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replacing 2' and ¢(e) bounded on each product of finite angular sectors,
Finally in each case

&2 P () i ()]
iz bounded on every product of finife angular sectors. This provey Theo-
rem III.
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A general class of sieve generated sequences
by
M. C. WunprrLIicE* (De Kalb, II)

There have been a number of recent investigations (see hibliography)
into the density of seqnences of integers which are generated by a sieve
process. The sieve was always set up to be stochastically similar to the
sieve of Hratosthenes, but with the exception of Buschman’s [2] recent
formulation of the sieve, none of the sieves were stated with enough
generality to include the sieve of Eratosthenes. Thus, the theorems which
were obtained were only of intrinsic interest, and did not make any real
progress toward a new sieve proof of the prime nmumber theorem if such
a proof is indeed possible. In this paper, the author describes a sieve
process in a very general context so that the prime number gieve as well
2% the lucky number type sieves can be described. Conditions are then
obtained which imply that the sequence generated is prime-like, that is,
the sequence {a,} satisfies-a, ~ nlogn.

1. The sieve process. The sieve process which generates the sequence
A = {a,} can be completely described by a mested sequence A > 4A®
= A® ... where each A® is itself a sequence of positive integers which
we will denote by {af"}. We will take 4™ to be the sequence of all integers
greater than 1 so that al’ == k-+1. 4 = {a,} is then the set theoretic
intersection of the 4%, For each n =1, we will let the sequence {3, (%)}
deseribe the elements eliminated at the nth sieving in the following way:
Let

a'.(si;?(l) < af(s:l,b)(a) < a;éz)(s} < ...
be the elements contained in 4™ but not in A™+'). Thus the sequences

{8.(%)} completely determine the sieve process.
We will furthermore assume the following conditions:

- (a) 8, (1) > n.
(b) For each n, s, (k) ~ ha,.

* The research for this paper was supported in part by N8F grant GIP-7331
at the Btate University of New York at Buffalo. )
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The firgt property assures us that at the sth sieving, a,, v defineg
(and is, in fact, o{%). The second property is tho one that is characteristic
of the sieve of Hratosthenes. Indecd when poving with gr,, 1/p, ol the
elements left are sieved oud.

The lucky mumber sieves which Briggs studied in [L] are casily
described within the framework of this definition. Using his notation,

8;(k) = g~ (T L)ty -4

where #; is an integer satistying 15w <l ¢, Tho sequencen discussed
in [6] are obtained by lefting

sp(h) =+ (-1 t-ry(k)  where L olr(k) Ty

The gieve of Hratosthencs s maore difficult to desemibo. Hinee wll oven
numbers > 2 are eliminated at the fixst sieving, & (k) == 1. [-2k When
sieving with 3, we still have the simple formulation s, (k) -« 2 -3k For
j>2 however, the deseription of (k) becomes more difficull, {s,(%)}
={10,13, 20, 23, 30, 33, ...}, and s(k) consista of all the nunbers 445
where n ranges over all positive integers congruent to 12, 19, 23, 30, 34,
41, 53, and 56 module 56, To describe s; (%), wo neod 48 congruonoeo eLmHLB
and to de%(*rlbe/sﬁ(lo) we need 480. In general, fio deﬂmboj a0k}, wo noed

to enumerate H pa— 1) congruence clagges modulo p, H (ps--1). The

Pwall
anthor enumerated these up Lo J == 7.

2. A formala for o, . From pagt experienee, thore seeans to he two
properties of the s{n) which determine the asxymptotic characler of a,.
One is the size of s, {n) or the size of the gap betwoen a, and the fivh
element gieved ont, and the other ip the uniformily of the dieving heyond
the gap. In general, the larger the gap, the less nniform the sleving need
be beyond the gap to obtain prime-like sequences. To measure these
two properties, we will first apsume that an integer-valued function a{r)
exigts which is increasing and for which 8,(1) z2 a(n) 2 1. Clearly «(#) = n.
We next measure the nniformity of the sieving beyond a(n) by letting

\ e (4 'H
(o) = Mpla)= 2 (m)
i

where ¥, (@) is the number of elomonts of the sequence {&, (%)} which do
not exceed = TFollowing Buschman’s [2] terminology, we cull &,(m) the
discrepancy fumelion. In an ideally uniform. sieve (as in Briggs [L]) the
fonetion d,(w) will “sawtooth?’ between 0 and 1 as @ incroates heyond
a{n). For o< a(n), the discrepency doos ]1(}1‘ mesgure unifermity but
its valne can he computed exactly.

icm
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21. Levma. If < a(n), then

a(n)
Oy,

Hi

Proof. N,(z) = 0.

