icm

ACTA ARITHMETICA
XXI (1972}

On reciprocally weighted partitions
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D. H. Iepmer (Berkeley, Calif.)

Dedioated to the memory of Waclaw Sierpinshi

Introduction. Let # be a positive integer and let
{1) Pragtagtagt.. =1 (0<a<a<0S. )

be any partition of » into positive integer parts. We agsign to this parti-
tion the weight

w(P) = (@ tyy...)""

Tf the parts a; ave vestricted to a set S of positive integers and if we add
the weights of all the partitions of n into parts talen from 8§ we obtain

2) W(8) = Dlw(P),

a rational number we call informally the weighted number of partitions
of n into parts belonging to 8. If we require that the parts in (1) be distinet
we obtain, in lieu of (2) a smaller sum, which we denote by W, (), called
the weighted number of partitions of n into digtinet parts belonging to 8.

Tor exawple if 8 is unrestricted and if n = 6 we have eleven parti-
tions.

P w(P) p w(P)

6 1/6 1414143 1/8

S 145 1B 24942 1/8

244 1/8 1412420 14

14+14+4 1/4 14141142 1/2

33 1/9 14141414141 1

14243 1/6
Hence _ _

581 , 11 1 1 79
We(8) and Wi(8) =—=+— -+ -+ =75

= 180
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Tf we multiply W, (8) and Wa(8), by n! we obtain two non-negative
integers
A8 =n! W (8), Ai8) =n!Wi(8).
That these are indeed integers follows from the fact that every term w (P)
becomes an integer when multiplied by »!. In fact even

n! 1w (P)
T a1 (ag—1)1 .
is an integer since it is a voultinomial coefficient.
We adopt the convention
| Ao(8) = A7(8) =

Generating functions. If we oxpand the following products inte
power series we see that 4 and 4" are generated by

alayt ..,

(3) Plo) = B, 8) = [[Q—a™m)™ = ¥ A, (8)a"fnt,
’ : ’ mes pE]

(.4) @) = F (2, 8) = H 1+ a"/m) = vfl:; Qafnl.
mes 'n.=0

The integers 4, and 4; may be computed recursively thus avoiding
the generation of all the corresponding partitions of # in terms of which
they are definedl. To this effect we have

TusosEM 1. Define I'(S) = I, and T5(8) = I'' by

- 1 :
Ty=I¢=0, I,=nl} 8™  Ii=a (-0,
d|n o EEY
b e

where the swms extend over oll those divisors of m which belong to S.
- Then, symbolically,

Ay = A+ and - nd,
. In other words, _ .
Q .
== Z .An-—k (;z) [‘}” %A: E A;m % (.”b) ]‘
k=1 . fowr,

Proof. To prove the first of these conclusions we take the logarithmic
derivative of F'(x), thus

mF’ an n
= Tt .
2 1= m 2 Z - Z 2 g T
oo

n=0 med =l

Z St = SeEnge,
k=1

mr=L
meS

= (A*p I
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Multiplying by #({#) and identilying coefficients of 4" on both sides gives

nd,mt = Y A, yf[(k)(n—T)!]

k=0
or

ZI‘E (k) w—-f T (‘A"I_F)n'

Te=0

The formula nd) = (A*+I“*)” is proved in the same way using F*(z).
CoroLrAwryY, I, and Iy ave integers.
Procf. By Theorem 1

fi—1
T, =nd,— 3 I[}) A
i

Hence, by complete inductién, T, is an integer since its predeceszors
are. Similar reasoning applies to I';.

Simple Ymit theorems, Table I gives the first fen values of the six
functions 4, 4% I, I™, W, W* in the unrestricted case, i.e., when S is
the set of &11 posﬂ:we integers.

Table I )
Ed Iy Ay W, Wnin Fyol A% W
1 1 1 1.60000  1.00000 1 1 1.00000
2 4 3 1.50000 JS1B000 0 1 50000
3 12 11 1.83333 H1111 12 ] .83333
4 60 56 2.33333 58333 —12 14 .58338
5 240 324 2.70000 54000 240 74 81667
6 1860 2324  3.22778 63796 — 60 474 65833
7 10080 18332  3.63730 61961 10080 3114 61786
8 05760 187644  4.15536 B1042 -~ 16120 24240 .60119
9 766080 1674264  4.61382 H1285 766080 219456 B0476
10 8210160 18615432  5.12991 51299 — 498960 2231280 .61488

Tnspection of this small table of W leads one to guess that W
tends to some limit. This iz confirmed by

TeoREM 2. The weighted number of partitions of n into distindt
parts tends to ¢77 az n — oo, That is

lin W, =677 = .56145948 ...,

R0

where y is Euler's constant.
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Proof. With § the set of all positive integers let

= Dbt = 1—yat 4 bt — ot et ...

n=0

n
W= Agint = by

Je=a 0

G (@) = (1~o) T (@)
go that

Then, by (4),

log@* () = log (1 —a)+ Z og (142" n)

n=1
1 o 2 1)”* T (-0
— > — = — ——— o .
dimd L mn
=1 n n=1 m=1 ’."l’b’r’b neal e ’

