a refer-
ence to a string s ∈ S and an annotation of an ordered edit sequence that transforms
u = s−,l+|s−|r|| into v = r−,l for l = minprefi,r(s). The i-th error set is implicitly
represented by the i-th error tree. We build the i-th error tree by generating new strings
with one additional error from strings in Wi−1. Because we attached an ordered edit
sequence to each string, we can easily avoid undoing an earlier operation with a new
one. The details are given in the next lemma.

Lemma 5.9 (Construction and size of Wi and eti(S)).

For 0 ≤ i ≤ d, assume that the parameters hi are strictly increasing, i.e., hi > hi−1,

and let ni = |Wi−1|. The set Wi can be constructed from the set Wi−1 in time

O(ni−1hi−1hi) and space O(ni−1hi−1) yielding the error tree eti(S) as a byprod-

uct. The i-th error tree eti(S) has size O(|S|h0 · · ·hi−1).

Proof. We first prove the space bound. For each string r in Wi, there exists at least
one string r′ in Wi−1 such that r = op(r′) for some edit operation. For string a r′

in Wi−1, there can be at most 2|Σ|(hi−1 + 2) strings in Wi: Set u′ = r′−,hi−1+1, then
we can apply at most |Σ|(hi−1 + 1) insertions, (|Σ| − 1)(hi−1 + 1) substitutions, and
(hi−1 + 2) deletions. Hence, we have |Wi| ≤ 2|Σ|(hi−1 + 2)|Wi−1|.

Let W ′
i be the multi-set of all strings constructed from Wi−1 by applying all possi-

ble edit operations that result in modified prefixes of length hi−1 +1. We have to avoid

CHAPTER 5. TEXT INDEXING WITH ERRORS 105

undoing any earlier operation. This can be accomplished by comparing the new opera-
tion with the annotated edit sequence. Note that we may construct the same string from
multiple edit sequences (also including the ordered edit sequence). To construct Wi

from W ′
i , we have to eliminate the duplicates.

By Lemma 5.7, if the string r ∈ W ′
i stems from the string u ∈ S, then we have

rhi+1,− = uhi+1,−. If r, s ∈ W ′
i are equal, then they must either both stem from the

same string u ∈ S, or they are both suffixes of the same string u. Because there are
no errors after hi, we have rhi+1,− = shi+1,− = uhi+1,−. Note that hi + 1 − i ≤
|uhi+1,−| ≤ hi +1+ i, so there can be at most 2i+1 different suffixes for any string u.

To eliminate duplicates, we build an hi-weak trie by naively inserting all strings
from W ′

i . Let n be the number of independent strings that were used to build the
base set S, i.e., all suffixes of one string count for one. Obviously, we have n ≤ |S|.
We create n(2d + 1) buckets and sort all leaves hanging from a node p into these in
linear time. All leaves in one bucket represent the same string. For suffixes, we select
one leaf and all different labels, thereby also determining the i-minimal prefix length.
For buckets of other strings, we just select the one leaf with the label representing the
i-minimal prefix. After eliminating the surplus leaves, the weak trie becomes eti(S).

Building the hi-weak trie for W ′
i takes time O(hi|W ′

i |) = O(ni−1hi−1hi), and
eliminating the duplicates can be done in time linear in the number of strings in W ′

i .
The size of the i-th error tree is linear in the number of leaf labels and thus bounded

by the size of Wi. Iterating |Wi| = O(hi−1|Wi−1|) leads to O(|S|h0 · · ·hi−1).

We choose the parameters hi either as hi = maxpref(Wi) or as hi = h + i for
some fixed value h that we specify later. By both choices, we satisfy the assumptions
of Lemma 5.9 as shown by the following lemma.

Lemma 5.10 (Increasing common prefix of error sets).

For 0 ≤ i ≤ d, let hi = maxpref(Wi) be the maximal prefix of any two strings in

the i-th error set, then we have hi > hi−1.

Proof. We prove by induction. Let r and s be two strings in Wi−1 with a maximal
prefix r−,hi−1 = s−,hi−1 = u for some u ∈ Σhi−1 . Because r and s are not identical,
we have r = uav and s = ubv′ for some strings v, v′ ∈ Σ∗ and a, b ∈ Σ. We
have |Σ|≤2; therefore, Γ(Wi−1) contains at least the strings ubv, uaav, ubav, uv,
uav′, uabv′, ubbv′, and uv′. By Lemma 5.7, for any string r ∈ Wi−1 that stems from
t ∈ S, we have rhi−1+1,− = thi−1+1,−, thus no character at a position greater or equal
to hi−1 + 1 can have been changed by a previous operation. Hence, applying any
operation at hi−1 + 1 creates a new string that has distance i to some string in S. Both
ubav and ubbv′ were created by inserting a character at hi−1 + 1, so they do not undo
an operation and belong to Wi. They both have a common prefix of length at least
hi−1 + 1 > hi−1. Therefore, we find that hi > hi−1.

For hi = maxpref(Wi), we do not need to use the buckets as described in the
proof of Lemma 5.9, but we can create the error trees more easily. By assumption, two
strings are either completely identical, or they have a common prefix of size at most hi.
On the other hand, no two strings have a common prefix of more than hi, thus there
can be at most one bucket below hi. If two strings r and s are identical, they must
stem from suffixes of the same string u ∈ S and the suffixes rhi+1,− and shi+1,− must

106 5.2. MAIN INDEXING DATA STRUCTURE

be equal. Because s and r are implemented by pointers to strings in S, we can easily
check whether they reference the same suffix of the same string during the process of
insertion and before comparing at a character level.

5.2.4 Main Properties

The sequence of sets Wi simulates the successive application of d edit operations on
strings of S where the position of the i-th operation is limited to be smaller than hi−1+
1. Before describing the search algorithms, we look at some key properties of the error
sets that show the correctness of our approach.

Lemma 5.11 (Existence of matches).

Let w ∈ Σ∗, s ∈ S, and t ∈ prefixes(s) be such that d (w, t) = i. Let ρ(w, t) be

an ordered edit sequence for w = opi(· · · op1(t) · · ·). For 0 ≤ j ≤ i, let t(j) =
opj(· · · op1(t) · · ·) be the j-th edit stage. If for all 1 ≤ j ≤ i we have

minprefj,t(j) (t) ≤ hj−1 + 1 , (5.7)

then there exists a string r ∈ Wi with

w ∈ prefixes (r), r = opi(· · · op1(s) · · ·), and l = minprefi,r (s) . (5.8)

Proof. We prove by induction on i. For i = 0, we have W0 = S and the claim is
obviously true because w = t ∈ prefixes(s) in that case.

Assume the claim is true for all j ≤ i − 1. Let r = opi(· · · op1(s) · · ·). Because
d (r, s) = i, we have to show that there exists a string r′ ∈ Wi−1 and strings u, u′, v ∈
Σ∗, with r = uv, r′ = u′v, d (u, u′) = 1, and |u′| ≤ hi−1 + 1. Then we have r ∈ Wi

by Definition 5.6.
Set l = minprefi,r(s). Because w and t are prefixes of r and s, which already

have distance i, we have l = minprefi,w(t) and l ≤ hi−1 + 1 by equation (5.7). Set
u = s−,l+|s|−|r|, u′ = r−,l, and v = rl+1,−. By Definition 5.1, we have r = u′v,
s = uv, d (u, u′) = i, and u′ = opi(· · · op1(u) · · ·). Set u′′ = opi−1(· · · op1(u) · · ·)
and r′ = u′′v, then we get r′ = opi−1(· · · op1(s) · · ·). We are finished if we can show
that r′ ∈ Wi−1 because we have |u′| = l ≤ hi−1 + 1 and d (u′, u′′) = 1.

Let w′ = opi−1(· · · op1(t) · · ·), then d (w′, t) = i − 1. Because, for all 1 ≤ j ≤
i−1, we have minprefj,t(j)(t) ≤ hj−1 +1, we can apply the induction hypothesis and
find that there exists a string r̂ = opi−1(· · · op1(s) · · ·) in Wi−1 with w′ ∈ prefixes(r̂)
and l′ = minprefi−1,r̂(s). This proves our claim because r̂ = r′.

When we translate this to error trees, we find that, given a pattern w, the i-error
length-l occurrence s of w corresponding to a leaf labeled by (ids, l) can be found
in eti(S)w. Unfortunately, not all leaves in a subtree represent such an occurrence.
The following lemma gives a criterion for selecting the leaves (the errors must appear
before w, i.e., if l ≤ |w|).

Lemma 5.12 (Occurrences leading to matches).

For r ∈ Wi, let w ∈ prefixes(r) be some prefix of r, and let s ∈ S be a string

corresponding to r such that l = minprefi,r(s). There exists a prefix t ∈ prefixes(s)
such that d (t, w) = i and r|w|+1,− = s|t|+1,− if and only if |w| ≥ l.

CHAPTER 5. TEXT INDEXING WITH ERRORS 107

Proof. If |w| ≥ l, then there are strings u, v ∈ Σ∗ with w = uv and u = w−,l.
Because w is a prefix of r, we have r = wx = uvx. By Definition 5.1, there also
exists a prefix u′ ∈ prefixes(s) with s = u′vx and d (u′, u) = i. Hence, we have
t = u′v ∈ prefixes(s), d (w, t) = d (uv, u′v) = i, and x = r|w|+1,− = s|t|+1,−.

