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Evaluer la somme ¥ (fi(a;}+/2(a:)+ ... +fi{a)~K)', o0 K est une

aco
constante complexe et ge N¥, ou la somme

Y (fila)—K ) (falaa) = Ko)? oo (fila) — K™,
agsd
oit K;, K;, ..., K, sont des constantes complexes et g,, ¢z, ..., g, des entiers
= 0.
Ici ¢/, devrait étre remplacée par la partie .oy, 4, ..,
termes pour lesquels d,|a,, dslas, ..., dJla, et la relation

d
ot = 2 x4,

4, de o/ formée des

ar
P _w(dlsd?.:--':ds)

o = X+r ,
[y, ad 1.4, .4 a1 eendy

ol w est une fonction multiplicative de s entiers > 0.

Les résultats. peuvent Etre appliqués 4 des problimes de moments
correspondant aux problémes considérés par Kubilius dans les chapitres V et
VIIT de son livre [7].
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1. Introduction. If f(n) is any function on the nonnegative integers,
define its first difference A f by Af (n) = f(n)—f(n—1) for n = 1, 4F({0) = F(0).

_ The kth difference A4*f of f is then defined recursively by 4*f = A(4*" 1 /).

A few years ago, L. J. Good [5a] asked about the behavior of 4* p(n}, where
p(n) denotes the number of unrestricted partitions of ». He initially conjectu-
red [5a] that if k> 3, then the sequence A*p(n), n=0, 1, ..., alternates in
sign. However, computations by R. Razen and independently by L. J. Good
and his associates [5b] found counterexamples to this conjecture, and led to
a new conjecture, namely that for each fixed k, 4* p(n) > 0 for n sufficiently
large. I. J. Good [5b] even made the stronger conjecture that for each k,

“there is an ny (k) such that 4% p(n) alternates in sign for n < ny(k), and 4*p(n)

>0 for n> ng(k). He also suggested that 6(k—1)(k—2)+k’/2 might be a
good approximation to ny (k). Some further computations by R. A. Gaskins
led 1. J. Good to revise his conjecture about the size of ng(k), and suggest
that mk>* might be a good approximation to it [5c].

At about the same time as the first publication of 1. J. Good’s problem,
the same question about the sign of 4* p(n} was also raised independently by
G. E. Andrews, and was answered by H. Gupta [6]. Gupta noted that
Ap(n) > 0 for all n, and gave a simple proof of the result that 4% p(n) > 0 for
nz 2 while 42p{0) =1, 4%p(1) = —1. Gupta also noted that it can be
shown easily using the Hardy-Ramanujan-Rademacher series ([1], [2], [3],
[71, [8]) for p(n) that for each k, AXp(n) > 0 if n is sufficiently large. In fact,
this result can be obtained from some of the earliest of the Hardy-
Ramanujan "approximations [7] to p(n):

(1.1) 5 'exp (Cp)+O0{exp((C/2+8) "),

1 d
= (2
p(m) 27:\/561”(
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for every & > 0, where C = n{2/3)""* and 4, =(n— 1/24)12. The kih difference
of the second term on the right side of (1.1) is of the same order of
magnitude as that term (for & fixed, n — o), while the kth difference of the
first term is very close to its kth derivative. Thus we obtain the estimate

(1.2) A p(n) = Con 2 pm(1+0(n™ 1} as

where C, = (n/\lmé')"'. (Gupta's asymptotic estimate of 4*p(n) in [6] is incor-
rect.) Gupta’s computations led him to the same conjecture as Good’s about
A% p(n) alternating up to some ng (k) and then immediately becoming positive,
but Gupta conjectured that ng(k) ~ k* as k— co.

Another easy proof that A* p(n) is posilive for large 1 can be obtained
by applying the theorem of Bateman and ErdSs [4]. They showed that if
p4(n) denotes the number of partitions of n into summands taken from some
set A of positive integers (repetitions- allowed), then 4* p,(n) > 0 for all large
n if and only if the greatest common divisor of each subset B &= 4 with [4\8|
=k is equal to 1. The Bateman and Erd8s result is far too general, though,
to provide information about initial segments of 4*p,(n).

