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1. Introduction. In [Z], Zagier describes several methods for explicitly
computing (large) integral points on models of elliptic curves defined over
Q. Here we are interested in the computation of all integral points on a
given Weierstraß equation for an elliptic curve E/Q, but not merely by re-
ducing the original diophantine equation to an equivalent finite set of Thue
equations which are subsequently solved by elementary, algebraic or analytic
methods (see [TdW] and [STz]). On the contrary, we adopt a more natu-
ral approach, one in which the linear (group) relation between an integral
point and the generators of the free component of the Mordell–Weil group
is directly transformed into a linear form in elliptic logarithms. This idea is
not new; see [Ma, App. IV], [La, Ch. VI, §8], and [S1, Ch. IX, §5]. To make
it work, that is to say, in order to produce upper bounds for the coefficients
in the original linear (group) relation, one needs an effective lower bound
for the linear form in elliptic logarithms. First to obtain such lower bounds
were D. W. Masser [Ma, App. IV], in the case of elliptic curves with complex
multiplication, and G. Wüstholz [Wu]; see also the bibliography in [H]. We
felt that the recent result of N. Hirata-Kohno [H, Coroll. 2.16] should serve
our purpose best. Unfortunately, this result, being rather more general than
we required, though effective, is not completely explicit. At our request,
S. David kindly undertook the highly non-trivial task of making explicit the
special case we needed. It is S. David’s result [D, Th. 2.1] that is applied
here for the first time to provide explicit upper bounds for the coefficients
in the linear (group) relation corresponding to a given Weierstraß equation.
We shall show by example that these bounds may be reduced to manageable
proportions.

In the following sections we shall give a detailed description of the
method referred to above. In the final section we present two examples,
worked out in detail, of elliptic curves taken from the literature. Our choice
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seems rather arbitrary, but both examples are of some interest as illustra-
tions of the method, and also in view of the difficulties one has to overcome
when trying to solve the corresponding diophantine equations by traditional
methods.

The equations referred to above are

6y2 = (x+ 1)(x2 − x+ 6) ,

and

y2 = (x+ 337)(x2 + 3372) .

The corresponding elliptic curves have rank 2 and 3 respectively.

2. Preliminaries. This section is devoted to the introduction of the
necessary concepts and to setting up the relevant notation.

We are interested in computing explicitly all solutions (X,Y ) ∈ Z×Z of
the equation

(1) Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6 ,

where a1, a2, a3, a4, a6 are rational integers. This equation defines an elliptic
curve E/Q, provided it has a non-vanishing discriminant. From now on we
assume that this is the case.

A linear transformation

(2) X = u2x+ v, Y = u3y + wu2x+ z

for suitably chosen u, v, w, z ∈ Q, u 6= 0, gives another equation for E of the
form

(3) y2 = f(x) ,

where f ∈ Q[x] is a cubic polynomial

f(x) = x3 + ax+ b

with non-zero discriminant. The latter equation (3) is often more convenient.
Throughout this paper, an integral point will always be a point P =

(X(P ), Y (P )) with rational integral coordinates satisfying (1); the possibly
non-integral coordinates of the point P on the corresponding equation (3),
will be denoted by (x(P ), y(P )).

Let r be the rank of the Mordell–Weil group E(Q). We assume r ≥ 1 as
the case r = 0 is rather trivial. By the Mordell–Weil theorem we have the
following group isomorphism

E(Q) ∼= Etors(Q)× Zr .
The set of generators of E(Q)/Etors(Q) will be denoted by {P1, . . . , Pr}. We
shall always tacitly assume that such a set can be explicitly determined.
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For any P ∈ E(Q), there exist rational integers m1, . . . ,mr such that

(4) P = m1P1 + . . .+mrPr + T

for some T ∈ Etors(Q). The construction of the (finite) torsion group
Etors(Q) should not pose any problems, so that (4) can be seen as a di-
rect link between the (unknown) point P and the integral vector m =
(m1, . . . ,mr). For integral P we would like to estimate the vector m. This
should be possible, at least in principle, as the number of such points P is
finite. In other words, if the integral point P = (X(P ), Y (P )) satisfies (1),
then |X(P )| and |Y (P )| are bounded, which means that P cannot be too
close to the identity O of the group E(Q).

In order to use the information provided by (4) numerically, we need a
real valued function that does not disturb the linear character of (4), that
maps the identity O to 0 and measures in some sense the distance from O.
Now, the group E(R) is isomorphic to one or two copies of the circle group
R/Z, depending on the number of real zeros of f(x). Let γ be the largest
(possibly the only) real root of f(x) = 0. As the integral points P satisfying
X(P ) < u2γ + v can be easily found by direct search, we will concentrate
on those integral P which belong to the component of E(R) containing the
identity O (i.e. the infinite component), namely

E0(R) = {P ∈ E ∩ R2 | x(P ) ≥ γ} ∪ {O} .
The group isomorphism

φ : E0(R)→ R/Z
can be given explicitly as follows. Let

ω = 2
∞∫
γ

dt√
f(t)

.