Conversely, assume that |w| < l and that there exists a prefix t ∈ prefixes(s)
with d (t, w) = i and r|w|+1,− = s|t|+1,−. Set m = |w| and recall that w = r−,m.
Then s = tr|w|+1,− and, thus we have t = s−,|s|−|r|+m. Therefore, we find that
d (r−,m, s−,m+|s|−|r|) = i and rm+1,− = sm+1+|s|−|r|,−, i.e., m is a candidate for
minprefi,r(s), which is a contradiction to m < l.

In the error tree, this means that we have an i-error occurrence of w for a leaf p
in eti(S)w with path(p) = r if and only if p is labeled (ids, l) with |w| ≥ l. Finally,
there is a dichotomy that directly implies an efficient search algorithm.

Lemma 5.13 (Occurrence properties).

Assume w matches t ∈ prefixes(s) for s ∈ S with i errors, i.e., d (w, t) = i. Let ρ =
(op1, . . . , opi) be an ordered edit sequence such that w = opi(opi−1(· · · op1(t) · · ·)).
There are two mutually exclusive cases,

(1) either w ∈ prefixes(Wi), or

(2) there exists at least one 0 ≤ j ≤ i for that we find a string r ∈ Wj such that

r = opj(· · · op1(s) · · ·), and we have w′ = w−,l for some w′ ∈ prefixes(r) and

some l > hj .

Proof. Let t(j) = opj(· · · op1(t) · · ·) be the j-th edit stage. Assume that there exists
no j such that minprefj,t(j)(t) > hj−1 + 1. Then w ∈ prefixes(Wi) by Lemma 5.11.
Otherwise, let j be the smallest index such that minprefj+1,t(j+1)(t) > hj + 1. By
Lemma 5.11, there exists a string r ∈ Wj with t(j) ∈ prefixes(r). By Lemma 5.3,
there exists a prefix w′ = w−,l = t(j)−,l with l > hj , thus w′ ∈ prefixes(r).

When searching for a pattern w, assume that either hi > maxpref(Wi) or |w| ≤ hi

for all i. The last lemma applied to error trees shows that, if w matches a string
t ∈ prefixes(s) for some s ∈ S with exactly i errors, the following dichotomy holds.

Case A Either w can be matched completely in the i-th error tree eti(S) and a leaf p
labeled (ids, l) can be found in eti(S)w.

Case B Or a prefix w′ ∈ prefixes(w) of length |w′| > hj is found in etj(S) and
etj(S)w′ contains a leaf p with label (ids, l).

5.2.5 Search Algorithms

Lemmas 5.12 and 5.13 directly imply a search algorithm along the case distinction
made above. Recall that we can build the index efficiently if we choose the param-
eters hi either as hi = maxpref(Wi) or as hi = h + i for some fixed value h.
The index supports searches if either hi = maxpref(Wi) or the length of the search
pattern w is bounded by |w| ≤ h. For these parameters, we can check all prefixes
t ∈ prefixes(S) for which Case B applies in time O(|w|): If |w| ≤ h, then we can
never have |w′| > hi for a prefix w′ ∈ prefixes(w) and so the case never applies.

108 5.2. MAIN INDEXING DATA STRUCTURE

Otherwise we have hi = maxpref(Wi). In this case, the error trees become tries and
so there is at most one leaf in eti(S)w′ if the length of the prefix w′ ∈ prefixes(w)
is greater than hi. Each leaf can have at most 2d + 1 labels corresponding to at most
2d+1 strings from S. We compute the edit distance of w to every prefix of each string
in time O(|w|) with a d-bounded computation of the edit distance (see Section 5.1.1).
There can be at most 2d + 1 prefixes that match w, thus from all d + 1 error trees, we
have at most d(2d + 1)2 strings in total for which we must check the problem specific
conditions for reporting them. As a result, we get the following lemma.

Lemma 5.14 (Search time for Case B).

If d is constant and either hi = maxpref(Wi) or the length of the search pattern w is

bounded by |w| ≤ h ≤ mini hi, then the total search time spent for Case B is O(|w|).

Case A is more difficult because we have to avoid reporting occurrences multiple
times. A string with errors above |w| can occur multiple times in eti(S)w. Because any
string t matching the pattern w with d or fewer errors has length |w|−d ≤ |t| ≤ |w|+d,
we can eliminate duplicate reports using |S|(2d + 1) buckets if necessary. The main
issue is to restrict the number of reported elements for each error tree i. If we can
ensure that no output candidate is reported twice in each error tree, then the total work
for reporting the outputs is linear in the number of outputs.

The strings in the base set S can be either independent or they are suffixes of
a string u (also called document). Recalling the definition for the base set made in
Section 5.1, we have to support four different types of selections:

1. For the following problems, we want to report each prefix t of any string s ∈ S
that matches the pattern w with at most d errors:

• 〈Σ∗|edit|k|occ|all〉
• 〈P(Σ∗)|edit|k|occ|all〉

2. For the following problems, we want to report each string s ∈ S for which a
prefix t ∈ prefixes(s) matches the pattern w with at most d errors:

• 〈Σ∗|edit|k|pos|pref〉
• 〈P(Σ∗)|edit|k|doc|pref〉
• 〈P(Σ∗)|edit|k|pos|pref〉

3. For the following problems, we want to report each string s ∈ S which matches
the pattern w with at most d errors:

• 〈P(Σ∗)|edit|k|doc|all〉

4. For the following problems, we want to report each document u if a prefix t ∈
prefixes(s) of a suffix s ∈ S of u matches the pattern w with at most d errors:

• 〈P(Σ∗)|edit|k|doc|substr〉

The basic task is to match the pattern in each of the d + 1 error trees. If the
complete pattern could be matched, we are in Case A. To support the selection of the
different types, we create additional arrays for each error tree. Let ni be the number

CHAPTER 5. TEXT INDEXING WITH ERRORS 109

of leaf labels in the i-th error tree eti(S). First, we create an array Ai of size ni that
contains each leaf label and a pointer to its leaf in the order encountered by a depth
first traversal of the error tree. For example, if the weak tree in Figure 5.2(c) were an
error tree, we would first store the labels of the node 4, then all labels of the node 6,
and so on until we would have stored all labels of the node 21 at the end of Ai. The
order of the depth first traversal can be arbitrary but must be fixed. Each node p of the
error tree is annotated by the leftmost index left(p) and the rightmost index right(p)
in Ai containing a leaf label from the subtree rooted under p. For a virtual node q,
left(q) and right(q) are taken from the next non-virtual node below q.

To support the selection of results, we create an additional array Bi of the same
size. Depending on the type, Bi contains certain integer values used to select the
corresponding leaf labels using range queries.

By Lemma 5.12, for reports of Type 1, we have to select the strings corresponding
to those labels for that the minimal prefix value l stored in the label is smaller than the
length of the pattern. This is achieved by setting Bi[j] to l if Ai[j] contains the leaf
label (ids, l). Let p be the (virtual) node corresponding to the location of the pattern w
in the error tree eti(S). A bounded value range (BVR) query (left(p), right(p)) with
bound |w| on Bi yields the indices of labels in Ai for that l ≤ |w| in linear time in the
number of labels.

For the reports of Type 2, we just have to select the strings corresponding to
matches. Observe that for any label (ids, l) found in the subtree eti(S)w there is a
prefix of s that matches w with at most i errors. Hence, we simply store in Bi[j]
an identifier for the string s if (ids, l) is stored in Ai[j]. Let again p be the (virtual)
node corresponding to the location of the pattern w in the error tree eti(S). A colored
range (CR) query (left(p), right(p)) on Bi yields the different string identifiers found
in eti(S)w.

The reports of Type 3 require the complete string to be matched by the pattern w.
We have to take care of sentinels that we have added to the strings in S. Let p be the
(virtual) node corresponding to the location of the pattern w in the error tree eti(S).
Because we added a different sentinel for each string in S, there is a match only if there
is an outgoing edge labeled by a sentinel at p, and there is one such outgoing edge for
each different string in S. Thus, we can report the matches directly from the error tree.

Finally, for reports of Type 4, we want to report the documents of which the strings
in S are suffixes. For this case the string identifiers must contain a document number,
and we use the same approach as for Type 2, just storing document numbers in Bi.

Lemma 5.15 (Search time for Case A).

If d is constant and either hi = maxpref(Wi), or the length of the search pattern w
is bounded by |w| ≤ h ≤ mini hi, then the total search time spent for Case A is

O(|w| + occ), where occ is the number of reported outputs.

Proof. Matching the pattern w in each of the d error trees takes time O(|w|) because
we never reach the part of the weak tries where the unique branching criterion does not
hold. Thus, we find a single (virtual) node representing w. The range queries (or the
tree traversal for Type 3) are performed in linear time in the number of outputs occ.
Each output is generated at most d+1 times. Therefore, the total time is O(|w| + occ).

110 5.3. WORST-CASE OPTIMAL SEARCH-TIME

For the space usage, we have the following obvious lemma.

Lemma 5.16 (Additional preprocessing time and space for Case A).