This paper carries the investigation of 4* p(n) further, and largely settles
the Good—Gupta conjectures. The main result is the following. °

0o

TueorReM. There is a kg so that if k = kg, then there is an integer ng(k)
such that (—1)" 45 p(n) >0 for D < n < ng(k) and A¥p(n) = 0 for n =z ny(k).
Furthermore,

(1.3) fig (k) ~ %kz(iog kK oas koo

With more work it would probably be possible to establish the above
result for all k Such an extension would require replacing various
O-estimates by explicit numerical bounds. We should note that the above result
does not exclude the possibility that A4* p(n) =0 might occur. In fact, the
proof shows that for each large k, A* p{n) = 0 can hold for at most one value
of n, and it can be shown with more effort that values of k for which 4* p(r)
= 0 occurs for some n are very rare. It is probably true that 4% p(n) = 0 has
only finitely many solutions among all pairs k, n, but this conjecture seems to
be hard to prove.

The asymptotic approximation (1.3} is not very accurate for small k. For
example, from the computational results quoted in [5¢], it appears that
ny(30) = 15416. Now for k = 30, nk>? = 15486.49..., while 6m~2k?(logk)?
= 6329.32_.,. The proof of (1.3) can be used to obtain more accurate
estimates of ny(k), however. :

2. Intuitive explanation of result. If F(z) denotes the generating [unction
of p(n).

2.1) Fliy= 3 pinz",
n=90
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then it is well known {and easy to see) that

(2.2) Floy= [] (1=zm~ L
m=1

If we define F,(z) to be the generating function of 4* p(n),

(2.3} Fylz)= 2 A plm =7,
n=0Q
then
2.4 Fo(z) = (1 =2*F(z) = (1 -z} H (1—zm~%
m= ]

The theorem could be proved by investigating the analytic behavior of F,(z),
but we will only use F.(z} to explain why the Good-Gupta conjectures are
true.

The basic philosophy in the use of generating functions for asymptotic
analysis is that the singularities of the function determine the behavior of the
coefficients. Generally speaking, a dominant singularity (i.e, one near which
the function grows faster than near other points) at 1 corresponds to a
monotone increasing sequence, while a dominant singularity at —1 corres-
ponds to an alternating sequence. The function F(z) has the unit circle as its
natural boundary. However, as was shown by Hardy and Ramanujan 7l
F(z) is most singular (i.e., grows fastest) near 1, is next most singular at -1,
and is much better behaved away from those two points. This led them to
the following refinement of (1.1):

(b d
2n dn

d
Ay P exp(CA))+

1
2_5 R
25 pn) /2 ol

{4 exp(CAy2)
+0{exp(nV2(C/3 +2)))

for any &> 0. (Taking other points on |zl =1 into account led Hardy-
Ramanujan to their famous asymptotic series [7].) The first term on the right
in (2.5) comes from z = 1, the second from z = —1, and the remainder is the
contribution of the rest of the circle.

~ The importance of the fact that z = 1 is the dominant singularity of F (z)
and z = —1 is next most dominant is that when we study 4*p(n), we deal
with the generating function F,(z) = (1—z) F(z). The effect of multiplying
F{(z) by (1—z)* is that the singularity at z = —1 increases in influence, as the
function is increased by about 2* near z = —1. On the other hand, the
singularity at z == 1 diminishes in influence. Since F(z) grows much faster
than any polynomial in (1—z) ' as z— 1, this dimimution is fairly small very
close to z = 1, and therefore for large n, the size of A% p(n) largely reflects the
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influence of the singularity at z = 1. However, for small », this diminution is
nonirivial, and allows z = —1 to dominate. All the other points on |z| = |
make contributions that are still smaller than that of z = —1. The reason
that the transition from alternation of signs to positivity is very sharp is that
in the transition zome, the singularity at z=1 begins to dominate very
rapidly. Let us write

“p() = a(n)+(—1)"b(n) +c(n),

where a(#n) is the positive contribution from z = 1, h{n) is the absolute vafue
of the contribution from z = —1, and c(n) is the remainder. Then in the
transition region a(n+1)—a(n) is about 2{b(n+ 1)~h(n)), and is much larger
than c(n), so that once 4*p(n) becomes nonnegative, it stays nonnegative.