This is the fundamental real period of the Weierstraß ℘-function associated
with the curve given by (3). For P ∈ E0(R) (see [Z, p. 429]),

(5) φ(P ) ≡





0 (mod 1) if P = O,

1
ω

∞∫
x(P )

dt√
f(t)

(mod 1) if y(P ) ≥ 0,

−φ(−P ) (mod 1) if y(P ) ≤ 0.

Clearly, there is no loss of generality in assuming that φ(P ) ∈ [0, 1).
It is our goal to establish an effectively computable upper bound for

|φ(P )| depending on the coefficients m1, . . . ,mr only. Because of (4) this re-
sults in an upper bound for a linear form in φ(P1), . . . , φ(Pr), essentially the
elliptic logarithms. Combining this upper bound with David’s lower bound
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for linear forms in elliptic logarithms (see [D, Th. 2.1] and the Appendix)
clinches the argument in so far as an effectively computable upper bound
for max1≤i≤r |mi| is obtained in this way.

In the course of finding the upper bound for |φ(P )| we mentioned above,
we need the canonical or Néron–Tate height function ĥ. This function is a
positive definite quadratic form on E(Q)/Etors(Q). To be more precise—we
follow Silverman, see [S1, Ch. VIII, §9])—if

〈P,Q〉 = ĥ(P +Q)− ĥ(P )− ĥ(Q)

is the so-called Néron–Tate (or Weil) pairing , and P is expressed as in (4),
then

(6) ĥ(P ) =
1
2

∑

1≤i,j≤r
〈Pi, Pj〉mimj

and the matrix H = ( 1
2 〈Pi, Pj〉)r×r is positive definite (see [S1, Prop. 9.6,

p. 232]). Relation (6) immediately follows from the facts that for any P ∈
E(Q) and any m ∈ Z,

• the Néron–Tate pairing is bilinear,

• ĥ(mP ) = m2ĥ(P ),

• ĥ(P ) ≥ 0 and ĥ(P ) = 0 if and only if P is a torsion point.

3. Basic inequalities. In this section we shall establish a few elementary
inequalities that are crucial in the derivation of our upper bound for |φ(P )|.
In each inequality we introduce an absolute constant accordingly labeled.

Inequality 1. Let P ∈ E(Q) be expressed as in (4). Then

ĥ(P ) ≥ c1 max
1≤i≤r

m2
i ,

where c1 is the least eigenvalue of the positive definite matrix H introduced
in (6).

P r o o f. According to (6) we have

ĥ(P ) = mTHm,

where m is the column vector with components m1, . . . ,mr. As H is sym-
metric, a diagonal matrix Λ of eigenvalues of H and an orthogonal matrix Q
exist such that H = QTΛQ. Writing n = Qm and observing that QTQ = I,
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we deduce

ĥ(P ) = mTQTΛQm = nTΛn =
r∑

i=1

λin
2
i

≥ c1
r∑

i=1

n2
i = c1nTn = c1mTQTQm = c1mTm

= c1

r∑

i=1

m2
i ≥ c1 max

1≤i≤r
m2
i ,

as claimed.

Inequality 2. Let γ, γ′, γ′′ be the roots of f(x) = 0 and put c2 =
2 max{|γ|, |γ′|, |γ′′|}. Then, for all x ≥ c2,

∣∣∣∣
∞∫
x

dt√
f(t)

∣∣∣∣ ≤ 4
√

2|x|−1/2.

P r o o f. For t ≥ x ≥ c2 we have 0 < f(t) = t3+at+b = |t−γ||t−γ′||t−γ′′|
and as t is larger than the absolute largest zero of f(x), it follows that
|t− γ| ≥ t− |γ| ≥ t/2, and likewise for γ′ and γ′′. Consequently, 1/

√
f(t) ≤

23/2t−3/2 and hence, for all N > x,
N∫
x

dt√
f(t)

≤
N∫
x

23/2t−3/2 dt = 4
√

2(x−1/2 −N−1/2).

Letting N tend to infinity completes the proof.

Before proceeding, let us remind the reader that there is another, in
some sense more natural height function than the canonical height ĥ. For
any rational number % = m/n with gcd(m,n) = 1,

h(%) := log max{|m|, |n|}
is known as the absolute logarithmic height of %. Now the naive height of
a point P ∈ E(Q), P 6= O, is defined as the absolute logarithmic height of
X(P ).