The additional space and time needed for the range queries and the arrays for solving

Case A is linear in the number of leaves of the errors trees.

Proof. There are at most 2d + 1 labels per leaf, and so the size of the generated arrays
is linear in the number of leaves. The time needed for the depth first traversals is also
linear in the array sizes. Finally, the range queries are also prepared in time and space
linear in the size of the arrays (see Section 2.3.2).

5.3 Worst-Case Optimal Search-Time

When setting hi to maxpref(Wi), our main indexing data structure already yields
worst-case optimal search-time by Lemmas 5.14 and 5.15. What is left is to determine
the size of the data structure and the time needed for preprocessing. Note that, if S
is the set of suffixes of a string of length n, then already h0 = maxpref(W0) =
maxpref(S) can be of size Ω(n). For independent strings, the worst-case size of
h0 = maxpref(S) cannot be bounded at all in terms of n = |S|. Fortunately, the
average size is much better and it occurs with high probability. In this section, we
derive the corresponding average-case bounds for hi = maxpref(Wi). Together with
Lemmas 5.9 and 5.16, this gives a bound on the total size and preprocessing time
because they are all dominated by the size and preprocessing time needed for the d-th
error tree:

Corollary 5.17 (Data structure size and preprocessing time).

Let n be the number of strings in the base set S. For constant d, the total size of the

main data structures is O(nh0h1 · · ·hd−1), and the time needed for preprocessing is

O(nh0h1 · · ·hd−1hd).

We show that, under the mixing model for stationary ergodic sources, the probabil-
ity of hi deviating significantly from c log n is exponentially small. Using this bound,
we can also show that the expected value of hi is O(log n).

If hi = maxpref(Wi) is greater than l, there must be two different string s and r
in Wi such that s−,l = r−,l. We first prove that this implies the existence of an ex-
act match of length Ω(l

i) between two substrings of strings in S, then we bound the
probability for this event. Note that, if S contains all suffixes of a string v, then S also
contains v itself.

Lemma 5.18 (Length of common or repeated substrings).

Let W0, . . . , Wd be the error sets by Definition 5.6. If there exists an i with hi ≥
(2i + 1)l for l > 1, then there exists a string v of length |v| > l such that either v is

a substring of two independent strings in S, or v = uj,j+l−1 = uj′,j′+l−1 with j 6= j′

for some u ∈ S. Furthermore, for l ≥ 2, both occurrences of v start in a prefix of

length 2il of strings in S.

Proof. We prove the claim by induction over i. For i = 0, the claim is naturally true
because h0 is the length of the longest prefix between two strings in S. This is either

CHAPTER 5. TEXT INDEXING WITH ERRORS 111

the longest repeated substring in a string u (if all suffixes of u were inserted into S),
or the longest common prefix of two independent strings.

For the induction step, assume that we have hj < (2j + 1)l for all j < i and
that hi ≥ (2i + 1)l. Let r, s ∈ Wi be two strings with a common prefix v of length
|v| = hi ≥ (2i + 1)l, thus v = r−,|v| = s−,|v|. Let t(r), t(s) ∈ S be the elements from

the base set corresponding to r and s, i.e., d (t(r), r) = i and d (t(s), s) = i. Recall
that, by Lemmas 5.7 and 5.10, rhi−1+2,− = thi−1+2,− if r ∈ Wi stems from t ∈ S. It

follows that t(r) and t(s) share the same substring w = t(r)hi−1+2,hi
= t(s)hi−1+2,hi

of
length |w| = hi − hi−1 − 2 + 1 > (2i + 1)l − (2(i − 1) + 1)l − 1 = 2l − 1. Even
if t(r) and t(s) are the same string u or suffixes of the same string u, then w cannot
start at the same position in u: Assume for contradiction that w = t(r)hi−1+2,hi

=

t(s)hi−1+2,hi
= uk,k+|w|, then we have t(r)hi−1+2,− = uk,− = t(s)hi−1+2,−, so r and s

would not branch at hi, which would be a contradiction.
The last claim follows from w = t(r)hi−1+2,hi

and hi−1 ≤ (2i − 1)l. Thus, w

starts before (2i − 1)l + 2 ≤ 2il for l ≥ 2 in t(r) and likewise for t(s).

For the analysis, we assume the mixing model introduced in Section 2.2.3. The
intuition for the next theorem is as follows. The height of (compact) tries and suffix
trees is bounded by O(log n), where n is the cardinality of the input set for tries or
the size of the string for suffix trees (see, e.g., [AS92] or [Szp00]). When allowing an
error on prefixes bounded by the height, we essentially rejoin some strings that were
already branching. The same process can take place again with the rejoined strings.
Thus, the height of the i-th error tree should behave no worse than i times the height of
the trie or the suffix tree. Although this bound may not be very tight, we prove exactly
along this intuition. We conjecture that the heights actually behave much better.

Theorem 5.19 (Average data structure size and preprocessing time).

Let n be the number of strings in the base set S, which contains strings and suffixes of

strings generated independently and identically distributed at random by a stationary

ergodic source satisfying the mixing condition. For any constant d, the average total

size of the data structures is O(n logd n), and the average time for preprocessing is

O(n logd+1 n). Furthermore, these complexities are achieved with high probability

1 − o(n−ǫ) (for some ǫ > 0).

Proof. By Lemma 5.18, if there exists an i such that hi ≥ (2i + 1)l, then we find a
string v of length |v| ≥ l that is a repeated substring of an independent string or a
common substring of two independent strings. Let hrep be the maximal length of any
repeated substring in a single independent string in S, let hsuf be the maximal length
of any repeated substring of a string u for that we have inserted all suffixes into S, and
let hcom be the maximal length of any common substring of two independent strings.
If we bound hrep, hsuf, and hcom by l, we also bound hi by (2i + 1)l. We first turn to
long substrings common to independent strings.

For two independent strings r and s, let Ci,j = max{k | ri,i+k−1 = sj,j+k−1}
be the length of a maximal common substring at positions i and j of the two differ-
ent strings. By the stationarity of the source, we have Pr{Ci,j ≥ l} = Pr{C1,1 ≥ l}.
The latter is the probability that r and s start with the same string of length l, thus
Pr{C1,1 ≥ l} =

∑

w∈Σl (Pr{w})2 = E[wl]. For stationary and ergodic sources satis-

fying the mixing condition, we have E[wl] =
∑

w∈Σl (Pr{w})2 → e−2r2l for l → ∞

112 5.3. WORST-CASE OPTIMAL SEARCH-TIME

by equation (2.14). By Lemma 5.18, the common substrings must be found in prefixes
of length 2il of a string in S. As a result, we find

Pr {hcom ≥ l} ≤ Pr







⋃

r,s∈S,1≤i,j≤2il

{Ci,j ≥ l}







≤
∑

r,s∈S,1≤i,j≤2il

Pr {Ci,j ≥ l} =
∑

r,s∈S,1≤i,j≤2il

E

[

wl
]

≤ 4n2l2i2E
[

wl
]

≤ cn2l2i2e−2r2l (5.9)

for some constant c and growing l.

For the maximal lengths hrep and hsuf of repeated substrings, we use known results
from [Szp93a], where the length h(m) of a repeated substring in a string of length m is
bounded by

Pr
{

h(m) ≥ l
}

≤ c′m

(

l
√

E [wl] + mE

[

wl
])

≤ cmle−r2l (5.10)

for some constant c and growing l > ln m
r2

. Because m ≤ 2il for hrep and m ≤ |S| = n

for hsuf, we can bound

Pr {hrep ≥ l} ≤ cil2e−r2l , (5.11)

and

Pr
{

hsuf ≥ l
}

≤ cnle−r2l . (5.12)

Because we have hi ≤ (2i + 1)max{hrep, hsuf, hcom}, we find that

Pr {hi ≥ l} ≤ Pr

{

max{hrep, hsuf, hcom} ≥ l

2i + 1

}

≤ Pr

{

hrep ≥ l

2i + 1

}

+ Pr

{

hsuf ≥ l

2i + 1

}

+ Pr

{

hcom ≥ l

2i + 1

}

≤ c1
il2

(2i + 1)2
e−r2

l
2i+1 + c2n

l

2i + 1
e−r2

l
2i+1 + c3n

2l2i2e−2r2
l

2i+1

≤ cn2l2i2e−r2
l

2i+1 , (5.13)

for some constant c and l > ln n
r2

. We condition on l = (1 + ǫ)2(2i + 1) ln n
r2

and get

Pr

{

hi ≥ (1 + ǫ)2(2i + 1)
lnn

r2

}

≤ c(1 + ǫ)2i4 ln2 n−2ǫn , (5.14)

for some constant c. Thus, with high probability 1 − o(n−ǫ) we have hi = O(log n).