The above presents an intuitive explanation of the mechanism that
causes the Good-Gupta phenomenen of alternation followed by abrupt
transition to positivity, This explanation could be developed into a rigorous
proof, using relatively simple analytic methods. The estimates in the transi-
tional region between alternation of signs and positivity would in fact be
fairly simple, using the rough estimates of [7]. However, the need to cover
the range of small values of »n requires more delicate analysis, and so the
proof presented below uses the Rademacher convergent series expansion for
p(m ([1], [2], [3], [8]). The explanation above presents an intuitive picture
of what is happening which is not obvious from the proof below, in which
the analytic behavior of the generating function shows up only indirectly in
the form of the Rademacher expansion (3.3).

3. Detaiied proef. We first use a very simple argument to show that for
k large, 4* p(n) alternates in sign for n up to about k/2.

ProrosiTion 3.1. For any ee(0, 107°) there is a k() such that if
kzki(e) and 0 € n < (1/2~¢)k, then :

(—1)" 4 p(n) > 0.

Proof. Note that in the range 0< n < (1/2—8)k,

; ._])j(nij)p(j)'

— 1y 4% p(

Now, if 0 <n,

k—n+j+1 _ k—n+l

k k -1 — i —
o)) =
n—j/ \n—j—1 n—j n

By the Hardy-Ramanujan approximation (1.1), we see that

pli+)/p(H<l+e for j=

=1+e.

2mg(g).
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Hence, for every my > m,, we have

31) v L2 i
n_j)p(j) = m;ml {(ﬂ_"lm)p@

since each term is positive.
To deal with the remaining sum, we note that

2my -1 ko
()G e

L

> (-1

J=2my

m)—(n_;,_])pwm—i-l)} >0

)p(ﬂ () mz

£2m ~1 and n< (1/2—2)k,

(0 =T (urow

(the constant in the O-notation depending on m, and &), so

2my—1 - 2my—1
z, (—w( )() = 2

The infinite sum (2.1) for F{z) does not vanish on the segment [ —(1/2—¢), 0]
because 1t has the convergent infinite product (2.2) in which all the terms
are nonzero, and therefore for some § = é () > 0, we must have F(z) = for
ze[-(1/2—¢), 0]. Since the partial sums of the infinite sum in (2.1) converge
to F(z) uniformly on compact subsets of the unit disk, there is some m,
such that for all m = 2m,—1, and all ze[—{1/2—¢g), 0],

>t

j=0

Now for 0 <

(32) (—1y (Z) P+ 00K,

m

_Z p(j) e = §/2.

=0
We now select m; = max(m,, m;), so that m,; depends on ¢ alone, and
discover from (3.2) that for k =k, (&),

2"’11 1

) (—1)1'(,'{) PO

i=0

= 8/4,

which proves the proposition. w
We next consider slightly larger values of n. First we recall the Radema-
cher convergent series expansion for p(s)([1], [2], [3]. [8]). As before, we let

C=n(3V? A, =(n—1/24)2.
Then, for any n> 1,

() m”z; (1;  sinh(Cm™' A,)),
n

(3-3) pln Tt21/ g’
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where the A, (n) satisfy

(3.4 Ajm=1 and Ay(n)=(-1) for nx=1,

(3.5 14, m <m forall m,nzl.

(The A, {(n) are known explicitly in terms of Dedekind sums ([1], [2], [3],
073 (81

We define. for mon= 1,
d NP
(3.6) Foln) = m”"'zn-(/".; Yginh(Cm ™ ' A4)),

and f,,(0) =0, and we let

(3.7) R, = is A fu(n)s
so that
{3.8) p(m ="' 272 (1) () + R,
Lemma 3.2. For all n =1,
- (39) IR, <3 faln)
enidd
{3.10 IR, < 10f5(n).