Inequality 3. Let u, v and γ be as in Section 2. Let X0 be a positive
integer strictly larger than v. Put

c0 =
{

log |u| if v ≤ 0,
log |u|+ 1

2v(X0 − v)−1 if v > 0,

c3 = c0 + 1
12 log |∆|+ 1

12 log+ |j|+ 1
2 log+ |b2/12|+ 1

2 log 2∗ + 1.07,

where ∆ and j are the discriminant and the j-invariant of the elliptic curve
E/Q defined by (1), log+ |α| := log max{1, |α|} for α ∈ R, b2 = a2

1 + 4a2

and 2∗ = 1 or 2 according as b2 vanishes or not , respectively.
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Then, for all P ∈ E(Q) with X(P ) ≥ X0, we have x(P ) > 0, and

ĥ(P )− 1
2 log x(P ) ≤ c3.

R e m a r k. There is no restriction on the choice of model to which we
apply Silverman’s theorem [S3, Th. 1.1], so long as a1, . . . , a6 ∈ Z. There-
fore, we may choose a model that provides a small constant c3, subject to
a1, . . . , a6 ∈ Z. A natural choice is the global minimal Weierstraß model, or
the model that minimizes log+ |b2/12|.

P r o o f o f I n e q u a l i t y 3. Clearly x(P ) = u−2(X(P )− v) > 0. Next,
by [S3, Th. 1.1] we have

(7) ĥ(P )− 1
2h(X(P )) ≤ c3 − c0

and, since P is an integral point, h(X(P )) = logX(P ). Therefore

(8) h(X(P )) = log(u2x(P ) + v) = 2 log |u|+ log x(P ) + log
(

1 +
v

u2x(P )

)
.

If v ≤ 0 then the final logarithm in (8) is non-positive, and for positive v,

log
(

1 +
v

u2x(P )

)
<

v

u2x(P )
=

v

X(P )− v ≤
v

X0 − v .

Combining this with (7) and (8) completes the proof.

4. The linear form in elliptic logarithms. As we are interested in
finding all integral points on (1), and as points with small X-coordinate
can be found without fail by direct search, we focus our attention on points
P ∈ E0(Q), P 6= O with X(P ) ≥ X0, for some conveniently chosen positive
integer X0. Elaborating on this choice of X0, we first point out that a point
P of E(R) belongs to E0(R) if and only if x(P ) ≥ γ or, equivalently, if and
only if X(P ) ≥ u2γ + v. In view of this and the requirements set down in
Inequalities 2 and 3, we take X0 = bmax{c2, u2γ + v, v}c+ 1.

Let P be expressed in terms of the generators of the free component of
E(Q) as in (4). We put

M = max
1≤i≤r

|mi|.
Applying the isomorphism φ to (4)—but see the remark below—yields

φ(P ) ≡ m1φ(P1) + . . .+mrφ(Pr) + φ(T ) (mod 1),

and hence an integer m0 exists such that

(9) φ(P ) = m0 +m1φ(P1) + . . .+mrφ(Pr) + φ(T ),

so that, assuming all φ-values belong to [0, 1),

(10) |m0| < |m1|+ . . .+ |mr|+ 1 ≤ rM + 1.

For our purpose, it clearly suffices to compute an upper bound for M .
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R e m a r k. A problem arises when some or all of the generators Pi do not
belong to E0(Q). This is only possible when f(x) = 0 has three real roots
γ > γ′ > γ′′. Then R := (γ′, 0) is a point of order two with real algebraic
coordinates. Now, for each i = 1, . . . , r, if Pi 6∈ E0(Q) then replace Pi in (4)
by Pi +R—which does belong to E0(R)—and adjust T accordingly.

Let t be the order of the torsion point T . Then, tφ(T ) ≡ φ(O) ≡ 0
(mod 1), and hence φ(T ) = s/t, for some non-negative integer s < t. Thus,

(11) φ(P ) =
(
m0 +

s

t

)
+m1φ(P1) + . . .+mrφ(Pr).

On the other hand, by Inequalities 1 and 3,

log x(P ) ≥ 2(ĥ(P )− c3) > 2(c1M2 − c3).

Therefore, |x(P )|−1/2 = (x(P ))−1/2 ≤ exp(c3 − c1M2). In view of Inequal-
ity 2 and the definition of φ, it follows that

(12) |φ(P )| =
∣∣∣∣

1
ω

∞∫
x(P )

dt√
f(t)

∣∣∣∣ ≤
4
√

2
ω
|x(P )|−1/2 ≤ 4

√
2

ω
exp(c3 − c1M2).