CHAPTER 5. TEXT INDEXING WITH ERRORS 113

The expected size can be bounded by

E [hi] ≤ (1 − o(n−ǫ))c log n + c′
∑

l≥(1+ǫ)2(2i+1) ln n
r2

n2l3i2e−r2
l

2i+1

≤ c log n + c′
∑

l≥0

n−2ǫ

(

l + (1 + ǫ)2(2i + 1)
lnn

r2

)3

i2e−r2
l

2i+1

≤ c log n + c′′i5n−2ǫ ln3 n
∑

l≥0

l3e−r2
l

2i+1

= O (log n) (5.15)

because
∑

l≥0 l3e−r2
l

2i+1 is convergent. Thus, the expected size of hi is O(log n).
This proves the theorem: We have hi < hj for all i ≤ j; therefore, it suf-

fices to bound the preprocessing time O(nhd+1
d) by O(n logd+1 n) and the index size

O(nhd
d−1) by O(n logd n).

5.4 Bounded Preprocessing Time and Space

In the previous section, we achieved a worst-case guarantee for the search time. In
this section, we describe how to bound the index size in the worst-case in trade-off to
having an average-case look-up time. Therefore, we fix hi in Definitions 5.6 and 5.8
to hi = h + i for some h to be chosen later (but the same for all error trees). By
Lemmas 5.9, 5.16, and 5.18, the size and preprocessing time is O(nhd) and O(nhd+1),
and the index structure allows to search for patterns w of length |w| ≤ h in optimal
time O(|w| + occ).

For larger patterns we need an auxiliary structure, which is a generalized suffix
tree (see Section 2.3.1) for the complete input, i.e., all strings in the base set S. The
generalized suffix tree G(S) is linear in the input size and can be built in linear time.
We keep the suffix links that are used in the construction process. For a pattern w,
we call a substring v right-maximal if v = wi,j is a substring of some string in S,
but wi,j+1 is not a substring of some string in S. The generalized suffix tree allows
us to find all right-maximal substrings of w in time O(|w|). This can be done in the
same way as the computation of matching statistics in [CL94]. The approach reminds
of the construction of suffix trees: First we compute a canonical reference pair (see
Section 3.1.3) for the largest prefix of w that can be matched in the generalized suffix
tree. The prefix is right-maximal. Then we take a suffix link from the base of the
reference pair replacing the base by the new node. After canonizing the reference pair
again, we continue to match characters of w until we find the right-maximal substring
starting at the second position in w. This process is continued until the end of w is
reached. The total computation takes time O(|w|) because we essentially move two
pointers from left to right through w, one for the border of the right-maximal substring
and one for the base node of the reference pair. If we build the generalized suffix tree
by the algorithm of Ukkonen [Ukk95], this process can also be seen as continuing
the algorithm by appending w to the underlying string and storing the lengths of the
relevant suffixes.

114 5.4. BOUNDED PREPROCESSING TIME AND SPACE

Assume that t is an i-error length-l match of w. Then, in the relevant edit graph,
any path from the start to the end vertex contains i non-zero arcs. However, we need
at least |w| arcs to get to the end vertex. Thus, there are at least |w| − i zero-weight
arcs and there are at least (|w| − i)/(i + 1) consecutive ones. Therefore, there must
be a substring of minimal length (|w| − i)/(i + 1) of w that matches a substring of t
exactly.

Because we can handle patterns of length at most h efficiently with our main in-
dexing data structure, we only need to search for patterns of length |w| > h using
the generalized suffix tree. For each right-maximal substring v of w, we search at all
positions where v occurs in any string in S in a prefix of length at most |w|, which we
can easily find in the generalized suffix tree using bounded value range queries (see
Sections 2.3.1 and 2.3.2). For every occurrence, we need to search at most |w| posi-
tions, which each takes time O(d|w|). This yields a good algorithm on average if we
set h = c(d + 1) log n, where n is the cardinality of S, because the probability to find
any right-maximal substring of length c log n is very small.

Lemma 5.20 (Probability of matching substrings).

Let w be a pattern generated independently and identically distributed at random by

a stationary ergodic source satisfying the mixing condition. Let |w| = (d + 1)l. The

probability that there is a substring u of w of length l that occurs in a prefix of length

|w| + d of any string in S is bounded by cn(|w| + d)|w|e−rmaxl for some constant c.

Proof. For a stationary ergodic source satisfying the mixing condition, the following
limit exists [Pit85]:

rmax = lim
n→∞

−maxt∈Σn{ln (Pr {t}) | Pr {t} > 0}
n

. (5.16)

(Observe that rmax is positive)
Suppose S = {s(1), . . . , s(n)}. Set Ci,j,k = max{r | s(i)j,j+r−1 = wk,k+r−1}.

By stationarity of the source, Pr{Ci,j,k > l} = Pr{Ci,j,1 > l} = Pr{s(i)j,j+l−1}.
Because Pr{s(i)j,j+l−1} ≤ maxt∈Σl Pr{t}, we can apply equation (5.16) and find

that Pr{Ci,j,k > l} ≤ ce−rmaxl for some constant c and growing l. Hence, we get

Pr {|u| > l} = Pr







⋃

1≤k≤|w|,0≤i≤n,1≤j≤|w|+d

Ci,j,k > l







≤ n(|w| + d)|w|max
t∈Σl

Pr {t} ≤ cn(|w| + d)|w|e−rmaxl . (5.17)

As a result, for an arbitrary pattern w of length |w|≥c′(1 + ǫ)(d + 1) lnn, we find
that the expected work is bounded by

cd(|w|)3(|w| + d)e−rmaxδ|w|ne−rmaxc′ ln n = o(1) , (5.18)

for δ = ǫ
1+ǫ and c′ > 1

rmax
, whereas we can find all shorter patterns in optimal

time. The size of our data structure is O(n logd n + N) and the preprocessing time
is O(n logd+1 n + N), where N is the size of S.

Chapter 6

Conclusion

In this work, we have studied algorithms and data structures for text indexing. We
presented the first linear-time algorithm for constructing affix trees. Affix trees have
all the capabilities of suffix trees, but they expose more structure of the string for which
they are built. They are a compact representation of all repeated substrings of a string,
where the tree structure represents the type of repeat, i.e., whether it is maximal, right-
maximal, or left-maximal, and the multiplicity it has.

Affix trees are inherently dual. This is reflected in our algorithm, which can con-
struct affix trees on-line, even in both directions. This bidirectional construction may
also have applications in studying the local structure of large texts by starting to build
an affix tree at a point of interest, expanding to both sides until a desired property is
found in the vicinity of the start point.

Finally, affix trees allow a bidirectional search, which is used, e.g., in [MP03].
The paths used in our algorithm may be additionally helpful by hiding “compressible”
nodes. The downside of the affix tree data structure is its enormous size (see Sec-
tion 3.1.4). Whereas a lot of research has already been conducted to reduce the size
of the suffix tree (see, e.g., [Kur99, GKS03]), similar work on affix trees remains to
be done. For the suffix tree, alternative data structures have also been developed. The
suffix array is one such data structure, but an analogous translation of affix trees to
affix arrays is not obvious. On the one hand, a node in a suffix tree corresponds to
an interval in the suffix array, which is harder to encode. On the other hand, we are
working with suffix numbers in suffix arrays; therefore, it is easily possible to derive
numbers of shorter or longer suffixes by simple addition or subtraction. Still, we know
of no bidirectional search algorithm on suffix arrays that allows searching a pattern by
expanding it in both directions.

Our analysis of the average-case running time of the trie-based approach to dic-
tionary indexing is valid for a wide range of string distances. In comparison with the
work of Cole et al. [CGL04], our analysis shows that the simple algorithm is already
very competitive on average, having a similar asymptotic query time. The analysis also
sheds some light on the efficiency of different error models to constrain a search, e.g.,
Hamming distance versus Hamming distance with don’t care characters. We discussed
the meaning of our analysis for some applications in Section 4.4. As also mentioned
there, one usually considers multiple criteria to guide the search in practice. Although
our model captures the influence of don’t care characters on Hamming distance, it

115

116

cannot satisfactorily answer the question of combining multiple criteria. It would be
interesting to see how these interact, e.g., if the search is stopped when any one of a
set of multiple distances between a search pattern and the words in the dictionary has
become too large.

Besides the issue of determining more parameters such as the variance or con-
vergence properties, another interesting question is the extent to which the results are
transferable to more general probabilistic models or to a search in the suffix tree. The
latter is of general interest, because a lot of algorithms have been analyzed for the trie
model. Some progress has been made on connecting tries to suffix trees [AS92, JS94,
JMS04], but the general problem remains open.

Frequently appearing terms in the average-case asymptotic behavior of algorithms
on strings are infinite sums involving coefficients of the Gamma function on imaginary
points. These lead to small oscillations of bounded amplitude, although it is difficult to
give a tight bound. An explanation for this oscillations might follow from the discrep-
ancy between real and integer lengths: The expected length of a common prefix of n
independently and uniformly distributed strings over the alphabet Σ is log|Σ| n [Pit85],
a real value. On the other hand, strings can only have integer lengths. The amplitude
of both oscillations, of log|Σ| n − ⌊log|Σ| n⌋ and of the sum in equation (4.62), is ex-
ponentially increasing. It would be interesting to derive the deeper relation, thereby
simplifying many asymptotics.

For matching with a constant number of errors or mismatches, we described and
analyzed a text indexing data structure. It is the first data structure for approximate text
indexing that solves this problem with an optimal worst-case query time that is linear
in the size of the pattern and the number of outputs. Our approach is very flexible and
can be adapted to a number of different text indexing problems. This flexibility is due
to its simple tree structure that allows to use range queries for the selection of outputs,
a tool that has already been helpful for exact text indexing [Mut02]. Furthermore,
we were able to analyze the asymptotic running time for a probabilistic model that is
general enough to even include stationary and ergodic Markov chains.