Proof The estimates (3.9) and (3.10) can be verified numerically for
1 <0 < 50 by computing p{n), f;(m), and fy{n). (Tables of values of p(n) are
contained in [1], [7], for example, or they can be computed using the
recurrences in [17, [31, [7].) For 1 > 50, we use the estimate ([3], pp. 191-192)

1

A1) [l € 2C2 271 1CA, /124257 Fsinh(CA,/4)}

5

Eu[‘\ﬁa

together with the explicit formulas for f3(n) and f,(n) to prove (3.9) and
(3.10). =

The estimate (3.9) is tight only for very small n, while the constant 10 in
{(3.10) could easily be decreased with slightly more careful work.

We next investigate A*p(n) for ranges of n not covered by Prop-
osition 3.1.

Proposition 3.3. There are constants ¢y, ko, and ¢ >0 such that if
k= k,, then the following estimates hold:

{a) For 2k/5<n< k-2,

(3.11) LA, () < ¢ 2 (")

n
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(b) For k—1<n=<k+1,

(3.12) [A%fy ()] < ey kS exp(e, kK373,
(c}) For k+2<n,
(3.13) [ f )] € e n ¥ 0exple, V).

(d) For (1/2—e)k <n<k/2,

. 23 sk
kg <
(314 <5 ()
Proof. From the proof of Rademacher’s convergent series (3.3) (see [2],
p. 109, for example) we find that

(3.15) £y m = % [t exple+pa2 1™ ") dr,
= h

where

(3.16) x=m"26"¥, o=,

f is any constant with 8 > 0, and {$) denotes the straight line from §—ico to
B +ico. Therefore, if

(3.17) izle < 1,
then
(3.18) Y filmzt = [ exp(i-3/(240) Y. 2" dr
n=1 T 14} n=1
=2 s LBy _dt
T 2mi (ﬁ[}r exp (H— 24¢ ) t—ze’
and so '
(3.19) Gylz) = Y =" d*f,(n)
n=1
w(l—z2) @ -, ( 23w dt
- 2zexp [t+ 28 |
2mi (E[) ' epiiT 24t } 1 —zet"

The expansion (3.18) has been obtained only under the assumption (3.17), but
the integral on the right-hand side of (3.18) is analytic in all of C \[e™ 8, ao)
(ie., the entire complex plane with a slit along the positive real axis from
e "8 to infinity removed). Thus (3.19) gives an analytic continuation of g, (z)
to the domain C\[L, =0), provided that when = is real, z€(0, 1), we choose
fim —/log-. :
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We now use (3.19) to obtain bounds for 4%f;{n). If Re(z) <1, [z
2 1/100, we choose f§ = 1000, and then for Re(f) = f we have

(2
zexp 241
LRSS A I

1wze? S 6

for some constant ¢, > 0. Therefore, for some ¢y >0,
{3.20) |Gy (2)] < e3]1~z*

holds for all z with Refz) <1, |1—z| = 1/100,
Suppose next that Re(z) <1, 0 <[1—z| < 1/100. In this case we let w
= 1—Re(z) and § = 2y/w. Then |2/ = 1—w, || < &7,

1—ze"| = (1—w)e™? -1 = w/10,

and so
(3.21) 16 < 1 ~2l exp(2/w).

We now use the estimates (3.20) and (3.21) to bound 4*f, (n). We have

1 d
(322 85, = 3516 s

where S is any simple closed curve around the origin in the domain
C\[1, o). We will select a radius r > 0 later. Given r, we choose S to consist
of §,, that portion of the circle [z] = r that lies to the left of the line Re(z)
=1-—(2p/m!? (which might be all of that circle) together with S,. the
straight line segment formed by the intersection of the disk |z| < r and the
line Re(z) =1-—(2y/m"? when there is such an intersection. By (3.20), we
find that

1 dz

(L+r)
E&S_‘; Gk(z) st 1

ke n'2 1007 % r " exp ((2yn)'?).