We now set up the nsual recursive method. Let K, (») be the number
of elements of A™ which do not exceed @. Then we write for all # and
all »

B, (x)— a(n}

{1) By () = Rﬂ(w)’ﬂNn(Rn(m)) = Fy(2)— ( )””" fsn(Rn (m))

@y,
1 a(n)
=k, (m) (1— a’—n)_ (aﬂ.(Rn (.’B))-— o ).
‘We now iterate, letting
-
and obtain
2y op a(k)
(2) R‘N—i— (@) = on By (@) — ( n )
, ,; o

Now Rn, {ax+1)=mn or n+1, and Ri{a,+1) = ay. Thus by letting
% = a,+1 in {2) we obiain

*y o a(k)
N = Oy Gy En— k;g—k(ék(Rk(ﬂn—]—l))* o )

where &, = 0 or 1. We have proved the following:
2.2, LIEMMA.

{3) Oty = 7+ By (6,4 1)

where

o [ a(k))
W Barn =T —as 32 " (8Bl 1) =

Rzl

where g, = 0 or 1.

(Note: The &, which appears above in the expression for E, can be
easily eliminated by stipulating that s,(k) = 2k or s,(k) = 2k+4-1. This
would remove the possibility that congecutive elements of A are conge-
cutive integers, and 80 R,.;(#,+1) = n. However the existence of the
2, does not cause any difficulty in what follows.)
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1
TR T let . = ﬂf(””;
2.3. TowpoREM. If we let 1), En /n
W (Z I);) } )
&,y = —— e | o |
(5) it .Dﬂ, . A -Dn.
Proof'. From lemma 2.2
s
POV NIV
1 1 1 _
Thog, $inee —— == - = = We have
O gy ap Op 1
) E Dy 5] 11t 1
= iﬁ - o o i Oy, a‘ﬂ O Loe

Bul sinee o, a, = n/D,, the resull follows.

3. The small gap. We will first restrict owr attention to the case
where the gap and the discrepancy are both small. Assume thovefore in
what follows that

(7 a(k) == &
and
(8) By (@) = O(1).

Thiz of courge rules out the sieve of Jratosthenos, hut we will relumm
to the “large gap” later in the paper.

3.1. Lovma. B (o) = O(n) for oll .

Proof. Thiz follows direcily from the definition of @, ().

3.2. LemmA, There exists a constant ¢, for which

@y > Gmlogn.
Proof. Let 4 and B be two positive constanty such that
alky I

{9) —An << 2‘ . (cS;,,(Zﬂ;n(m)}m - b-) - 8y, < B,

Rl & thy

From 2.2, we can write

arty == k- Ly (a4 1) < (B | 1)
and

icm
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and summing from 2 to #»,

Thus for # sufficiently large,

(10) %—>(B

Let 0 = [A-+1]. Then
Cn < Ry (6 +1)
and using (2) we have
Cn = .Rn+l(a0n+1) = O'ﬂa-c'n.""“‘Eﬂ(aCn"l'l) < (B+1)a.on']10gn-l—ll%-
And so

Oop > lo ¢
¥ 3 .
Cn Li0gn BL1

Now let ¢ be any integer such that 1 < # << C. Then

{11) On—i< Rn+1(660n_t+ 1) =a, ton_t— By (a‘Cn—t)
< (B-1)ag,_/logn+.4An
g0 that
0—4
(12) 7 Agnt > (B+1) nlogn— tlogn.

(11) and (12) prove the lemma for n sufficiently large and the constant
can be adjusted to prove it for all n.

