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ACTA ARITHMETICA
XV (1969)

Sums involving Farey fractions
by

J. LeeNER and M. NEwMAN (College Park, Md.)

1. Let F, be the Farey series of order #,n > 1. Then F, consists
of all fractions %[k arranged in ascending order, where 0 <& <%k < n,
(h, k) = 1. For example, the Farey series of order 5 is
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Let h/k be a term of F,, h/k < 1. Then the term that follows h/k
in F, will be denoted by '[k’. The set of pairs (¥, %’), where h/k runs
over all terms of F, less than 1, will be denoted by @,. Thus @, consists
of the pairs

(1,5), (5,4), (,3), (3,5), (5,2), (2,5), (5,3), (3,4), (4,5), (5,1).
H. Gupta has proved in his paper [1] that
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r=l 1<k<r
kr)y=1
This sum is connected with the Farey fractions. In fact we show in what
follows that
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(5.k")eQy, r=1 1<k<r
(k) =1

This identity reduces a sum involving Farey fractions to one which does
not. More generally we show in Section 2 that for an arbitrary function f,

n
) D fh ) =f, )+ > 3 {f(k, 1) +5lr, B)—f(k, r—B)}.
(k,1")eQy, =2 1<k<r
(kr)=1
In Section 3 we discuss the agymptotic behaviour of the left member
of (3) as » — oo, for certain functions f. We show for example that the
sum in (2) is asymptotic to ¢/n, where ¢ = 6log2/x?; and that it is asym-
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ptotic to ¢, zn**#** for f= K"k, where «, f are non-negative and c,,
is a certain constant which is determined precisely. From the latter
result we can determine bounds for the sum when f is any polynomial
in &, k'; and even its exact asymptotic behaviour, in many cases. Finally,
some additional results of a similar nature are quoted without proof.
We remark parenthetically that the sum in (2) admits an interesting
interpretation. Let || = min({z}, 1— {z}) represent the distance flom @
to its nearest integer, and consider the n functions

Y =lrall, 1<r<n.

Then these functions vanish in [0, 1] if and only if @ belongs to I,; and
if h/k, h'[k’ are consecutive terms of F,, the triangle whose sides are
the lines ¥ = 0,y = kr—h, and y = —k'2+ k' has area 1/2kk'(k-+%').
Thus the sum in (2) represents the total area of all such triangles. The
confignration is of interest in questions of diophantine approximation.

2. Assume from now on that # >1. It is known that h/k, ' [k’
are consecutive terms of F, if and only if

<h<k<n, 0K <<k<n, wE<Wk

A further result is that k% >mn, so that

W l—hk' = 1.

nt+tl<E+E < .m—l

(For these and other results on Farey fractions, see [2].)
Thus the conditions

(4) 0<a,b<<n, (a,b)=1, n+l<atbg2n—1,

are certainly necessary for (a, b) to belong to @,. But they are also suf-

ficient. Indeed, we can find integers ¢, d such that

O0<e<a—1, 1<d<)h, ad—be=1.
This easily implies that ¢/a, d/b are consecutive terms of I, so that

((l b EQn

Thus we have proved

Lmwvta 1. @, consists of all pairs (a,b) which satisfy (4).

This lemma leads directly to the proof of the transformation equation
(3). Define

(5) _ Ba= D flk, ¥),

(Y0,

where f is an arbitrary function. Then we have

i=m®
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THEOREM 1. Let n >1. Then

8y =f1, 1)+ > D {f(k, 1) +5(r, B)—F(k, r—E)}.
=32 Ix\
7 (1 i
Proof. Observe that @, consists of the coprime pairs (z, y) lying in
or on the triangle bounded by the lines w4y =r+1, z =7r, y = r.
Hence the points of @, not in Q,_, are the coprime pairs (2, ¥) on the line
segments z =7, 0 <3 s y=r, 0<os<r; and the points of @,_;
not in @, are the coprime pairs (x,y) on the line segment z+4y = r,
0 <2, y <r. This implies that

(6) 8= 8y = D {flk, )+

1<k
{er)=1

vy B)—f(k, r— B}

The result now follows by summation on 7.
Another result of this kind (but not as useful as the previous one) is

n

) Sn=§‘ D fi, k).
T=1 1 r4-1<l:<n

(

3. For our firgt application of Theorem 1 we turn to the problem
treated by Gupta, and choose f(k, k') = 1/kk'(k+Fk'). Since

1 3 h
Y

kk
(5,1)eQy, v (k. l)eQy

and n4+1<k+% <2n—1, it follows that
! <8, < L
an—1 " T a41’
where
(®) 8 . —
n = ) I
o k' (k+ k')