E

On the other hand, by (3.21) we find that when §, exists,
i -zt
iy, e 142l-

z
k(z);_m < cogn'Zexp((2yn)'?) |
52

Hence we conclude that for any r >0,
(3:23) |45, ()] < oy (L+rFr "+ e n2 10075 r " exp ((2yn)V3)

(2yn~ ! o2 i
(L=2(2y/m Y3+ 2p/n+ v D2 7

+egnZexp((2yn)*?) |
0
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where _
0 i r<1—(2ym)"?
24 = ’
324 o {(r2 20y 2y s 12y

For 2k/S < n< k—2, we now select r = nf(k—r). We have for k suffi-
ciently large and for 0 < v < o,

O R - R i
(1—-2(2’))1/1*1)”2-*-2}!/11-}-1)2)("4' 1372 = (1 _2(27;11‘1)”2+2y/n+w2)"'+ 1)/2
(I.z_ 1)&/2
=T

so that
(325 144, ()] < o (L+nfr ey on'3 (2 = D2 r "exp((2ym)'V?)

k
<o (L4Fr " < clzk”z( )

/)

For k—1 < n<k+1, we select r = k and obtain from (3.23) the bound
(kZ_ l)kfz

kn+ 1

(3.26) {44 f, () < eq3 KFT7 ey k¥ exp((29K)7)

< cys k¥ exp((2yk)'?).

Finally, for k+1 <n, we let r — cc and obtain, for e = 1—2(2yn 112
+ 2L
= (2yn~ L4 p?yHE

|45 f; ()] < cy6 n'f? exp((2’yn)”2] E[ (1_2(2}”1“ 1)”2+2)J/n+1)2)t"+ 1y2 dv.

Now the integral on the right side above is (for large kand nzk+2)

- p— 1110 (an 1[5)1(/2 dv+ Uf dv .

R AT L i A (R TCT AR ST A
o0 u—lIZ -

gzlc],luknoexp(cﬂ n112)+ j‘ du

s (1-2(2m” N2 gyt 1-hy2
< 2 n~¥%xp(e, n' P +(1 —2(2yn‘1)1’2+n"’1"5)_9'_ e
and this yields the estimate
(3.27) |45 F, ()] < e15 1740 exp (40 7).

To complete the proof of the proposition, we censder (1/2—4)k
<n<k/2, where ee(0, 10719 will be selected later. We use the same
contour of integration as before, with r = nf{k —n), except thut we let

(3.28) S, = {ze8: |z+r k7

3 — Acta Arithmetica t. XLIN.J
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Then, by using estimates similar to those developed earlier, but bounding
|1—z| on §\8; more carefully, we obtain

1 Gy (2) ‘
— d
{3.29) 2Tffsx'£3 ki 4E
< ey r” " max |1 —z[F+cyy n2(rF = 12 r Texp((2ym) ).

2e8\83

Now for ze8\S;, and k sufficiently large,

11—z < (14+r) (1 =k7%3/10),
and so for k large,
1 G
(3.30) ] :ﬁ)dz < cpp {1+ r "exp(— k'),
i sisy 2

We next estimate the integral over S, by the saddle point method. Using
(3.19) and interchanging orders of integration, we obtain

1 Gel2) e ( 23y
3.31). — 7 = I3 ex r+—~ dt-gin, z,t
331 2‘n:isj3 2 (L P\ITog jAtg(m 2. 1),
where .
z(1—2)* dz
g(n 21 211:1 j [mze® 271

Making the change of variable z= —ré¥, —0,<¢
~3 1 kY3 ag k— oo, we find that

(_l)nm1r1~n %0 (1+rei6)k
2 8o L+ref+on

We now select f =100, say. Then y/t is bounded for all t on the line from
B —ioo to f+ico, and 1+ rexp(i@+v/t) is bounded away from 0. Furthermore,

o ir rg?
1+re” (1+r)exp(1 rﬁ —————2(1+ ||)>

where the constant in the O-term is independent of r.
1—107° < r<1) Next krl+r) =rf, so

(3.34)