We would like fo have a method which would for specific examples
of a sieve of this nature, enable us to determine whether &, /n is asymptotic
to a constant and if so, determine what that constant is. From 2.3, the

“gequence would be prime-like if the constant is not —1. To do this we

will introduce some additional terminology. B, and hence a, is completely
determined by n—1 sievings. We shall divide them into two eategories
in the following way. Since the sequence k- a; it increasing and the se-
quence R;(a,) is non-increasing, a unigue t — () exists for which {4,
< By(e,) and t-- 140 > Big(a,). We will call the first ¢ sievings low
order sievings and the remainder n—1—t sievings high order sievings.
Of course, most of the numbers less than a, are eliminated by the low
order sievings, but we shall prove that the number of elements less than
#t, eliminated by high order sievings is asymptotic to B,. Let gi.(n) = n
be the number of elements less than a, eliminated at the kth sieving.
In view of some previous terminology, nx = Nu(Bx(t)).
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3.3. LunMa. If & > 1, o = O(1), or the wumbor of elerments loss than,
ay, eliminated by high ovder sicvings is bounded.

Proof. Olearly, n; is loss than the number of 4 for which s, (5) -~ k|- ap
which can be written as Ni(k1 az), so letling @, == k[ @, we have
mal®
i e

bt %
— Aru.l kih T ] ?“Jh i 1

al-‘. (mk) = Nﬁw(mlu)""
and the lemma follows from (8).
3.4. Lemwma. There ewisls a constant ¢y such Ut

t(m) < egnflogn.
Proof. From 3.8, Ly(m,) == O(n), Thus
{40, t1opt < b oy < eg .
3.5, Trmomer. B, 48 asymptolic to the number aof clomonts less than
o, eliminated by high order sievings.
Proof. Write

egn/logn

19  B= ) i;-%(fsk(lﬂk(an--|-1))-—--3“) :

Ay
— ]

. !
+ >1 AL ((31,“(]5,‘,(@”,.[“1))M ..;_,.)

i on )
Tnlt sty e 10K 7L o k

N (M(,n,)m L (-t 0)— & )

= o(n)+ Z ————— 7 e -

Rk Gyt {log 0 7 . s

Loy (@ -1 1) )
[ IRt A I
e

=
i
e
-
=
ES
=
=

o{n)-+

Rk oot flogn

Since & = e;nflogn and a; > ejflogd, it in easy to verily thot for % in
this range

1
(14) 0“"1 [ ] (] oS- ) e 1 - ‘ -0} ( 1) N
O faake1 %
Thus
| 1 o Rl | L
@) Bo=om+(t+ow)| D' mm- D bl | ))
Tl Oyt Lol Wl gl v O
It is easy Go verify that
Y Rp(a-L
(16) . ok (;J ) == 0 (1)
Te

Nl cotifloga
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since for & in thiz range, Ey(a,+1) = O(n) and a; > e¢;klogk. Also it is
clear that
Tegnflog n]
mel) = o(n)
k=tt1
since for each % in that range, nz(n) is bounded.
Thus,

B, = (1+0(1)) Z "i’k(”)

kel
which is the theorem.
‘We can apply this theorem to the following example. We let s, (%)
= 2+ % and for » £ 1, we let {s,(%k)} be the sequence

m+l,24+2, 048, . .,0t+M,nt+M40,, n+M+2a,, ...}

where M is any fixed positive integer. In other words, at every sieving
but the first, wo eliminate the M elements immediately following a, and
then every a,th element thereafter. (The exception made for the first
gieving was for technical reasons which facilitated machine computation
of these numbers,) If M = 1, we know from a theorem of W, H. Briggs [1]
that the sequence is prime-like. In fact

ay = nlogn—l—g (loglogn)*— (y+log2)nloglogn-+ ¢(nloglogn).

However, when A is large, the sequences generated appear to be very
thin. For example, for M = 10, the sequence begins like {2, 3, 25, 59, ...}
Of course one would expect this fendency to be countered by the fact
that the sieving numbers are so large. Figure 1 illustrates this point.
For several values of M, the ratio a,/nlogn is graphed for »n ranging
between 3 and 100. Table 1 illustrates the behavior of =, () which is the
number of elements in the sequence which do nof exeeed ». If the se-
quence is prime-like, maz () ~ zfloga (7).

We can apply the previous theorem to show that these sequences
are all prime-like. §(2) clearly lies between M-—¢ and M —1—e where
¢ = Qas kb -> oo, Also, for all but at most one high order sieving, M ele-
ments less than a, are eliminated, so as » becomes large, #, tends to M, .
Thus D, 18 asymptotic to & congtant and so from 2.3, @, ~ nlogn.