On writing

(13) L(P ) := ωφ(P ) =
(
m0 +

s

t

)
ω +m1u1 + . . .+mrur,

where ui = ωφ(Pi) for i = 1, . . . , r, we see that (12) induces the upper bound
for the linear form L(P ) in elliptic logarithms hinted at above. Indeed, if we
denote by ℘ the Weierstraß ℘-function, which parameterizes E, then

℘(ui) = ℘

( ∞∫
x(P )

dt√
f(t)

)
= x(P ), i = 1, . . . , r

(see for instance [WW, Ch. XX, no 20·221]). Note that ω is a pole of ℘. As
the linear form L(P ) is non-vanishing, because P 6= O implies φ(P ) 6= 0,
we may apply S. David’s theorem (see the Appendix) to obtain the lower
bound

(14) |L(P )| > exp(−c4(logM ′ + c5)(log logM ′ + c6)r+2)

for explicitly computable positive constants c4, c5 and c6, where

logM ′ := max{logM,h(m0 + s/t)},
provided that M is not less than some explicitly computable constant M0 ≥
16. Combining upper and lower bounds (12) and (14) then yields

(15) c1M
2 < c4(logM ′ + c5)(log logM ′ + c6)r+2 + c3 + log(4

√
2).
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By (10) and the definition of M ′, we have

M ′ ≤ |m0t+ s| < t0(rM + 1) + t0 − 1,

t0 := max{order(T ) |T ∈ Etors(Q)},
where t0 ≤ 12 by Mazur’s theorem (see [S1, p. 223]). From this inequality
we easily deduce that

logM ′ < logM + log(t0r) +
2t0 − 1
16t0r

,

so that (15) implies

Principal Inequality.

(16) M2 < c3c
−1
1 + c−1

1 log(4
√

2) + c4c
−1
1 (logM + c7)(log logM + c8)r+2,

where

c7 = c5 +log(t0r)+
2t0 − 1
16t0r

and c8 = c6 +
(

log(t0r)+
2t0 − 1
16t0r

)/
log 16.

Now clearly (16) provides an effectively computable upper bound for M .

5. Reduction of the upper bound. Inequalities (12) and (16) may
be rewritten in simplified form as

(17) |φ(P )| < K1 exp(−K2M
2) and M < K3,

where K1,K2,K3 are explicitly known and K3 is “very large”—in the two
numerical examples of Section 6 it is of magnitude 1038 and 1059, respec-
tively. Since such a large upper bound for M is way out of reach of any
practical search method, we will try to reduce it.

Consider the (r+1)-dimensional lattice, generated by the columns of the
matrix

(18) A =




1 . . . 0 0
0 . . . 0 0
...

. . .
...

...
0 . . . 1 0

[K0φ(P1)] . . . [K0φ(Pr)] K0



.

Here K0 is a conveniently chosen integer, larger than Kr+1
3 —this choice of

K0 will be further discussed in the lines following the Proposition. Further,
[·] means rounding towards 0, i.e. [α] = dαe if α ≤ 0, and [α] = bαc if α > 0.
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Let (m1, . . . ,mr,m0) ∈ Zr+1 satisfy |mi| < K3 for i = 0, 1, . . . , r, and
consider the lattice point

` = A




tm1
...

tmr

tm0 + s


 =




tm1
...

tmr

λ


 ,

where

λ := tm1[K0φ(P1)] + . . .+ tmr[K0φ(Pr)] + (tm0 + s)K0.

Since |λ−K0tφ(P )| ≤ rtM ≤ rtK3—recall (11)—it follows that

(19) ‖`‖2 = t2(m2
1 + . . .+m2

r) + λ2 ≤ rt2K2
3 + t2(K0|φ(P )|+ rK3)2.

On the other hand, if the lattice basis {b1, . . . ,br+1} is reduced in the sense
of [LLL], we have

‖b1‖2 ≤ 2r‖`‖2,
in view of Proposition (1.11) of the paper cited. Combining this with (19)
yields

(20) K0|φ(P )| ≥
√
t−22−r‖b1‖2 − rK2

3 − rK3,

which gives, after applying the first inequality of (17),

(21) M2 ≤ K−1
2 (log(K0K1)− log(

√
t−22−r‖b1‖2 − rK2

3 − rK3)),

provided the right-hand side of (20) is positive, i.e.

(22) ‖b1‖ > 2r/2tK3

√
r2 + r.

We have thus proven the following

Proposition. If the first vector b1 of an LLL-reduced basis for the lattice
generated by the column vectors of the matrix A in (18) satisfies (22), then
an upper bound for M is given by (21).

Heuristically, it can be argued (see for instance [TdW, Sect. 3.1]) that the
length of b1 is of the same magnitude as K1/(r+1)

0 . Therefore, if we choose
K0 to be somewhat larger than (2r/2tK3

√
r2 + r)r+1, it is reasonable to

expect that (22) is satisfied—if not, we choose a larger K0—so that the
Proposition can be applied. Note that the initial bound K3 of M is thus
reduced to a new bound which is of the size of

√
logK3. If the reduced

bound is not small enough, then we repeat the above procedure with the
reduced bound replacing K3.

For the computation of an LLL-reduced basis we have applied de Weger’s
version of the LLL-algorithm. For a detailed description the reader should
consult de Weger’s book [dW, Ch. 3].
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6. Applications. In this section we shall apply the method described
above to the two equations mentioned in the introduction.