< 6y, where 0,

(3.32) gin, z, f) = gm0 g

(3.33)
(Recall that

g(n, z, 1)
: rk@? 5
Tt o~ 2y 0K )"'"‘9)
.. I B 1+rezﬁ+y,’:
—(_1)n—lrlhn(i+r)k+1 1-{-0()‘{_”3)
- Sk 1+ret®

dt
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and therefore

e (t+23y>
=1 ,l-n k+1 Xp EYR
(335) T P S G M Sy D R .
/ ank ZTCl " 1 =+ re""’
+ O k™31 +r)erm).
Let
23y
exp t-i-—z—‘i?
- 5/2
(3.36) B =5 10—

Then h(r) is a continuous function of r for 0 <r <2, say, and - we will
evaluate 2(r) for r < 1 but close to 1. Consider first r > 1. Then we have
{using the usual Bessel function expansions that come up in Rademacher’s

proof)
(2
ex -
A"

hi=5- 1t re’{14r 1e™¥h g

337
( ) 21 g

2 gy

t*mexp(rJr—)Z( 1yn=tyme il gy

f 1)m 1 —m

m=1

S (=1 o () 1D
m=1

J't 512 exp (£ —(m—23/24) y/t) dt

il

S (=t (Sin(??m)

S —COS ) '
==y L (""‘))

m

where 4, = 2y*/2 (m—23/24)"/%, Now

™ e " sin ()
im(m—23/24)

(3.38) i =

m= 1000

12 23\73"7
< m——
<375 5)

<—1—- T u 3 du
== 2,y1[2

=y~ 12908712 < 0.025.
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On the other hand, for some ve[m, m+1]

P mcos () ™ 'cos(mey) _ d r7"cos(n,)
m-%—?§ m+§1;g du u— %_% =
_cos{n,) Psin(y,) +""(logr)cos(n,)
rd 377
-8 (v ) v—3%

so for re(l, 1410719,

@ (=1 teos(n)| & { 1 yU o Mlogr
G | 2 TTTE S e -1 - 1)‘“ 31
oL du [=4] ,})1,'2 a vZu
= + | = dut{logr
498 (2“)2 4[ (2 }3/2 & }46[8 2

£ (.042.

Therefore for re(l, 1+10719,
h{ry=="'*y"1(4+B),

where
' o sin(#n,,
-3 = - ; ( U )—cos(nm)) = 1.415972....
m=1 m-— m
by direct caleulation, and |B| < 0.042+0.025<007. Hence for

re(l, 1410719,

(3.40) 046 < h(r) <051,

Since h{r) is continuous for 0 <r < 2, we must have

(341) [hir)] €06 for l-e<gr<1/2
if £ <1071 is small enough.

We now combine all the above estimates to obtain the claims of the
proposition, valid for ¢; and k large enough and e small enough. =

We now proceed to the proof of the theorem. We select an ¢ given by
Proposition 3.3. Then, applying Proposition 3.1 with this value of &, we see
that (—1)"4*pm)>0 for all n, O0<n<(1/2—8)k and all k=k;
= max(k, (g), k).

icm
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Next, for k= ky and (1/2—e)k < n < k/2, we have
" ok
(42 Capapm = 3 (-1 .)pu)
j=0 n—j

- (")+(— i)t 12 AR (n)

2 “Zz( B+ TR,
By Lemma 3.2, each term in the n-term sum above is > 0, while by (3.14),

o k
272 Aty <3 (),

Therefore (~1)"4* p(n) > 0 in this range also.
Consider now k/?. < n< k-2 In this range, in view of Lemma 3.2,
suffices to show that

(3.43)

n k )
G=73 ( ,)fz(])
j=1=)
satisfies |G| > 3|4*f, (). However, by (3.11) we have 3{4f, (n)] < ;32" On
the other hand, if J=Ln—k/2+1] then for k sufficiently large,