(*) The computing for this paper was done on the IBM 7044 computer at the
State University of New York at Buffalo. Funds for computing time were supplied
by NSF grant GP-5875 and NIH grant FR-00126. The methods used to compute
the sequences are completely described in [7]. Bit representation was used with two
levels of tagging. The machine time for each program was roughly one hour.
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48
an
nlogn
72 r
7t
w0 =10
g
&
7
& r M=5
5
4
PR et
2 L
f L
0 20 0 40 0 60 70 & 90 0 »
Tig. 1
TABLE I
M=1 M =2 M=0>5 M o= 10
7y () 7ty () g (@) 7w ()
; X e e P my { R
“ ™ (2) zflog® = (@) xflog s () zflogm 710 (7] efloga
100,000 6,812 | .784 8,751 .662 3,884 | 4471 2,738 | 3152
200,000 | 12,968 L7891 11,040 874 7,659 | 461 4,880 298
300,000 | 18,918 | .795 |16,183| .680 |11,163| .4602 | 7,255 | .3049
400,000 | 24,748 | .798 21,239 | .6849 | 14,721 4747 8,600 | 3097
500,000 30,4847 .800 26,214 | 6879 | 18,248 | .478% |11,942 | .3134
600,000 | 36,162 | .802 31,144 | 6006 | 21,749 | .4822 | 14,268 | .3168
700,000 | 41,760 .802 36,043 | .6930 | 25,230 | 4850 | 16,584 3188
800,000 | 47,323 B04 40,888 1 .6047 | 28,602 | .4874 | 18,802 3200
900,000 152,842 | .805 45,711 6963 | 32,141 | 4806 | 21,104 | HR28
1,000,000 | 58,336 .80G 50,509 6978 | 35,6731 4014 | 283,400 D245
1,100,000 | 63,789 .807 55,282 1 6091 | 38,000 | .4931 25,780 | 3200
1,200,000 | 69,228 .808 60,031 G602 | 42,408 4047 28,0048 RT3

This approach ig admiﬁtedly not widely applicable. Tt would be

more desirable to obtain conditions on the sieving sequoncoes s, (k) which
imply that the sieved sequence a is prime-like. We tind that guch a rosuls
can be obtained by imposing conditions on the distribution of the rationul
numbers nfs,(k) in the unit interval. The precise statement reads as
Tollows: : : ‘ . ‘
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3.6. THEOREM. Let N, (z) count the number of sp(j), k< m,j =1, 2, ...
Sfor which kfsy(j) = o where 0 < v < 1, If

N ()

p(@) = lim
A—pod

exists and satisfies the Lipschite condition in (0, 1), then D, is asymplotic
to o eonstant and hence {a,} 48 prime-like.

Proof. The proof uses techniques similar to those which the author
uged in [9] where the sieve was much more special. We begin by defining
a sequence of polygonal functions P,(z),» =1,2,... and for # con-
tained in a subset of (0, 1), Let o, = kjn for k=1, 2, ooy e Liet Py (2r)
= Ry{a,)/n whenever oy, > i(n) and if #; < 2 << @;,_,, we let

Po(2) = Pu{m)+ (2i—2) [Po(@5-1) — Prlz) I /0.

Sinee the total number of sievings eliminated by high order sievings
I8 By(ay)—n and in view of 3.5, we ean prove our theorem by showing
that the polygonal functions P,{®} converge point-wise to a unigue
function f(#) as n — oo. (Actually we need point-wise convergence only
for @ = 0.) Bince #(n) = o(n), the domain of definition of P,(z) tends
to [0,1] a8 » — oo. )

We achieve this by defining upper and lower bounds for P, (z) which
themselves are polygonal functions. For each m = 1,2, ..., let 4,(1)
= Bp(1) = 1. Tiet o = kj{m and assuming that d,(x) and B,(z) is
defined for 1 <4< n,

_ 1 i—1
Ap(®iy) = Am(a:i)_i_g 4 (W)’

1 %
B iq) = B, (a2 _— :
i) w0 + m 'u(mBm(a?i))
where g = max{ge(m); kb >1txn),m =1,2,...}. (See 3.3.) As before we
define the functions linearly between consecutive ;.
It is not diffieult to show that

B (7)) € By (®) < Apm () < Arlm)

for all n, m so that B,{z) << A, {2) for any x[0,1]. We complete the

proof of the theorem by first showing that A;,(®) and By{z) do bound

Py(w) and then showing that lim (4, (#)— B ()} = 0. We need a fun-
M0

damental lemana.