The first application concerns the determination of all integer points on
Mordell’s diophantine equation

(23) 6Y 2 = (X + 1)(X2 −X + 6).

In his book [Mo, p. 259] Mordell asks whether all integer solutions of this
equation are given by X = −1, 0, 2, 7, 15, 74. W. Ljunggren answered Mor-
dell’s question in [Lj] by adding one more point. Subsequently, Andrew
Bremner gave a simpler proof in [Br]. Both methods are ingenious but com-
plicated and their applicability to the general case appears to be limited.
With our method the solution process is rather straightforward. We shall
confirm that

Example 1. The only integer solutions (X,Y ) with Y ≥ 0 of (23) are

(−1, 0), (0, 1), (2, 2), (7, 8), (15, 24), (74, 260), (767, 8672).

In order to live up to this claim we have to construct a set of generators
of infinite order for E(Q), and the relevant constants have to be calculated.
First we transform (23) to Weierstraß form. This gives

(24) y2 = x3 + 180x+ 1296.

The rank of the corresponding curve is 2; in fact Ian Connell’s Apecs 2.7
gives this (complete) set of independent points of infinite order on (24):
{(−3, 27), (10, 64)}. Further, the torsion subgroup Etors(Q) is of order two
and its generator is T = (−6, 0). It is not hard to show that the points P1 =
(−3, 27) and P2 = (10, 64) generate the Mordell–Weil group modulo torsion.
For, the set S of 8 points O, T, P1, P1 + T, P2, P2 + T, P1 − P2, P1 − P2 + T
represents E(Q)/2E(Q). Indeed, it is easily checked—again, Apecs is useful
here, or one may use reduction modulo a few small primes—that none of
these points, with the obvious exception of O, can be written as twice a
point of E(Q). Now by [S3, Prop. 7.2] the set of points P with

ĥ(P ) ≤ max{ĥ(X) |X ∈ S} ≤ 0.8787

generates E(Q)/Etors(Q).
In order to set up a search for these points, we compare the canonical

height with the naive height. Applying [S3, Th. 1.1] here yields
1
2h(X(P )) ≤ ĥ(P ) + 1

8h(j) + 1
12h(∆) + 0.973,

and, as jE = 13500/23 and ∆ = −216 36 23, this amounts to searching for
all points X(P ) = R/S2 with max{|R|, S2} < 3705. We used Upecs—the
little brother of Apecs, written in the very fast UBASIC 8.21 by Y. Kida—to
perform this search, and as it happened, all points uncovered were linear
combinations of P1, P2, and T .
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In accordance with the definitions and notations as laid down in the
Appendix at the end of this paper, we have a = 22 32 5, b = 24 34, and hence

max{1, |a/4|p, |b/16|p} =
{

34 if p =∞,
1 otherwise,

so that h(a/4, b/16) ≈ 4.3944492. Also h(jE) = log(13500) ≈ 9.5104450,
and therefore

hE ≈ 9.5104450.
Also γ = −6 and the formulas (32) give

ω1 ≈ 1.0606085 + 0.81447364 i, ω2 = ω1,

τ =
ω1

ω2
≈ 0.25808531 + 0.96612213 i,

and the fundamental real period for the Weierstraß ℘-function associated
with (24) is

ω = 2<ω1 ≈ 2.1212170.
Here we consider the following linear form in elliptic logarithms (see (13)):

L(P ) =
(
m0 +

s

2

)
ω +m1u1 +m2u2.

In the notation of David’s Theorem (see the Appendix) we have r = 2,
Ri = Pi (i = 1, 2), and R0 = O. Also ui = ωφ(Pi) (i = 1, 2), and u0 = ω.
Zagier’s algorithm for the evaluation of the φ-values [Z, (10) on p. 430])
gives

φ(P1) ≈ 0.40084555, φ(P2) ≈ 0.25694930,
and hence, by the definition of the ui’s, it follows that

u1 ≈ 0.85028037, u2 ≈ 0.54504522.

Using Apecs—the algorithm in [S2] could also be used—we computed

ĥ(P1) ≈ 0.87867020, ĥ(P2) ≈ 0.70055495,

and of course, ĥ(R0) = 0.
Then, by the definition of the Ai’s, we see that we can take

A0 = 24.55, A1 = A2 = 9.511, E = e.

It follows that we may choose in (16)

c4 = 9.655 · 1069.

Further, with t0 = 2, c5 = 1, c6 = 1 + hE in (16), we can also choose

c7 = 2.434, c8 = 11.03.

In (2) we take
u = 1, v = w = z = 0,
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so that, in particular, X(P ) = x(P ). Using MapleV and Apecs we computed
the least eigenvalue of the matrix H introduced in (6), and we found (see
Inequality 1)

c1 ≈ 0.26833321.