J kM < T+ 2%,

( k .)2 10u~1k—1,'22k’
n-J

and so

2 10—t g
(3.44) Gz sz (J+LkY4 ) = 2Xexp (1071 CkY®),
which gives the desired result for k > ks > ks. The same lower bound for G
holds also for k—1 < n <k and so by (3.12) we obtain the resuit of the
theorem for that range also if k = ks = k4.
Next, consider n 3> k-+1. By Lemma 3.2, to obtain (— 1)"A*p(n) > 0 it

suffices to show that if
H= ¥ ()

then H satisfies H > 3|4%f, (n)|. However, f;(m} =

(n—)

=103 for all m= 1, so

k X
H>103Y ("): 1073 2%,

=0
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and by (3.12) and (3.13), we have (—1)"A*p(m >0 for all »n with
k+1<n<1073c; 2 k% (logk)?, provided k > ks = kg. ‘

Before proceeding to consider the range n > 10 2cy?k%(logk)’, we
make the following general observation. If f(x) is a C* [1/2, o) function,
say, then for x > 3/2,

(3.49) =10~ (=D = | [0
More gencrally, for x > k+1/2,

(3.46) #FG)= ] 10—,
where g

(347) Xe(t) = 1% ... %y, (F)

is the k-fold convolution of the characteristic function of the umit interval,

0 1, 0k,
b= 0, otherwise.

The formula (3.46) reduces to (3.45) for k = 1. For higher values, it is easily
proved by induction. If we assume that (3.46) holds for k—1 2 1, then (since
(Ag)y = 4g’)

AP = [ (A di= [ (4 @)
x—1 x-1
e [t ]I e (=)
x—1 172
=T Mdu | =
1/2 x—1

= T 19 ) (x—)

172

which proves (3.46) for k.

All that we will need to know about the ¥, () is that x,{t) = 0, y. () =0
for t <0 and t >k, and

(3.48) T e (tydt =1

~ To deal with the remaining range, n > 1077 ¢ 2k*(logk)?, we need to
investigate the derivatives of f;(x) more precisely than before. Let g(y)
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= {,(y+1/24), so that f{"(x) = g"(x—1/24). We consider r*logr < y. Then

o 2 CH YDy e
“12giph (CyHY)) = § S it
dy,-+g W ( ¥ )! j;o (2_]'*"1)!

(349) ") =

where
(2 =2z(z—1) ... (2—m+1}.

Let a; denote the jth term in the sum in (3.49). By locking at the ratio
a;./a;. we sec that the maximum occurs for j = J+0(1), where

(350 J =Ly )2
and that for m = j—J, |m| < J3%,
a.;

; B , Czy mm|—l{( _hw)(l zh )}ml
o = Fou 1/3))[2(2J+3)(J—r)J H A\ s

m2(J —r/2)
— -1/2 _
=(1+0( ))exp( e,
while

ﬂj s O(J—IIIJ).
-JzJ50%

Therefore we conclude that for y >r?logr, r =2,
(35 g7 (y) = (=) 4, (140 (579,
where the constant implied by the O-notation is independent of y 2emd r, and
J =J(y,r} is given by (3.50). Furthermore, if in fact y > (r+1)*log(r+1),
then ‘

Iy, r+1)=J (p, 1l =0,
and theyefore

(3.52) griy = g—;lg"‘ WI+0(~H9)

- zflzg(ﬂ(y)(l+O(y“”6+ry‘”z))‘
vV .

Also, _
b+, N=d (v, 7 = O(D),
so for 0Kt <,

(3.53) g (y+0 = g (10 (7M.
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We first show that if ne(0, 1072) is given, then for
10 2 er 2k (logh)* < n < (1—mo6n~ 2 k% (logk)?,

we have

(3.54) FO(m) < (140 (k119 25, (n— ki ~100)
and that for (1+n)6n 2k*(logk)* < n

(335 (= K) > (140 (k™ US)) 24, () #1000

We consider only (3.55) in detail. Suppose therefore that n=(0, 1072} is given,
and we have

{3.56) = (1+n)6n" 2 k* (logk)*,

where we can take k very large.
We define J by (3.50) with r =k, y =n—4k—1/24. Then
J=3Cn'?+3k+ok) as k- o
with » satisfying (3.56), and