This series converges for z = 1 and

oo

- § S5 i S )-3)

=il

N
PR
wlim{lo 14+ N)— Iing == y.
N—oo g( % / I
Hence '
N
~? s (1) = lim b, = lim W5
¢ ( ) N0 g " N-»oo N

which proves the theorem.
Turther inspection of Table T suggests that W, /n also tends to a limit.
This is confirmed by
THROREM 3. The weighted mumber of wnrestricted partitions of n s
asymptotic to e ¥ n. That is
W, /n = e,

ot
'Before proving this theorem it is convenient to prove

THBoREM 4. The weighted number of pariitions of n dnte paris > 1
tends to ™% as n -+ co. '

. Proof. Let 8y now be the sot of all integers =
Pz, 8,), then

G () = ( — )P (2) =

2 and let K {z) mesn

80 that

W, (8) = Ay (Sa)int = Do

icm

On reciprocally weighted partitions 383

Then by (3)

logG (%) = log (1 — o) ;Z log (1— 5"/n)

f=2
22, > o 2,1 s
= s —_—— —-w-‘-—
M=l =l =l =2 =2

a geries that converges at # = 1.

Hence
N 1 (n 1
log&(1) = —14 Lim Z‘ — = 14 lim 2{ }
N—roo man N-roa
Nn=22 Mm=2 n=32 “ms=l
- W L1
= lim Elo — P—}mhm{lo N_Eﬁ}:_
N—mc{ s g(%“"l ;‘n Nesoo & e 4

Hence

67 = G(1) = lim D', = lim Wy(S1),

N->00 n o N-»c0

which proves Theorem 4. :

To prove Theorem 3 we observe that unrestricted partitions of =
are of two types: .

(2) Those involving the part 1.

(b) Those with all parts > 1.

Those of type (a) correspond uniquely to an unrestricted partition
of m—1 gimply by supressing one unit part. These two partitions have
the same weight. Hence

Wﬂ,_Wﬂ—l = W?I(Sl) .

Therefore
Wi N 1 &
Hm —= = lim — V (W, — W, ) = lim o WR(SI)
N—rpo -4 N—woN pr N-roo N by

By Theorem 4 this average must tend to e, This proves Theorem 3.

Arithmetical progressioms. In order to tveat partitions whose parts
lie in an arithmetieal progression we need two lemmas.

Lovma 1. Let e, = 0-and let f(z) = 3 c, o™ be suoch that for some 2> 0

n=0

lita (1@ f(®) = O.
w-r1—0

'Tkefn

lim n‘l(co-i—cl.—[— veed-0,) = O[T(A).

N OO
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Proof. For A= 1 this is a Tauberian theorem of Hardy ([1], The-
orem 96, p. 155). For a general . we need to ohzerve that a8 ¢ —1-—0

Furthermore

(") =

(n-+A—1)(m+A=2) ... (n-1) ~a* Y.

With these modifications the proof goes through.
Lemuma 2. Ife > 0,

=

' - gfath =1 b—l)/_( b)}
(1 — a)4 - SRR ¥ o SRR N R o s IR |
m}i?—lo(l w) H(l (M’b-l—b) a ¢ { ( + o -{ a

n=1

Proof. Let

o == [ (- 255

Tor typographical simplicity seb

y=a% oa=1la, ba=c¢,
then

oo -

{1 — 2% o (1=} = exp{alog(l—y)t = exp (Z — ) s F[ o™

i 3
e | . flem]

Hence

o) =[] ([ {::) ﬂv“m}

gl

i (1 '35?!0-!-1) {(1 ayﬂ Fed1 eayn-{ e 1)
o+1 Tomdetl _

- av_‘w_m ot 1— oyt —(c'-#l—uvﬂ““)m}
‘ 6+1 - n 1+ - ' .

'1!

f=1

A1 ”_1_) e -]

|_.

n= n=1
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Sinece

we have

Gwy = I(L-+c)e"" o (e +1—ay) x

l [ 221 ﬂ‘+1 ol X y"
X e L
et g~ D e

=1

where

] e g AEEL
Ply) = IY {(1 + iﬂ;_yw_) e—<c+1—ayn+°+1)m}_
N=1

The expression inside the square brackets is gimply

—(L—y")og(1 —y)
and this vanishes ag ¥ tends to 1.
Next we consider
lim P(y).

y—=1—0

The logarithm of the nth factor is

D - e+ 1 — ay™rert log (1+ o+1— ay"""”“)
n He
O (— 1) o4 1w gyt Emym
. - ﬂ.-l--:q' mn™
Let
y = otl—a
and let
N > 2.

Then for n > N

. vl b N . 1{NV
11n1<-—(1+——+—+ J<gm D -5l

Since

385
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converges it follows that logP (y) is analytic for |y < 1, and hence P (y)

tends to
= 4 Jhe —p al
Py = [ [{f12)em) = oo
[+
Hence

lim @) = I(e+1)d @ IyP(L) = ¢ T (e 1)/ (e 1~ a).