We choose c1 = 0.2683 in (16). Moreover, we have

γ = −6, γ′ = 3 + 3
√

23 i, γ′′ = γ′,

which gives, by Inequality 2,

c2 = 12
√

6.

In the first paragraph of Section 4, it was observed that X0 may be chosen
as bmax{c2, u2γ + v, v}c+ 1 = 30, so that our search concerns all points P
with X(P ) ≥ 30. It is straightforward to check, even by hand, that the only
integral points (x, y) on (24) with x < 30 are

(−6, 0), (0, 36), (12, 72).

By Inequality 3, c3 ≈ 3.3360395, so we can take c3 = 3.337 and (16) now
yields

M < 4.368 · 1038.

Next we apply the reduction process of Section 5 to the relevant linear form
φ(P ) (see (11)). In view of (12) we may take

K1 = 75.03 >
4
√

2
ω

exp(c3), K2 = 0.2683,

and, because of the upper bound for M ,

K3 = 4.368 · 1038.

Further, we choose

K0 = 10120,

which is somewhat larger than (4
√

6K3)3.
In view of (18), this choice of K0 forces us to compute φ(Pi) for i = 1, 2

with a precision of 120 decimal digits. This is accomplished by executing
Zagier’s algorithm ([Z, (10) on p. 430] coded in UBASIC, which allows for
very large precision. Finally, application of the LLL-algorithm—we used de
Weger’s version [dW, Sect. 3.5] and checked the result with the lllint pro-
cedure which is part of GP/PARI 1.37.3—gives a reduced basis {b1,b2,b3}
with

b1 = (−6.476 . . .× 1039,−4.976 . . .× 1039, 3.834 . . .× 1039),

from which we see that the inequality (22) with r = t = 2 is satisfied. Hence,
by the Proposition of Section 5, M ≤ 26. Repeating the process with K1,
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K2 as above and K3 = 26, K0 = 108, the LLL-algorithm gives a reduced
basis with

b1 = (−101,−146, 266).

Thus, (22) is satisfied and the Proposition yields the new bound

M ≤ 8.

The result of a direct search—using Apecs again—for all integral points

P = m1P1 +m2P2 + εT, 0 ≤ m1 ≤ 8, |m2| ≤ 8, ε ∈ {0, 1},
with (x(P ), y(P )) on (24) and x(P ) ≥ 30 is listed in the following table:

m1 m2 ε x(P ) y(P )

0 −2 1 4602 −312192
0 2 1 4602 312192
1 −2 0 69 −585
1 −1 0 42 288
1 0 1 90 −864

2 −1 1 444 9360

From this we see that the only integral solutions (x, y) of (24) are those
given by the x(P )-values in the table in addition to those given by x =
−6, 0, 12. Since the solutions (X,Y ) of (23) and (x, y) of (24) are related by

x = 6X, y = 36Y,

and as all x-values mentioned above, except 69, are divisible by 6, the integer
solutions of (24) are as claimed in Example 1.

The next example deals with the Weierstraß equation

(25) Y 2 = (X + 337)(X2 + 3372).

We will show that

Example 2. The only integer solutions (X,Y ) with Y ≥ 0 of (25) are

(−337, 0), (−287, 3130), (2113, 105910), (56784, 13571615).

Necessary information on the characteristics of the elliptic curve given
by (25) can be found in [STo]. In particular, Etors(Q) ∼= Z2 with point of or-
der two T := (−337, 0) and set of generators {P1, P2, P3} of E(Q)/Etors(Q),
where

P1 =
(

5392
9

,
567845

27

)
, P2 = (56784, 13571615),

P3 =
(

105144
25

,
35547097

125

)
.
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Further,

a =
2
3
· 3372, b =

20
27
· 3373, jE = 128, and ∆ = −28 3376.

By (32) of the Appendix we computed the following pair of fundamental
periods:

ω1 ≈ 0.21988008 + 0.14965789 i, ω2 = ω1,

and thus

τ =
ω1

ω2
≈ 0.36680841 + 0.93029651 i,

which satisfy the requirements of (30). It follows that

ω = 2<ω1 ≈ 0.43976016

is a fundamental real period.
Next we computed h(a/4, b/16). As

max{1, |a/4|p, |b/16|p} =





2−2 3−3 5 · 3373 if p =∞,
22 if p = 2,
33 if p = 3,
1 otherwise,

we see that

hE = h

(
a

4
,
b

16

)
≈ 19.069687.

Here we consider the linear form in elliptic logarithms (see (13))

L(P ) =
(
m0 +

s

2

)
ω +m1u1 +m2u2 +m3u3.