For Hamming distance with a constant number of mismatches d, the asymptotic
running time of the trie search algorithm is O(logd+1 n) on average. Because we
assumed a long (actually infinite) pattern, this can also be interpreted as O(m logd n)
for large patterns of length m. On the other hand, the text indexing data structure with
(worst-case) query time has (expected) size O(n logd n). If one is willing to accept
only average-case bounds on the running time, this allows a flexible choice between
spending an additional term O(logd n) in the running time or in the index size. The
best algorithm giving worst-case bounds requires this additional term in the query time
and in the index size [CGL04].

For small patterns that have at most logarithmic length m = O(log n), our al-
gorithm is very efficient in the worst-case and—in contrast to other work—does not
require all query patterns to have the same length. For large patterns of size m =
Ω(logd n), the method of Cole et al. [CGL04] has an optimal linear query time for
constant d. Both data structures require space O(n logd n). It remains to be examined
whether we can find a data structure with this size and optimal query time for patterns
of length ω(log n)∩o(logd n). The combination of our methods with the centroid path
method of Cole et al. [CGL04] may also yield some new results.

The possibility to “move” the term O(logd n) from the complexity of the query

CHAPTER 6. CONCLUSION 117

time to the index size also hints towards the existence of a more general time-space
trade-off. It would, for instance, be interesting to see if we could design a data structure
that is adaptable in the sense that it has size O(n logd1 n) and supports queries in time
O(m logd2 n) for d1 + d2 = d errors.

Furthermore, it would be very interesting to prove a lower bound on the approxi-
mate text indexing problem. For the exact case, a linear lower bound has been proven
on the index size [DLO01]. However, lower bounds for the approximate indexing
problem do not seem easy to achieve. The information theoretic method of [DLO01]
seems to fall short because approximate look-up does not improve compression and
there is no restriction on the look-up time. Using asymmetric communication com-
plexity, some bounds for nearest neighbor search in the Hamming cube have been
shown [BOR99, BR00], but these do not apply to the case where a linear number (in
the size of the pattern) of probes to the index is allowed. The lower bound in [BV02]
is derived from ordered binary decision diagrams (OBDDs) and assumes that a pattern
is always read in one direction.

Finally, the question of practical relevance of the indexing schemes needs further
research. Although we believe that our approach is fairly easy to implement, we expect
the constant factors to be rather large. We expect even larger constant for the approach
used in [CGL04]. Therefore, methods for reducing the space requirements are needed.
To this end, it seems interesting to study whether the error sets can be thinned out
by including fewer strings. For example, it is not necessary to include strings in the
i-th error set that have errors occurring on leaf edges of the (i − 1)-th error tree.
Furthermore, an efficient implementation without trees, based solely on suffix-array-
like structures, seems to be possible: Arrays with all leaves are needed for the range
minimum queries anyway, and efficient array packing and searching is possible for
suffix arrays [AOK02]. For practical purposes, we believe that even a solution for only
d ≤ 3 errors is desirable.

Bibliography

[AC75] Alfred V. Aho and Margaret J. Corasick. Efficient string matching: an
aid to bibliographic search. Communications of the ACM, 18(6):333–
340, 1975.

[AG97] Alberto Apostolico and Zvi Galil, editors. Pattern Matching Algorithms.
Oxford University Press, Oxford, 1997.

[AKL+00] Amihood Amir, Dmitry Keselman, Gad M. Landau, Moshe Lewenstein,
Noa Lewenstein, and Michael Rodeh. Indexing and dictionary matching
with one error. J. Algorithms, 37:309–325, 2000.

[AKO02] Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch.
The enhanced suffix array and its applications to genome analysis. In
Proc. 2nd Workshop on Algorithms in Bioinformatics (WABI), volume
2452 of Lecture Notes in Computer Science, pages 449–463. Springer,
2002.

[AKO04] Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch. Re-
placing suffix trees with enhanced suffix arrays. J. Discrete Algorithms,
2:53–86, 2004.

[AOK02] Mohamed Ibrahim Abouelhoda, Enno Ohlebusch, and Stefan Kurtz.
Optimal exact string matching based on suffix arrays. In A. H. F. Laen-
der and A. L. Oliveira, editors, Proc. 9th Int. Symp. on String Process-
ing and Information Retrieval (SPIRE), volume 2476 of Lecture Notes
in Computer Science, pages 31–43. Springer, 2002.

[AS65] Milton Abramowitz and Irene A. Stegun. Handbook of Mathematical
Functions, with Formulas, Graphs and Mathematical Tables. Dover,
New York, 1965.

[AS92] Alberto Apostolico and Wojciech Szpankowski. Self-alignments in
words and their applications. J. Algorithms, 13:446–467, 1992.

[BBH+87] Anselm Blumer, Janet A. Blumer, David Haussler, Ross M. McConnell,
and Andrzej Ehrenfeucht. Complete inverted files for efficient text re-
trieval and analysis. J. ACM, 34(3):578–595, July 1987.

[BFC00] Michael A. Bender and Martin Farach-Colton. The LCA problem revis-
ited. In Proc. Latin American Theoretical Informatics (LATIN), pages
88–94, May 2000.

119

120 BIBLIOGRAPHY

[BFCP+01] Michael A. Bender, Martin Farach-Colton, Giridhar Pemmasani, Steven
Skiena, and Pavel Sumazin. Least common ancestors in trees and di-
rected acyclic graphs. Preliminary version submitted to the Journal of
Algorithms, 2001.

[BG96] Gerth Stølting Brodal and Leszek Ga̧sieniec. Approximate dictionary
queries. In Proc. 7th Symp. on Combinatorial Pattern Matching (CPM),
volume 1075 of Lecture Notes in Computer Science, pages 65–74, 1996.

[BGW00] Adam L. Buchsbaum, Michael T. Goodrich, and Jeffery Westbrook.
Range searching over tree cross products. In Proc. 8th European Symp.
on Algorithms (ESA), volume 1879, pages 120–131, 2000.

[BK03] Stefan Burkhardt and Juha Kärkkäinen. Fast lightweight suffix array
construction and checking. In Proc. 14th Symp. on Combinatorial Pat-
tern Matching (CPM), volume 2676 of Lecture Notes in Computer Sci-
ence, pages 55–69. Springer, 2003.

[BKML+04] Dennis A. Benson, Ilene Karsch-Mizrachi, David J. Lipman, James Os-
tell, and David L. Wheeler. Genbank: update. Nucleic Acids Research,,
32(Database issue):D23–D26, 2004.

[BOR99] Allan Borodin, Rafail Ostrovsky, and Yuval Rabani. Lower bounds for
high dimensional nearest neighbor search and related problems. In Proc.
31st ACM Symp. on Theory of Computing (STOC), pages 312–321.
ACM Press, 1999.

[BR00] Omer Barkol and Yuval Rabani. Tighter bounds for nearest neighbor
search and related problems in the cell probe model. In Proc. 32nd
ACM Symp. on Theory of Computing (STOC), pages 388–396. ACM
Press, 2000.

[Bra86] Richard C. Bradley. Basic properties of strong mixing conditions. In
Ernst Eberlein and Murad S. Taqqu, editors, Dependence in Probability
and Statistics. Birkhäuser, 1986.

[Bri59] Rene De La Briandais. File searching using variable length keys. In
Proc. Western Joint Computer Conference, pages 295–298, March 1959.

[BT03] Arno Buchner and Hanjo Täubig. A fast method for motif detection and
searching in a protein structure database. Technical Report TUM-I0314,
Fakultät für Informatik, TU München, September 2003.

[BTG03] Arno Buchner, Hanjo Täubig, and Jan Griebsch. A fast method for
motif detection and searching in a protein structure database. In Proc.
German Conference on Bioinformatics (GCB), volume 2, pages 186–
188, October 2003.

[BV00] Gerth Stølting Brodal and Srinivasan Venkatesh. Improved bounds for
dictionary look-up with one error. Information Processing Letters (IPL),
75(1–2):57–59, 2000.

BIBLIOGRAPHY 121

[BV02] Paul Beame and Erik Vee. Time-space tradeoffs, multiparty communi-
cation complexity, and nearest-neighbor problems. In Proc. 34th ACM
Symp. on Theory of Computing (STOC), pages 688–697. ACM Press,
2002.

[BYG90] Ricardo A. Baeza-Yates and Gaston H. Gonnet. All-against-all sequence
matching. Technical report, Universidad de Chile, 1990.

[BYG96] Ricardo A. Baeza-Yates and Gaston H. Gonnet. Fast text searching
for regular expressions or automaton searching on tries. J. ACM,
43(6):915–936, 1996.

[BYG99] Ricardo A. Baeza-Yates and Gaston H. Gonnet. A fast algorithm on
average for all-against-all sequence matching. In Proc. 6th Int. Symp.
on String Processing and Information Retrieval (SPIRE), pages 16–23.
IEEE, 1999.

