The notations
(Erdélyi et al. 1981, p. 7; Jeffrey 2000, p. 111) and (Gradshteyn and Ryzhik 2000, p. xxix)
are sometimes used in place of . Note that the cotangent is not in as widespread use in
Europe as are ,
, and , although it does appear explicitly in various German and
Russian handbooks (e.g., Gradshteyn and 2000, p. 28). Interestingly, is treated on par with the other trigonometric functions
in most tabulations (Gellert et al. 1989, p. 222; Gradshteyn and Ryzhik
2000, p. 28), while
and are sometimes not (Gradshteyn and
Ryzhik 2000, p. 28).
An important identity connecting the cotangent with the cosecant
is given by
(4)
The cotangent has smallest real fixed point such
at 0.8603335890... (OEIS A069855; Bertrand
1865, p. 285).
Abramowitz, M. and Stegun, I. A. (Eds.). "Circular Functions." §4.3 in Handbook
of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
New York: Dover, pp. 71-79, 1972.Bertrand, J. Exercise II in Traité
d'algbre, Vols. 1-2, 4th ed. Paris, France: Librairie de L. Hachette
et Cie, p. 285, 1865.Beyer, W. H. CRC
Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 215,
1987.Erdélyi, A.; Magnus, W.; Oberhettinger, F.; and Tricomi,
F. G. Higher
Transcendental Functions, Vol. 1. New York: Krieger, p. 6, 1981.Gellert,
W.; Gottwald, S.; Hellwich, M.; Kästner, H.; and Künstner, H. (Eds.). VNR
Concise Encyclopedia of Mathematics, 2nd ed. New York: Van Nostrand Reinhold,
1989.Glaisher, J. W. L. "On Certain Numerical Products
in which the Exponents Depend Upon the Numbers." Messenger Math.23,
145-175, 1893.Gradshteyn, I. S. and Ryzhik, I. M. Tables
of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press,
2000.Jeffrey, A. "Trigonometric Identities." §2.4 in
Handbook
of Mathematical Formulas and Integrals, 2nd ed. Orlando, FL: Academic Press,
pp. 111-117, 2000.Sloane, N. J. A. Sequences A002431/M0124,
A036278, A069855,
and A089929 in "The On-Line Encyclopedia
of Integer Sequences."Spanier, J. and Oldham, K. B. "The
Tangent
and Cotangent
Functions." Ch. 34 in An
Atlas of Functions. Washington, DC: Hemisphere, pp. 319-330, 1987.Tropfke,
J. Teil IB, §2. "Die Begriffe von Tangens und Kotangens eines Winkels."
In Geschichte der Elementar-Mathematik in systematischer Darstellung mit besonderer
Berücksichtigung der Fachwörter, fünfter Band, zweite aufl. Berlin
and Leipzig, Germany: de Gruyter, pp. 23-28, 1923.Zwillinger, D.
(Ed.). "Trigonometric or Circular Functions." §6.1 in CRC
Standard Mathematical Tables and Formulae. Boca Raton, FL: CRC Press, pp. 452-460,
1995.