Thus 8, = 0(1/n). We shall prove
THEOREM 2. Suppose that S, is defined by (8). Then

n 6log2 logn)
iy - L0
(9) 5 ="0; ( "
Consequently,
6log2
li S’n - -
(10) wfi 3 2
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Proof. From (6) we obtain

Sr‘ AS"'r--l =

1<hsr
(k,ry=1

1 (1 2 1 |’ 1 .
=Z__ A SR — X
S,k otk ok 42 2r-To)
(G2 ; (Ir'r) -1

Since f(1,1) = }, Theorem 1 implies that
PPEE
r=1 1<hk<<r 7 (T ~|— k)

(k,1)=1

{ 1 1 1 }
Tor (b=-7) + "h(r+k)  k(r—k)r

1 3
=1~

Sinee 8, = 0(1/n),
It follows that

=2A,,

>0
where
1
.Ar = '—2————.
2 r¥(r+k)
(k,r)=1
We now transform A,. Since
1 k) =1,
#(d)_[, (k1) =1,
aitem 0, otherwise,
we have
4, = —ZM(L),
k=1 daj(r.k) 7 (7+ ﬂ)
Replacing & by hd, we find that
4, = ”(,@.‘__,;
dir 1<herid ri(r+hd)
and replacing d by 7/d, we find that
4= Y dutrjd)
T S UH' d)
Now
1
— =1 =
) rd 0g2+0(d).

this yields Gupta’s result (1) when % — co.

h‘l"I@
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Hence
dp(r)d 1 1
4,= %0 )—{log2+0(g)} - 0(72 Iu(d)l)‘
air ajr
Now
”. o0 . 1
(11) D=3 uonf5]-[5])
r=1 djr r=1 8=1
= St [’7] (nlogn)
and = ’
= 3n?
(12) o) = +0(nlogn).

r=1

(See [2], for example, for formula (12).)
Using these formulas it follows by partial summation that

Sk Swen=of),

r>n
o (7 logn
LY e A
73 nr? n2

These now yield (9), and (10) is an immediate consequence of (9). This
completes the proof of the theorem.
Before going on to the second apphcamon of Theorem 1, we state
two other lemmas.
LeMmA 2. Suppose that a = 0. Then
6 n

ZT‘P T at2

follows directly from (12) by partial summation.

and that

>

a2

(13) +0(n*logn).

Proof. Lemma 2

LeMMA 3. Suppose that a,b > 0. Then
C TA+a){14b) o0 atb
A b — at+bil 0 Dy
(14) ;r (n—r) P-————————(z_lr o) n +0(n*™")

Proof. Lemma 3 follows by comparing the sum with

fny“ (1+“)T(1+b) ﬂd+b+1
; T@+a+b)

via the Buler -Maclaurin summation formula.

dr—

’
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The restriction that @, b >0 in these lemmas can of course be

weakened.
We now go on to our second application of Theorem 1. We choose

f(k, k') = k*k'?, where a, 8 > 0. Then (6) becomes

(15) 8~ 8y, = Z‘ 7 4 1 — B (r— 1)},
1<y
(k=1
where now
(16) 8, = Z 1K
(1) S,

We find as before that

3 =" oS ),

1<h<sr ar
(k=1
and
kﬂ—— +1%0 lu(d
2= rrolgma)
(F,r)=1

’Also, Lemma 3 implies that

S = ) TOAY, - it il T )
l;(‘m %) 1<2’k< de('r ) ,u(d)_z d ,u(d)k(d-—k)
(}fr):; <k di(kr) ar 1<k<rd
. T(A+a)l(14p) (r\™F* r\t’
- Dol o)
; MO\ Trerern @) TO\a)
TA+ A+ avp i atin( W
Ty O 0(# k(@)
Putting these together we get that
an 8= 8y = KoprPop(r) 4940 3 ju(@)),
an
where
1 1 i+
KHop= + - A+e 1+ﬂ .
1+a 14§ 2+a+ﬁ

Now if we sum (17) over » and use (11) and Lemma 2, we geb

TrEOREM 3. Suppose that a, f =0, and that S, is defined by (16).

Then
(18) 8y = Copn®t A4 O (n* 1 logn),
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where
SN T L )]
T2 0l p | TBrath

As an example of the above, we have

—  82—3xn
Vil = — "+ O(n®logn).
(bie0, 127
Finally we mention some special results which are derivable in the
same way:

ko3 1 o
(19) D =5 Dlet—5 = 5 +Onlogn),
(k,k')e@n r=1

1 6

(20) ! — = — (21og2—1)n-+0(logn)?
(k. )eQn, + !

o 11—121og2
(21) T &= -3?0{’, 2) n3+ 0 (ntlogn).

(*1")eQp
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