In the notation of David’s Theorem (see the Appendix) we now have r = 3,
Ri = Pi (i = 1, 2, 3), and R0 = O. Also, ui = ωφ(Pi) for i = 1, 2, 3, and
u0 = ω. Zagier’s algorithm for the evaluation of the φ-values [Z, (10) on
p. 430]) gives

φ(P1) ≈ 0.16728752, φ(P2) ≈ 0.019066499, φ(P3) ≈ 0.069180092.

Using Apecs we computed

ĥ(P1) ≈ 1.6247112, ĥ(P2) ≈ 5.4762626, ĥ(P3) ≈ 2.9083116,

and ĥ(R0) = 0.
Then, by the definition of the Ai’s, we see that we can take

A0 = 27.70, A1 = A2 = A3 = 19.07, E = e.

This leads to

c4 = 2 · 1036
(

2
e

)32

5104
3∏

i=0

Ai < 1.031 · 10110.
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With t0 = 2, c5 = 1, and c6 = 1 + hE in (16), we may choose

c7 = 2.824, c8 = 20.73.

In the notation of (2) and (3), we have

u = 1, v = −337
3
, w = z = 0.

Moreover,

γ = −2
3
· 337, γ′ =

1
3
· 337 + 337 i, γ′′ = γ′,

which implies, by Inequality 2,

c2 =
2
3
· 337

√
10.

Further, c1 ≈ 0.67736605, and c3 ≈ 5.1930490, where we have chosen the
global minimal Weierstraß model

Y 2 = X3 +X2 + 75713X + 28375425

for the computation of c3. We choose

c1 = 0.6773, c3 = 5.194.

Now (16) immediately implies that

(26) M < 4.907 · 1059,

provided that X(P ) ≥ 711 = X0 = bmax{c2, u2γ+v, v}c+1. In view of (12),
we may take

K1 = 2318 >
4
√

2
ω

exp(c3), K2 = 0.6773,

and, because of (26),

K3 = 4.907 · 1059.

Choosing

K0 = 10245,

which is somewhat larger than (8
√

6K3)4, means that we must compute
φ(Pi) for i = 1, 2, 3 with a precision of 245 decimal digits. Applying the
same implementation of the LLL-algorithm as before, we get a reduced basis
{b1, . . . ,b4} with

b1 = (−1.534 . . .×1061, 3.143 . . .×1060,−2.629 . . .×1060,−3.680 . . .×1060),

from which we see that

‖b1‖ > 1.627 · 1061 > 8
√

6K3.

Therefore, by the Proposition, M ≤ 25. Repeating the process with K1, K2

as above and K3 = 25, K0 = 1012, the LLL-algorithm gives a reduced basis
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with

b1 = (234,−445, 135,−322).

Consequently,

‖b1‖ =
√

374690 > 8
√

6K3,

so that our Proposition yields the new bound

M ≤ 6.

A direct computer search reveals that the only points

P = m1P1 +m2P2 +m3P3 + εT,

0 ≤ m1 ≤ 6, −6 ≤ m2,m3 ≤ 6, ε ∈ {0, 1},
with integral X(P ) ≥ 711 are those given in the following table:

m1 m2 m3 ε X(P ) Y (P )

0 −1 0 0 56784 −13571615
0 1 0 0 56784 13571615
2 0 1 1 2113 −105910

A direct search with Apecs for integral points P on (25) with X(P ) < 711
reveals no points other than (−337, 0) and (−287,±3130) and this confirms
the claim of Example 2.

Appendix: An explicit lower bound for linear forms in elliptic
logarithms. We recall the following facts:

• The absolute logarithmic height of (q1, . . . , qn) ∈ Qn is given by

h(q1, . . . , qn) =
∑
p

log max{1, |q1|p, . . . , |qn|p},

where p runs through all primes, including the “infinite” one (|x|∞ = |x|,
the usual absolute value). If n = 1 and q1 = a/b with gcd(a, b) = 1, then it
is straightforward to check that h(q1) = log max{|a|, |b|}.
• To any pair of complex numbers A,B such that ∆ := A3−27B2 6= 0, a

so-called Weierstraß ℘-function corresponds with invariants g2 = A, g3 = B.
This function ℘ of a single complex variable is doubly periodic and has
one second-order pole in a period parallelogram. Further, ℘ satisfies the
differential equation ℘′(z)2 = 4℘(z)3 − A℘(z) − B and x = ℘(z), y =
℘′(z) gives a parameterization over C of the elliptic curve with Weierstraß
equation

(27) y2 = 4x3 −Ax−B =: f1(x),
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where z runs through all values of a fundamental parallelogram of the period
lattice.

• The fundamental periods ω1 and ω2 of the function ℘ may be expressed
by the following definite integrals (see [AS, 18.7.4 and 18.7.5 on p. 641]): If
∆ > 0, then f1(x) has three real zeros e1 > e2 > e3, and

ω1

2
=

∞∫
e1

dt√
f1(t)

,
ω2

2
= i

e3∫
−∞

dt√
|f1(t)| .