Lumma. Suppose 0 < o<y <1 ond that o u and v ewist such that
w < Py (y) < v for sufficiently lorge n. Then if 5 > 0, there ewists an N (&)

Acta Arithmetica XVIL 4
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such that
(a) Pule) > ut(y—x)p (%—) &

=
R _[_3
o4 By — @)

(b) Pp(e) < 'tuumm(

for all n > N{s).

Proof. For the purposes of this lemma, let 8;(w) be the counting
function of the sieving sequence s;(n) and lot ye, == Si.i (R (ay).
If we consider the set of integers & for which = < &/n < ¥, we clearly
have for any such &,

F—1 I3 »
P, ( ‘*") = Py (’"") + x4 .
7

ki 1
Thus

(17)  Pa(#) m___pn(y)_[_;-b_ O o, Y)

Vit 0(0) > bt ot e 0 ()
T k)l

where we are letting

o, y) = 2 VEn-

B Je[REY
Now

k—1
Yin = Sk—l (—Rk—l(wn)) = Sk—l (W-P'n ("‘i‘:r'g"'““))

and since (k—1)/n << y, we have

ﬂp,b( ku]_) L B=DPuy)  (b—1)u
y y

for » large. So,
w(k—1
Vin = S.'c:_]_( ( - "‘)‘)
Y
and

18 o) = D Se(Bas(an)

T kjngy
u(k—1) B w(l~--1)
> Y5, (_W mmmmmmm ) ~ Vs, ( )
.]tzzn; Y ;,é"{;c o ¥

From our definition of u{z), we see that

¥,
p(@) =lim 228 g L gk(.fi)_
Ni—ca n [ o w

Thus taking limits of (18) as # — oo,

hﬁgﬁ“n(my W) > nly—o)u(yfu)

A general class of sicve generated sequences hl

which in view of (17) proves part (a). To prove part (b), we note that

(k—1}/n > z--o(n) and write

nPn( B—1 ) - (7.»,—1;13”(93)

+o(n).

Now P, () < -5y -z} s0 we have

%Pn(k—l)< (k—l)(%—;ﬁ(ymw))

+o(n).

The rest of the proof goes exactly likke part (a).

We now can verify that By (2) and 4,,(») form lower and upper
bounds for P,(#) in the following sense: If & is any positive number and
m any positive integer, there exists an N (g, m) such that for all n > N (s, m)

Bu(@)—& < Po(a) < Am(x) e

To verify this we let @ == k/#m where k = 1, 2, ..., m and assume that for
any ¢ > 0, n can be chosen sufficiently large so that

Pn (wk) << -A-'m (mk) - Eg

We will show that the same assertion can be made for . ;. Applying
the argument m times establizshes the asgertion. Apply the upper bound
of the previous lemma with @ == @ _y, ¥ = &%, ¥ = Aw{we)+&. Thns
for any & > 0, there exists N(g') such that
s

A (22 -+ [

EF—1
MAnz(wk)+,8+ &g
Now for arbitrary &._, > 0, we ean choose &, and & sufficiently smali
and n sufficiently large so that

- 1
Po{wp_1) < A (@r)+ 6+ %—M( )—{—s'

1
“'“-'-Am(mk)‘E“*ﬂ( )“1‘535‘]’6'-
it

1 E—1 )
Py lag_ ) < Aplon) + — 4 ( d ) + &x_1 ::"--A-m(mk—l)_“l‘ E—1-

m :"';;‘;Am(wk) '+' ﬁ
(We have made use of the uniform continuity of x.) Since the upper
Lound holds on the m, it holds for all # and the assertion is verified. The
lower hound is established in & similar manner.

All that remains is to show that

L ( Ay, () — By, ()] == 0.

i
Lot 8, (k) = Ay (@) — B (2;) and choose & to he an arbitrary positive
number. Let A = Kej(¢* —1) where K is the Lipschitz constant for p.
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Choose m sufficiently large so that by virtue of uniform continuity of Jy
whenever
le—uy| << fim, |ple)—py) <i.

Lefting § < m, we have
- o 1 b S DY B N T
bui =)= dm(l) = m [M( m(-“lm-(mﬁ'H' 13)) M( By () )J
N A
mAm (m, +f i g, (1) Ay, () # By, ()
Ak L A )
mAm(foj A, () # Al | H,,L A
' () ] ]

[ A (25— Bm(m;))} < —:";!« (A4 If(ﬁ,,,,(j)).