[CCGL99] Amit Chakrabarti, Bernard Chazelle, Benjamin Gum, and Alexey Lvov.
A lower bound on the complexity of approximate nearest-neighbor
searching on the Hamming cube. In Proc. 31st ACM Symp. on The-
ory of Computing (STOC), pages 305–311, 1999.

[CGL04] Richard Cole, Lee-Ad Gottlieb, and Moshe Lewenstein. Dictionary
matching and indexing with errors and don’t cares. In Proc. 36th ACM
Symp. on Theory of Computing (STOC), pages 91–100, 2004.

[CL94] William I. Chang and Eugene L. Lawler. Sublinear approximate string
matching and biological applications. Algorithmica, 12:327–344, 1994.

[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Intro-
duction to Algorithms. The MIT Press, 1st edition, 1990.

[CN02] Edgar Chávez and Gonzalo Navarro. A metric index for approximate
string matching. In Proc. 5th Latin American Theoretical Informatics
(LATIN), volume 2286 of Lecture Notes in Computer Science, pages
181–195, 2002.

[Cob95] Archie L. Cobbs. Fast approximate matching using suffix trees. In Proc.
6th Symp. on Combinatorial Pattern Matching (CPM), volume 937 of
Lecture Notes in Computer Science, pages 41–54. Springer, 1995.

[Com74] Luis Comtet. Advanced Combinatorics. D. Reidel Publishing Company,
Dortrecht-Holland, 1974.

[CR94] Maxime Crochemore and Wojciech Rytter. Text Algorithms. Oxford
University Press, New York, 1994.

[DLO01] Erik D. Demaine and Alejandro López-Ortiz. A linear lower bound
on index size for text retrieval. In Proc. 12th ACM-SIAM Symp. on
Discrete Algorithms (SODA), pages 289–294. ACM, January 2001.

122 BIBLIOGRAPHY

[Far97] Martin Farach. Optimal suffix tree construction with large alphabets. In
Proc. 38th IEEE Symp. on Foundations of Computer Science (FOCS),
pages 137–143, Miami, Florida, USA, October 1997. IEEE.

[FBY92] William B. Frakes and Ricardo Baeza-Yates, editors. Information Re-
trieval – Data Structures & Algorithms, volume 1. Prentice Hall, 1992.

[FGD95] Philippe Flajolet, Xavier Gourdon, and Philippe Dumas. Mellin trans-
forms and asymptotics: Harmonic sums. Theoretical Computer Science,
144(1–2):3–58, 1995.

[FGK+94] Philippe Flajolet, Peter J. Grabner, Peter Kirschenhofer, Helmut Pro-
dinger, and Robert F. Tichy. Mellin transforms and asymptotics: Digital
sums. Theoretical Computer Science, 123:291–314, 1994.

[Fie70] Jerry L. Fields. The uniform asymptotic expansion of a ratio of Gamma
functions. In Proc. Int. Conf. on Constructive Function Theory, pages
171–176, Varna, May 1970.

[FM00] Paolo Ferragina and Giovanni Manzini. Opportunistic data structures
with applications. In Proc. 41st IEEE Symp. on Foundations of Com-
puter Science (FOCS), pages 390–398, 2000.

[FMdB99] Paolo Ferragina, S. Muthukrishnan, and Mark de Berg. Multi-method
dispatching: a geometric approach with applications to string matching
problems. In Proc. 31st ACM Symp. on Theory of Computing (STOC),
pages 483–491. ACM Press, 1999.

[FP86] Philippe Flajolet and Claude Puech. Partial match retrieval of multidi-
mensional data. J. ACM, 33(2):371–407, 1986.

[FR85] Philippe Flajolet and Mireille Regnier. Some uses of the Mellin trans-
form in the analysis of algorithms. In A. Apostolico and Z. Galil, editors,
Combinatorial Algorithms on Words, volume F12 of NATO ASI, pages
241–245. Springer, 1985.

[Fre60] Edward Fredkin. Trie memory. Communications of the ACM, 3(9):490–
499, 1960.

[FS95] Philippe Flajolet and Robert Sedgewick. Mellin transforms and asymp-
totics: Finite differences and Rice’s integral. Theoretical Computer Sci-
ence, 144(1-2):101–124, 1995.

[FS96] Philippe Flajolet and Robert Sedgewick. The average case analysis of
algorithms: Mellin transform asymptotics. Technical Report 2956, In-
stitut National de Recherche en Informatique et Automatique (INRIA),
1996.

[GBT84] Harold N. Gabow, Jon Louis Bently, and Robert E. Tarjan. Scaling and
related techniques for geometry problems. In Proc. 16th ACM Symp.
on Theory of Computing (STOC), pages 135–143. ACM, April 1984.

BIBLIOGRAPHY 123

[GBY91] Gaston H. Gonnet and Ricardo A. Baeza-Yates. Handbook of Algo-
rithms and Data Structures: In Pascal and C. Addison-Wesley Publish-
ing Company, 2nd edition, 1991.

[GK97] Robert Giegerich and Stefan Kurtz. From Ukkonen to McCreight and
Weiner: A unifying view of linear-time suffix tree construction. Algo-
rithmica, 19:331–353, 1997.

[GKP94] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete
Mathematics. Addison-Wesley, 2nd edition, 1994.

[GKS03] Robert Giegerich, Stefan Kurtz, and Jens Stoye. Efficient implementa-
tion of lazy suffix trees. Software – Practice and Experience, 33:1035–
1049, 2003.

[GMRS03] Alessandra Gabriele, Filippo Mignosi, Antonio Restivo, and Marinella
Sciortino. Indexing structures for approximate string matching. In Proc.
5th Italian Conference on Algorithms and Complexity (CIAC), volume
2653 of Lecture Notes in Computer Science, pages 140–151, 2003.

[GS04] Dan Gusfield and Jens Stoye. Linear time algorithms for finding and
representing all the tandem repeats in a string. J. Computer and System
Sciences, 69:525–546, 2004.

[Gus97] Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Comp.
Science and Computational Biology. Cambridge University Press, 1997.

[GV00] Roberto Grossi and Jeffry Scott Vitter. Compressed suffix arrays and
suffix trees with applications to text indexing and string matching. In
Proc. 32nd ACM Symp. on Theory of Computing (STOC), pages 397–
406, 2000.

[Ham50] Richard W. Hamming. Error detecting and error correcting codes. The
Bell System Technical Journal, pages 147–160, 1950.

[HT84] Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest
common ancestors. SIAM J. Comp., 13(2):338–355, May 1984.

[Ind04] Piotr Indyk. Nearest neighbors in high-dimensional spaces. In Ja-
cob E. Goodman and Joseph O’Rourke, editors, Handbook of Discrete
and Computational Geometry, chapter 39. CRC Press LLC, 2nd edition,
2004.

[JMS04] Philippe Jacquet, Bonita McVey, and Wojciech Szpankowski. Compact
suffix trees resemble PATRICIA tries: Limiting distribution of depth. J.
the Iranian Statistical Society, 2004.

[JS91] Philippe Jacquet and Wojciech Szpankowski. Analysis of digital tries
with Markovian dependency. IEEE Transactions on Information Theory,
37(5):1470–1475, 1991.

124 BIBLIOGRAPHY

[JS94] Philippe Jacquet and Wojciech Szpankowski. Autocorrelation on words
and its applications: Analysis of suffix trees by string-ruler approach. J.
Combinatorial Theory, Series A, 66:237–269, 1994.

[JU91] Petteri Jokinen and Esko Ukkonen. Two algorithms for approximate
string matching in static texts. In Proc. 16th Int. Symp. on Mathemati-
cal Foundations of Computer Science (MFCS), volume 520 of Lecture
Notes in Computer Science, pages 240–248. Springer, 1991.

[KA03] Pang Ko and Srinivas Aluru. Space efficient linear time construc-
tion of suffix arrays. In Ricardo A. Baeza-Yates, Edgar Chávez, and
Maxime Crochemore, editors, Proc. 14th Symp. on Combinatorial Pat-
tern Matching (CPM), volume 2676 of Lecture Notes in Computer Sci-
ence, pages 200–210. Springer, 2003.

[Kal02] Olav Kallenberg. Stationary processes and ergodic theory. In Founda-
tions of Modern Probability, chapter 9. Springer, 2002.

[Kär95] Juha Kärkkäinen. Suffix cactus: A cross between suffix tree and suffix
array. In Proc. 6th Symp. on Combinatorial Pattern Matching (CPM),
volume 937 of Lecture Notes in Computer Science, pages 191–204,
1995.

[Kär02] Juha Kärkkäinen. Computing the threshold for q-gram filters. In
Proc. 8th Scandinavian Workshop on Algorithm Theory, pages 348–
357, 2002.

[Kin73] John Frank Charles Kingman. Subadditive ergodic theory. Annals of
Probability, 1(6):883–909, 1973.

[Kir96] Peter Kirschenhofer. A note on alternating sums. Electronic Journal of
Combinatorics, 3(2), 1996.

[Knu97a] Donald E. Knuth. The Art of Computer Programming – Fundamental
Algorithms, volume 1. Addison Wesley, 3rd edition, September 1997.

[Knu97b] Donald E. Knuth. The Art of Computer Programming – Seminumerical
Algorithms, volume 2. Addison Wesley, 3rd edition, July 1997.