1

Fn—k) 2 ay 207 C (2D Mg aln—k—1Y 741
BJ Zch2*2JJ—2Je+2.IJk+1”J—k'-—l_T
where
k 1 J-k-1 k
T= (1—-5“—) 1 (1—55) exp(—caa k (log k)™ ).
n me 1 J
Furthermore,

22 gt = C¥explk+o(k)),
S0

B =k zn 2 n  exp(Cn2 (1 +0(1))
> r M2 7227k Crexp{Cnt 2 (140(1))) as k- x.

which now implies (3.55) (subject to (3.56)) for large enough k.
Given (3.54) and (3.55), it is clear that for k = kg = kg (n) (with kg > ks),

(=04 p(m >0 for. O<n<(l—n6én 2k (logk),
A p(ﬁ} >0 for az(+pén2k2(logk)?
since by (3.46) and the monotonicity of f¥(x) we have

S in—k) < 244, (m) < /P (n),
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while
k

Xhin=R < Y, (1) falnj) < 27,00

=0

e

and by Lemma 3.2,

J < 10' 2k_f3 (H.].

Since this holds for every ne(0, 1077) (with kg depending on #), this shows
that if nylk) exists, then ny(k) ~ 6m~ 2 k?(logk)® as k— .
At this point, to complete the prool of our theorem it only remains to
show that one can choose ne(0, 1072 so small that for k= k; =k, (),
* p(n) will alternate in sign and then become nonnegative and stay nonnega-
tive as n ranges over n; < n<n,, where

n,o=L(1—-mén" 2k (logk)® ], ny=L{1+nén 2k (logk)* L

Let
s= 3, ()=,

Then we know that for any #&(0, 107 %) and k large enough (depending only
on 7)

Afy(ny) < 10738 (n), A4 (na) > 1072 S(ny),

while for any nefn,, n;],
' [4%R,| <n '°8(n).

Now it is easy to see from the explicit definition of f;(n) that it is monotone
imcreasing, and

falnt ) <o o
for large enough n, so that if k is large enouéh and ne[ny, ny], then
n) < S{n+1) < S(E)+CS(n)/3n').
On the other hand, by (3.46),
Ay (n+ )= A5 () = 4 ()

[ F D) s = du = [ D n—k—1),

k-1
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and by (3.46) and (3.53), this last quantity 1s
> 2C (4% f, (m)/(5n'12),

provided k is large enough. It is now easy to conclude the proof of the
theorem. Let N be the least integer > n, such that 4°f (N) = S(N). Then, by
the above discussion,

A5, (n Z ( )|R,, J<Sin

for all n < N, n = ny, so that (—1)*4*p(n) > 0 for n < N. On the other hand,
for n> N, n<ng,

441, Z (JiRecs

so that A* p(n) > 0 for all n > N. Finally, 4% p(N) can only be negative if N is
odd. This completes the proof of the theorem.
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Rational approximation vectors
by

Georce Szekeres (Kensington) and Vera T.-Sos* (Budapest)

To Paul Erdés, for his 75th birthday
1. Introduction. It is well known and an easy consequence of the theory
of continued fractions that the “best” approximations

I/k=Nk18Mdk3 k=11 2139 7akEZ-J N;‘EZ>0

of an irrational f# change sign with each successive approximation, that is
Vi>0=V,. . <0=V.i,>0.

Here ¥, is called best (or closest) if |V <[Nf—
< Ny
Little is known about the analogous problem in higher dimensions. One

a| for all integers 4, N, 0 < N

result by Rogers [3] will be mentioned below. Given f=(8,, ..., B,)e R’ the
best approximation vectors
Vi =N p—ap. @ = (... e 2" NyeZ.o, k=123, .
are characterized by the property that
IN B—all <|INB—a] for all acZ", 0 <N <N,

where ||x|| = max|x;/. For convenience we shall write (for irrational «)
J

o) =a—a, aeZ, |a—al <1/2,
and generally for a«=(ay, ..., a,)
{m}' z(lralgw AR} lanj}

The notation will also be used for rational «, provided that jo—al # 1/2.
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