(We unsed the fact that each of the A,,(z), Bis) = 1.) We now finish
the proof exactly as in [9].

; I A

dul(j—1) < Br (J )(1‘{‘"““)“{“ JOE)

n/ WI‘/

A SV
b (i— 1)+~H<(&::(JH—E)(H—;%)<(am(j).+ j{)az\m

Tterating the above yields

_’a“) e —g1)pm < _Z x

Frd e,

)
5m j—1 +"‘<(5m 1)+
(j—1) 7 1)+ =

For arbitrary j,

o,
6m(j)<}f (6 ——1) ==

It is ensy to verify that the example cited on page 47 swtistics
the hypothesis of the theorem. In faet, N, () will tend to Mwn for
all >0 as » becomes large so that u(a ) == M. Jb ig eany, howaver,

to describe a sieve for which 3.6 does not apply as stated. Let {s,(k)}
be the sequence

2n+1,2042, ..., 20+ M, n-+M-ay,, n-M - 20}
where M iz a fixed positive integer. Here,

My 0 < 12,

pl(w) =
‘ 0; 1/2< »

A general class of steve generaled sequences h3

and it iIs certainly not continumous. However, all the constructions in
the proof of Theorem. 3.6 used local properties of x4 and if there are a finite
nnmber of discontinuities, the constructions can he earried out piecewise.
The following theorem. is thus true:

3.7. TuxoreM., If uiz) is continuous and sotisfies the Lipschite con-
dition on all but a finite number of points in (0, 1), then {a,} is prime-like.

It should be peinted out that hypotheses of 3.6 are sufficiently strong
to imply that D, is agympfotic to a constant. Yetf, 2.3 implies that a prime-
like sequence can be obtained when [, is a slowly ogcillating funection
(such o8 sin(loglogloga)). It would be interesting to know how the uni-
formity condition in the hypothesis of 3.0 could be weakened to allow
such a slowly oscillating D,.. It would also be of interest and probably
easier to construct = set of gieving sequences which wounld generate
a prime-like {a,} and an oscillating D,.

4. The large gap. In this section, we will study the effect on the sieve
when «(k) iz of a higher order of magnitude than k. This bas already
been done by Wunderlich and Bugchman [3] for a less genéral class of
sieves and recently Buschman [2] has applied these same methods to
a clags of sleves which included the sieve of Eratosthenes. Since the theo-
rems in this section arve analogs of these previous theorems, the proofs
will be abbreviated or even omitted.

‘We will first obtain a Cebyshev-like theorem. To obtain the theorem,
we must impose reasonable upper bounds on e(k), s(1), and d&(z). We
will restrict our attention to the sieves for which &, ({x) is bounded for
fixed % (this includes the sieve of Eratosthenes) which permits us to malke
the following definition.

4.1. DEFINITION. A = 8up dx(x).
x

4.2. TamoreM. Supnose {az; 1is geaiemted by a sieve which satisfies
the following condilions:
(a) For each k > 1 and for some &> 0,

4] < (3—e)(a(k)— a(k—1)).

(b) T'here ewists a constant r such that

for all k.

(c) There ewists a positive number T such thai
8, (1) < a{n)”.

Then there emist two constanls ¢, and ¢, such that

eynlogn < a, < cynlogn  for oll o,
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Remark. Although no lower hound on «(k) is given, the theorem.

is of no use for a(k) =k, for then |4z < 4, a condition imporsible to
fulfill.
Proof. We first define g(n) = g to be the largest k sueh that

8 (1) << Bp(atn+1).
Thus Fy(e,-+1) = n, so ¢ satisfies
8 (1) < m <8 (1),
We will now iterate in (2) not from 1 to #, hut from L to ¢, obtaining

a
Wi O’Q ap
B = Oy By Sel By (1)) — ==
rale 7 Q4T 6! = — Al (s
25, ( (Ri(a,+1)) o) = By (m).

We now proceed to establish upper and lower bounds on F,(n) =
First, o
a

(19) 2 ?g Sf By (- 1)))’
<Z|Aa\<(%~a Z( a(k)— a(k— 1)) - 4,
=
o < (%hs)a('QH-Al <{3—e)sg(1)+ 4y < (—e)n-+ 4.
%Sl)m’ Only < Gy, = 0+ By < (3~ s)n-Fo(m) < In.