[Knu98] Donald E. Knuth. The Art of Computer Programming – Sorting and
Searching, volume 3. Addison Wesley, 2nd edition, February 1998.

[KP86] Peter Kirschenhofer and Helmut Prodinger. Some further results on dig-
ital search trees. In Laurent Kott, editor, 13th Int. Colloq. on Automate,
Languages and Programming, volume 226 of Lecture Notes in Com-
puter Science, Rennes, France, 1986. Springer.

[KPS93] Peter Kirschenhofer, Helmut Prodinger, and Wojciech Szpankowski.
Multidimensional digital searching and some new parameters in tries.
Int. J. Foundations of Computer Science, 4:69–84, 1993.

BIBLIOGRAPHY 125

[KS03] Juha Kärkkäinen and Peter Sanders. Simple linear work suffix array
construction. In Proc. 30th Int. Colloq. on Automata, Languages and
Programming (ICALP), volume 2719 of Lecture Notes in Computer Sci-
ence, pages 943–955. Springer, 2003.

[KSPP03] Dong Kyue Kim, Jeong Seop Sim, Heejin Park, and Kunsoo Park.
Linear-time construction of suffix arrays (extended abstract). In Ri-
cardo A. Baeza-Yates, Edgar Chávez, and Maxime Crochemore, editors,
Proc. 14th Symp. on Combinatorial Pattern Matching (CPM), volume
2676 of Lecture Notes in Computer Science, pages 186–199. Springer,
2003.

[Kur99] Stefan Kurtz. Reducing the space requirement of suffix trees. Software
– Practice and Experience, 29(13):1149–1171, 1999.

[Lev65] Vladimir Iosifovich Levenshtein. Binary codes capable of correcting
deletions, insertions and reversals. Doklady Akademii Nauk SSSR,
163(4):845–848, August 1965.

[ŁS97] Tomasz Łuczak and Wojciech Szpankowski. A suboptimal lossy data
compression based on approximate pattern matching. IEEE Transac-
tions on Information Theory, 43(5):1439–1451, 1997.

[LS99] N. Jesper Larsson and Kunihiko Sadakane. Faster suffix sorting. Tech-
nical Report LU-CS-TR:99-214, Dept. of Comp. Science, Lund Univer-
sity, Sweden, 1999.

[LT97] Daniel Lopresti and Andrew Tomkins. Block edit models for approx-
imate string matching. Theoretical Computer Science, 181:159–179,
1997.

[Maa00] Moritz G. Maaß. Linear bidirectional on-line construction of affix trees.
In Proc. 11th Symp. on Combinatorial Pattern Matching (CPM), volume
1848 of Lecture Notes in Computer Science, pages 320–334. Springer,
June 2000.

[Maa03] Moritz G. Maaß. Linear bidirectional on-line construction of affix trees.
Algorithmica, 37(1):43–74, June 2003.

[Maa04a] Moritz G. Maaß. Average-case analysis of approximate trie search. In
Proc. 15th Symp. on Combinatorial Pattern Matching (CPM), volume
3109 of Lecture Notes in Computer Science, pages 472–484. Springer,
July 2004.

[Maa04b] Moritz G. Maaß. Average-case analysis of approximate trie search.
Technical Report TUM-I0405, Fakultät für Informatik, TU München,
March 2004.

[McC76] Edward M. McCreight. A space-economical suffix tree construction
algorithm. J. ACM, 23(2):262–272, April 1976.

126 BIBLIOGRAPHY

[MF04] Giovanni Manzini and Paolo Ferragina. Engineering a lightweight suffix
array construction algorithm. Algorithmica, 40(1):33–50, June 2004.

[MM93] Udi Manber and Gene Myers. Suffix arrays: A new method for on-line
string searches. SIAM J. Comp., 22(5):935–948, October 1993.

[MN04] Moritz G. Maaß and Johannes Nowak. A new method for approximate
indexing and dictionary lookup with one error. To be published in ipl
Information Processing Letters (IPL), 2004.

[MN05a] Moritz G. Maaß and Johannes Nowak. Text indexing with errors. Tech-
nical Report TUM-I0503, Fakultät für Informatik, TU München, March
2005.

[MN05b] Moritz G. Maaß and Johannes Nowak. Text indexing with erros. In Proc.
16th Symp. on Combinatorial Pattern Matching (CPM), To be published
in Springer LNCS, 2005.

[Mor68] Donald R. Morrison. PATRICIA – practical algorithm to retrieve infor-
mation coded in alphanumeric. J. ACM, 15(4):514–534, October 1968.

[MP69] Marvin Minsky and Seymour Papert. Perceptrons. MIT Press, 1969.

[MP03] Giancarlo Mauri and Giulio Pavesi. Pattern discovery in RNA secondary
structure using affix trees. In Proc. 14th Symp. on Combinatorial Pattern
Matching (CPM), volume 2676 of Lecture Notes in Computer Science,
pages 278–294, 2003.

[MPP01] Conrado Martinez, Alois Panholzer, and Helmut Prodinger. Partial
match queries in relaxed multidimensional search trees. Algorithmica,
29:181–204, 2001.

[Mut02] S. Muthukrishnan. Efficient algorithms for document retrieval problems.
In Proc. 13th ACM-SIAM Symp. on Discrete Algorithms (SODA).
ACM/SIAM, 2002.

[MZS02] Krisztián Monostori, Arkady Zaslavsky, and Heinz Schmidt. Suffix vec-
tor: Space- and time-efficient alternative to suffix trees. In Michael J.
Oudshoorn, editor, Proc. Twenty-Fifth Australasian Computer Science
Conference (ACSC2002), Melbourne, Australia, 2002.

[Nav98] Gonzalo Navarro. Approximate Text Searching. PhD thesis, Dept. of
Computer Science, University of Chile, Santiago, Chile, 1998.

[Nav01] Gonzalo Navarro. A guided tour to approximate string matching. ACM
Computing Surveys, 33(1):31–88, March 2001.

[NBY00] Gonzalo Navarro and Ricardo Baeza-Yates. A hybrid indexing method
for approximate string matching. J. Discrete Algorithms, 1(1):205–209,
2000. Special issue on Matching Patterns.

BIBLIOGRAPHY 127

[NBYST01] Gonzalo Navarro, Ricardo A. Baeza-Yates, Erkki Sutinen, and Jorma
Tarhio. Indexing methods for approximate string matching. IEEE Data
Engineering Bulletin, 24(4):19–27, December 2001.

[Nör24] Niels Erik Nörlund. Vorlesungen über Differenzenrechnung. Springer,
Berlin, 1924.

[Now04] Johannes Nowak. A new indexing method for approximate pattern
matching with one mismatch. Master’s thesis, Fakultät für Infor-
matik, Technische Universität München, Garching b. München, Ger-
many, February 2004.

[Ofl96] Kemal Oflazer. Error-tolerant finite-state recognition with applications
to morphological analysis and spelling correction. Computational Lin-
guistics, 22(1):73–89, 1996.

[Pit85] Boris Pittel. Asymptotical growth of a class of random trees. Annals of
Probability, 13(2):414–427, 1985.

[Pit86] Boris Pittel. Paths in a random digital tree: Limiting distributions. Ad-
vances in Applied Probability, 18:139–155, 1986.

[PW99] Edward H. Porter and William E. Winkler. Approximate string com-
parison and its effect on an advanced record linkage system. In Record
Linkage Techniques—1997: Proceedings of an Int. Workshop and Ex-
position, pages 190–199, Washington, D.C., 1999. National Research
Council, National Academy Press.

[Rud87] Walter Rudin. Real and Complex Analysis. McGraw-Hill, 3rd edition,
1987.

[SM02] Klaus U. Schulz and Stoyan Mihov. Fast string correction with Lev-
enshtein automata. Int. J. on Document Analysis and Recognition (IJ-
DAR), 5:67–85, 2002.

[Sto95] Jens Stoye. Affixbäume. Diplomarbeit, Universität Bielefeld, May
1995.

[Sto00] Jens Stoye. Affix trees. Technical Report 2000-04, Universität Bielefeld,
Technische Fakultät, 2000.

[SV88] Baruch Schieber and Uzi Vishkin. On finding lowest common ancestors:
Simplification and parallelization. SIAM J. Comp., 17(6):1253–1262,
December 1988.

[Szp88a] Wojciech Szpankowski. The evaluation of an alternative sum with appli-
cations to the analysis of some data structures. Information Processing
Letters (IPL), 28:13–19, 1988.

[Szp88b] Wojciech Szpankowski. Some results on v-ary asymmetric tries. J.
Algorithms, 9:224–244, 1988.

128 BIBLIOGRAPHY

[Szp93a] Wojciech Szpankowski. Asymptotic properties of data compression and
suffix trees. IEEE Transactions on Information Theory, 39(5):1647–
1659, September 1993.

[Szp93b] Wojciech Szpankowski. A generalized suffix tree and its (un)expected
asymptotic behaviors. SIAM J. Comp., 22(6):1176–1198, December
1993.

[Szp00] Wojciech Szpankowski. Average Case Analysis of Algorithms on Se-
quences. Wiley-Interscience, 1st edition, 2000.