-+1—0

Tt remains to obgerve that
Y (l .L.)lfa. . w—lm

w1 (L— )““ -

and to resfore the variables ¢ and & in terms of o and ¢ to obtain the the-
orem.

TaeoreM B. Let 8, denoie the set of all odd numbers. Then for {he
weighted number W, (8,,) of partitions of n into odd parts we have

W, (S) ~ %1/26_??’1: = 6746124V n.

Proof. In Lemma 2 wo put ¢ = 2 and b =1, we find

oo

wz%—t—l el
S L2 11—
w£1£10(1 @) n( 2%“5“'1)

=1

N
13/2) =1 — .

o 2—1]2 6—~W2
/ e’

Since the first factor (1-—=)"" of the generaltox- of W, (8,) is missing from
the above product we have

111m(1 mmZW (S)a" = ]/Eﬁ,w
a—+1--0

el

By Lemma 1 therefore

Z W, (8,) ~ ni ]/ gf; /r(.?,/z') = n**/ 8¢,

.Since W.(8,) is an-increaging function of =

lim W, (8,)n Y% = lim n~%% Z W, (8

N—+o00

]/gg“:.;[rc T
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TrEoREM 6. Let 8, denote the set of all even numbers. Then for the

weighied number W, (8, of partitions of n into even parts we have W, (8,) = 0
if n 4s odd, while

)~ V2 Vi = 1.0596787 Vn
if m 48 even.

Proof.  we put @ = % and b = 0 in Lemma 2 we find

kad 2 —1 S
lim (l—m)”ﬂn(l—- f_) = 27 W21 2) = T

Sl 2% Qg7 °
=l

Hence by Lemma 1 we have

yW(S)wn
2 —
= Z VW, (8,) ~ V2

Only half the terms of this sum are non-zero. So we have an average
of the even ordered terms.

Hence when # is even

- /F (1/2) = nt%¥2e7,

or

VaW,(8,) = V27" as  n— co.

For the general arithmetic progression we have

THEOREM 7. Let a>1 and denote by S,, the set of all positive
integers congruent to b modulo o with 0 < b < a. Then as # — co

1
W 850) ~ {a,l“”“ g F( 1— E) F(—ll)} w't G aln,

Wﬂ(’ga,u) = 0. 'bf ﬁ’r’n.

4] (AS’ ) o~ [Hf lm(f w”’/I i1 -} — r} ,”'1/&
n i, 1 ‘l K .
If b ES 0 and b:;"— ] ’

e S L e

The proof follows the lines of the proofs of Theoremg 5 and 6.

Numerical values. In conclusion we give in Table IT brief numerieal
evidence that the various limits diseussed above as approached at rather
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leisurely rates. The five functions of the following table refer to parti-
tions into distinet parts, parts =1, anrestrieted parts, odd parts and
even parts respectively.

. Table II

n w5 W (81) Wl W (8wl i L’/"”’Vn(g e)
100 HGB786 655790 5421058 LGGO163 1072085
101 66726 .H0bd423 542289 509282 \;

102 566691 555910 542423 B09277 107116
103 066634 5656546 542550 609360 1]

104 ) 566084 LSEG01L 542680 309432 1.072595
Limit 5061459 A01454 6740612 1,05968

561459
The slight irvegularities in these functions are not due bo inacenracy.

They reflect the existence of an asympbotic, or possibly conmvergent,
geries for each entry. :

Reference

[11 6. H. Havdy, Divergent Series, Oxford 1049,

Received on 17, 8 1971 {206)
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Some diophantine equations solvable by identities

by

A, MaAROowWsKL (Warszawa)

Dedieated to the memory
of my teacher Waclaw Sierpiisli

1. W, Sierpidski in many of his papers investigated the triangular
numbers £, = +n(ni+1) and tetrahedral numbers T, = tn(n+1)(n+2),

From the identity given by A. Gérardin [1] we get immediately
the following identity '

(275 —1 = (9n* —3a) + (90— 1)* = (9n*+3n)’ —(9n® + 1),

‘With # odd and positive the last identity prdvides infinitely many integer
solutions of the equation

(2e+17—1 = (2y)°+(22)° = (2u)’ —(2v)
which ig equivalent to
1, = 2 = ut—t.

Thus there exist infinitely many friangulsr numbers which are simulta-
neously representable as sums and differences of two positive cubes.

‘We have the identity 3aT,., == t2_;. Since there exist infinitely
many tetrahedral numbers divisible by 3: T, == 3¢ we infer that there
exist infinitely many triangular numbers which are produets of two tetra-
hedral pumbers > 1.

2. The numbers @ = 6*prin®+ 659" nf,

y = Gprind— 65pM
z = 6°p'r'n" satisfy the equation .

p(@ 41 =) = rl@—y).

This answers & question posed by A. Oppenheim in [37.

3. L.J. Mordell [2] investigated the equation z2* = a® -+ by - e,
Tt may be noticed that the equation

iy

2 = am21a+1+byzk+1+c