1
R
O O Oy 2 7 IOg%

To hound E, from below, we write -

a
| ~ K
By(a,+1) = ]; - (a,b(R,b(an+1))-—-~-) > e (b )R A, — 2“’

e
Fores ] e

Cleaxly a; > (2— 8%
vy kTh 11(S e for any & > 0 for k > N, since 2 is the fivst fleving

Bylay+1) > — (§— s)n— 4,— ﬁ Qj;ﬁ
9 .o B "
—8 g (3—e)n /Jr*--(é-— )

> ~(}

A general class of sieve generaled segquences 55

5o by choosing & sufficiently small (in view of &) we can obtain

Byla,+1) > —n(l—eg) for some g.

Now since loga{n)/logn < r and s,(1) < al, we obtain

log s, (1)
logn

for some comnsgtant K. Thus we can easily show that

logn
< R(1 1)).

Togg (14o(1)

Thus
a?
= Oytty— By (n) < 310gin +n{l—e)

which yields
{(21) ‘ a, > e;nlogn.

‘We can establish an upper bound on @, by first obtaining by straight-
forward calculation

T

1
I ”(1»~—)>03>0
% gegnr ok

by using (21) and the fact that log ¢, flogn <C B, Thus
1 1 1 1 ( 1 ) 1 4
n— By(0,+1)

Oy O Oglty  On/0q s seam | W
‘And by summing the above, we obtain

1

— —1 < ¢logn

%)

and by multiplying the above by (20) we get
ap << Camlogm.

We will now strengthen the hypotheses of the previous theorem in
order to imply that the generated sequence is prime-like. If we Tequire
(4] = o{a(k)—a(k—1)} we see from (19) that

B {a,+1) = o(n).
We will also require
sn(1) ~ a(n) ~ o(a,)" (loga,)’

and we are in a position to apply the iteration procedure described in
detail in [3]). We will only state the theorem.



56 M. ¢G. Wunderlich im

4.3. THEOREM. Suppose {ap} s gemerated by a sieve which satisfies
the following conditions:

(a) For each &> 1, 4y = ola(k)— a(k—1)).

(D) alk) ~ sp(1) ~ cla)(loga,)’ for L<a<e and ¢ > 0.

Then ap ~ klogh.

It should be pointed out that the theorem above cannot yield o proof
of the prime number theorem sinece we know that the first number elim-
inated at the kth sieving iy (pp)?. This fact together with the second
condition in the above theorem immediately implies the prime number
theorem. It would be interesting to know whether Ay = o{w(k)— a{f~- JI,))
holds for the prime sieve. Since a(k) = §(ap)*/log(ar) and @y = klogk,
we are asking whether 4z = o(kloghk). This question has already boon
posed by Buschman [2] and some computational evidence made by the
author seems to indicate that the condition holds.
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On a question related to diephantine approximation
by

Dowarp L. Gorpsmrre (Cambridge)

1. Introduction. In an extension of a result of Cassels [1], Daveupor.t‘
[4] proved the following theorem ovn simultaneous diophantine approxi-
mation. Tet AP, ..., A (g =1,...,7) be r sets of k real numbers. Then
there exist continnum-many sets of real numbers ay, ..., oz such that
(1.1) max ||(a; 4 Ay wf® > Cju

Lgfsk
for every integer u > 0,andforg =1, ..., 7, where Cis a positive consgtant
depending on r and &, and || represents the distance from x %o the nearest
integer. -
As was also noted in [4], relation (1.1) has & simple geometnc;‘al
interpretation. Let L; (g=1,...,7) be r lines through the origin .in
(k+1)-dimensional space defined by the equations

(1.2) g—ilmy =0 (j=1,..., k),
and suppose that we surround each of these lines IL; by a tube
(1.3) o — D ag) < min(l, lz,l"*) (G =1,..., ).

Then relation (1.1) implies that there exist continuum-many lattices
with no point {except the origin 0} in any of the tubes. In fact, we may
define the lattices by

(1.4) U g = gy, OHE gy = gy (f =140 k)

Now by calling upon a standard transference principle (seg, j?OI"
example, [2], chapter 5, section 2), Davenport showed that (1.1) is equiv-
alent to

(18) . I j (o )| > O amaz )™,
f=1

for some congbant ¢; > 0, and all sets of & inftegers w,, ..., U, not all 0.
Relation (1.5) has a geometric interpretation dual to that of (1.1). Namely,