[TE51] Francesco Giacomo Tricomi and Arthur Erdélyi. The asymptotic expan-
sion of a ratio of Gamma functions. Pacific J. Mathematics, 1:133–142,
1951.

[Tem96] Nico M. Temme. An Introduction to Classical Functions of Mathemati-
cal Physics. Wiley, New York, 1996.

[Ukk85] Esko Ukkonen. Algorithms for approximate string matching. Informa-
tion and Control, 64:100–118, 1985.

[Ukk93] Esko Ukkonen. Approximate string-matching over suffix trees. In Proc.
4th Symp. on Combinatorial Pattern Matching (CPM), volume 684 of
Lecture Notes in Computer Science, pages 228–242. Springer, 1993.

[Ukk95] Esko Ukkonen. On-line construction of suffix trees. Algorithmica,
14:249–260, 1995.

[Vui80] Jean Vuillemin. A unifying look at data structures. Communications of
the ACM, 23(4):229–239, 1980.

[WDH+04] F.A.O. Werner, G. Durstewitz, F.A. Habermann, G. Thaller, W. Krämer,
S. Kollers, J. Buitkamp, M. Georges, G. Brem, J. Mosner, and R. Fries.
Detection and characterization of SNPs useful for identity control and
parentage testing in major European dairy breeds. Animal Genetics,
35(1):44–49, February 2004.

[Wei73] Peter Weiner. Linear pattern matching algorithms. In Proc. 14th IEEE
Symp. on Switching and Automata Theory, pages 1–11. IEEE, 1973.

[YY95] Andrew C. Yao and Frances F. Yao. Dictionary look-up with small er-
rors. In Proc. 6th Symp. on Combinatorial Pattern Matching (CPM), vol-
ume 937 of Lecture Notes in Computer Science, pages 387–394, 1995.

[YY97] Andrew C. Yao and Frances F. Yao. Dictionary look-up with one error.
J. Algorithms, 25:194–202, 1997.

Index

“accelerator”, 5

active prefix, 36

active suffix, 36

affix tree, 2–4, 8, 34, 31–62, 115
compact, 3, 36
example of, 32

amortized, 16–17
analysis, 16, 31, 46, 54, 56, 57
constant time, 16

average compactification number, 77,
79

average-case analysis, 6–9, 15, 63–65,
67

base set, 95, 108, 113
Bernoulli numbers, 28, 81

generalized, 28, 82
Bernoulli polynomials, generalized,

28, 78
Bernoulli trials, independent, 17, 65

see also memoryless source
Beta function, 27, 69, 70

approximation of, 74
bidirectional, 54

construction of affix trees, 54–62
search, 115

Borel-Cantelli Lemma, 66, 67

canonize, 42, 41–43, 113
Cartesian tree, 23

Cauchy Residue Theorem, 27
centroid path, 8, 94, 116
complexity, 15, 16

expected, 18
measures, 15–16

convergence, 18–19
almost sure, 19, 66, 67

method of Kesten and
Kingman, 66

in probability, 6, 18, 66
cost model, 15–16

bit, 16

logarithmic, 15

uniform, 15

word, 16

see also complexity
CST, 20

DAWG, 3, 7
see also directed acyclic word

graph
decanonize, 46, 43–47
depth, 13

depth(), 13, 100
see also string depth

depth first traversal, 6, 25, 93, 109, 110
dictionary indexing, 4, 5

approximate, 5, 8, 9, 26, 63, 93,
115

problem, 25

directed acyclic word graph, 22
compact, 3
see also DAWG

distance, 14–15
arithmetic, 90, 91
edit, 2, 6–9, 15, 26, 94–97, 99,

101, 108
k-bounded computation of, 99,

102, 108
weighted, 14

Hamming, 2, 5, 7, 8, 14, 26, 64,
88, 90, 91, 95, 96, 115, 116

Levenshtein, 15
see also string distance

document listing problem, 22, 25, 26
don’t-care symbol, 6, 14, 90
dynamic programming, 14, 24
dynamic table, 16, 35, 39, 49

129

130 INDEX

edge, 13
atomic, 13, 38
compact, 20
see also open edge

edit distance, see distance
edit graph, 96, 97, 99

relevant, 96, 97, 97–99, 102, 114
edit operation, 14

edit path, 97

edit sequence, see ordered edit
sequence

edit stage, 97

end node, 49

end point, 42, 50
ergodic, 18

error tree, 104

height of, 94, 102, 111
Euler Tour, 24
Eulerian numbers, 29
Eulerian polynomials, 28, 82
explicit location, 13, 32, 33
exponential cancellation effect, 26, 76

Gamma function, 27, 70

Hamming distance, see distance
height, 13

implicit location, 13, 34, 35, 43

k-d-trie, 6
k-error occurrence, 101

Law of Large Numbers, 65
left-branching, 12

Levenshtein distance, see edit distance
linear search algorithm, 64
longest common subsequence, 14

Markov source, 17

matching statistics, 113
Mellin transform, 6, 28, 29, 84
memoryless source, 17, 64, 92
mixing condition, 18, 19, 111, 114

nested, 12

longest ∼ prefix, see active prefix
longest ∼ suffix, see active suffix

node depth, 13, 24

non-nested, see nested
“normal iteration”, see suffix iteration

occurrence, 11

approximate, 25

set of, 12

occurrences(), 12

see also k-error occurrence
occurrence listing problem, 25

open edge, 36, 39, 41, 44, 49, 51
ordered edit sequence, 97, 97–99
output sensitive, 22, 93

path, 13, 38

of a Σ+-tree node, 13

path(), 13, 100
of prefix only nodes, 4, 38, 39, 47,

49–51, 54, 56, 115
path compression, 13, 20
PATRICIA tree, 20

example of, 21
pattern, 11

prefix, 11

active, see active prefix
set of, 12

prefixes(), 12

prefix free, 12

reduction, 12

set, 12, 20, 21, 101
pfree(), 12

prefix iteration, 47

prefix node, 35

prefix only node, 38

prefix tree, 3, 34

purse, 57

range minimum query, 23

range query, 9, 22–25, 101, 102, 109,
110, 116, 117

bounded value, 23, 24, 109, 114
colored, 23, 24, 109
geometric, 7

reference pair, 35, 113
base of, 35

canonical, 35, 36, 113
combined, 35, 36
prefix, 35, 36
representation of virtual nodes, 13

INDEX 131

size of, 39
suffix, 35, 36

“register”, 5

relevant suffix, 41, 113
residue, 27

“reverse iteration”, see prefix iteration
Rice’s integrals, 26, 26–29, 69, 76, 78,

84
right-branching, 12

sentinel, 20, 22, 103, 109
σ-field, 17, 18
σ, 64

Σ, 11

Σ+-tree, 13, 19–22, 32–34, 95, 99,
100

atomic, 13

see also trie
compact, 13

see also PATRICIA tree
weak, 100

see also weak trie
stationary, 18

stationary and ergodic, 17

Markov chain, 18, 19, 116
sequence, 18, 19
source, 17, 18, 19, 110, 111, 114

stem from, 103, 105, 111
Stirling’s formula, 70, 71, 75

string, 11, 11–12
depth, 13

distance, 14–15, 115
comparison-based, 14, 63, 64,

90, 91
length, 11

prefix of, 11

suffix of, 11

strong α-mixing condition, 18, 19
substring, 11

proper, 12

set of, 12

psubstrings(), 12

set of, 12

substrings(), 12

subtree, 13

suffix, 11

active, see active suffix

nested, see nested
proper, 12

set of, 12, 95, 110
suffixes(), 12

suffix array, 2, 4–6, 22, 115, 117
suffix cactus, 22
suffix iteration, 47

suffix link, 3, 4, 20, 31–34, 113
atomic, 4

chain of, 32, 33, 37
non-atomic, 37

suffix link tree, 32

example of, 32
of atomic suffix tree, 32
of compact suffix tree, 33

suffix node, 34

suffix tree, 2–9, 20, 92, 94, 99, 100,
115

atomic, 3, 32, 40
duality of, 32

compact, 3, 20
weak duality of, 32

construction of, 40–47
Ukkonen, 40
Weiner (modified), 43

“dual”, 34
example of, 21, 32
generalized, 22, 91, 93, 113, 114

for document listing, 22–25
height of, 19, 94, 111

suffix vector, 22

text corpus, 11, 26, 93
text indexing, 2, 11, 19, 115

approximate, 2, 4–8, 25, 93–95,
116, 117

problem, 7, 9, 22, 25–26, 93, 116
classification of, 26, 63, 64, 93,

95, 108
trie, 5, 6, 8, 9, 20, 26

compact, 20, 99–101, 104
“compactification” of strings, 77
compressed, 20

see also PATRICIA tree
example of, 21
height of, 90, 100, 102, 111
“hidden” characters, 77

132 INDEX

random, 69
search algorithm, 65

number of visited nodes, 67
see also k-d-trie

underlying string, 35

unique branching criterion, 13, 33,
100, 109

relaxed, 100

virtual node, 13, 35, 100, 109

weak trie, 9, 100, 99–100, 104, 105,
109

with high probability, 18, 19, 93,
110–112

word set of a Σ+-tree, 13

words(), 13, 100