A fast and convenient method for computing the periods numerically is
provided by the Arithmetic–Geometric Mean (AGM), see [C]. If the AGM
of two positive reals a and b is denoted by M(a, b), then (see [BM, 2.1, in
particular (10) and (11)])

(28) ω1 =
π

M(
√
e1 − e3,

√
e1 − e2)

, ω2 =
πi

M(
√
e1 − e3,

√
e2 − e3)

.

If ∆ < 0, then f1(x) has one real root e1 and a pair of complex conjugate
roots e2 and e3 = e2, and

ω1 =
∞∫

e1

dt√
f1(t)

+ i
e1∫

−∞

dt√
|f1(t)| , ω2 = ω1.

Again, as in the case of a positive discriminant, more convenient formulas
exist for the computation of the periods. Consider the curve

(29) Y 2 = 4X3 − 4(15e2
1 −A)X − 2(7e1A+ 11B).

This curve and (27) are 2-isogenous. Consequently, if Ω1, Ω2 is a pair of
fundamental periods for the Weierstraß function associated with (29), then
ω1 = Ω1 +Ω2, ω2 = Ω1−Ω2 can be taken as a pair of fundamental periods
for the Weierstraß function ℘ associated with (27). But the right-hand side
of (29) has the three real roots

e1 +
√

12e2
1 −A > −2e1 > e1 −

√
12e2

1 −A.
Therefore, like in the case of a positive discriminant, the periods Ω1, Ω2—
and hence ω1, ω2 too—can be computed numerically by the AGM method.
Finally, the pair of fundamental periods ω1, ω2 may be chosen such that
τ = ω2/ω1 satisfies

(30) |τ | ≥ 1, =τ > 0, − 1
2 < <τ ≤ 1

2 with <τ ≥ 0 if |τ | = 1.

Consider the equation

(31) y2 = x3 + ax+ b =: f(x) with a, b ∈ Q,
and let ℘ be the Weierstraß function corresponding to (31), i.e. the one with
invariants g2 = −a/4, g3 = −b/16. Note that now x = 4℘(z), y = 4℘′(z)
gives a parameterization over C of the elliptic curve E defined by (31).
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Matching up the notation of this Appendix with the rest of the paper,
we get

f1(x) = 4x3 +
a

4
x+

b

16
, γ = 4e1, γ

′ = 4e2, γ
′′ = 4e3,

where γ is the largest (or the only) real zero, and γ′, γ′′ are the remaining
zeros of f(x). In view of the foregoing discussion on the periods, it immedi-
ately follows that a pair of fundamental periods is given by

ω1 =
2π

M(
√
γ − γ′′,√γ − γ′) , ω2 =

2πi
M(
√
γ − γ′′,√γ′ − γ′′)

in the case of three real roots γ > γ′ > γ′′, and by

(32) ω1 = Ω1 +Ω2, ω2 = Ω1 −Ω2,

with
Ω1 =

π

M
(

4
√

3γ2 + a, 1
2

√
3γ + 2

√
3γ2 + a

) ,

Ω2 =
πi

M
(

4
√

3γ2 + a, 1
2

√
−3γ + 2

√
3γ2 + a

) ,

in the case of a single real root γ.
Let u0, . . . , ur ∈ C be such that, for every i = 0, . . . , r, Ri =

(4℘(ui), 4℘′(ui)) ∈ E(Q) ∪ {O} on (31)—note that Ri = O means that
ui is a pole of ℘.

Let jE = 28 33 a3/(4a3 + 27b2) be the j-invariant of E and define

hE = max{1, h(a/4, b/16), h(jE)}.
Let ω1, ω2 be a pair of fundamental periods for ℘ with τ = ω2/ω1 satisfy-
ing (30). For every i = 0, . . . , r, consider a positive number Ai such that

Ai ≥ max
{
ĥ(Ri), hE ,

3πu2
i

|ω1|2=τ
}
,

where ĥ denotes the usual Néron–Tate or canonical height function. Further,
consider a number E satisfying

e ≤ E ≤ min
i=0,...,r

{
e|ω1|

√
Ai=τ

|ui|
√

3π

}
,

and finally, let L be the linear form

L =
b0
t
u0 + b1u1 + . . .+ brur,

where t, b0, b1, . . . , br ∈ Z and t > 0. Also let B be a positive integer such
that

B ≥ max{A0, . . . , Ar, t, |b0|, |b1|, . . . , |br|, 16}.
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The following theorem is a special case of [D, Théorème 2.1].

David’s Theorem. If L 6= 0, then

|L| ≥ exp(−c4(logB + log E)(log logB + log E + hE)r+2),

where

c4 = 2 · 107r+15
(

2
e

)2(r+1)2

(r + 2)4r2+18r+14(log E)−2r−3
r∏

i=0

Ai.
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