The first few abundant numbers are 12, 18, 20, 24, 30, 36, ... (OEIS A005101).
Every positive integer
with
is abundant. Any multiple of a perfect number or
an abundant number is also abundant. Prime numbers are not abundant. Every number
greater than 20161 can be expressed as a sum of two abundant numbers.
There are only 21 abundant numbers less than 100, and they are all even.
The first odd abundant number is
(2)
That 945 is abundant can be seen by computing
(3)
Define the density function
(4)
(correcting the expression in Finch 2003, p. 126) for a positivereal number where gives the cardinal number
of the set ,
then Davenport (1933) proved that exists and is continuous for all , and Erdős (1934) gave a simplified proof (Finch 2003).
The special case
then gives the asymptotic density of abundant numbers,
(5)
The following table summarizes improvements in bounds on the constant over time.
Behrend, F. "Über numeri abundantes." Sitzungsber. Preuss. Akad. Wiss., Phys.-Math. Kl., No. 21/23, 322-328, 1932.Behrend,
F. "Über numeri abundantes. II." Sitzungsber. Preuss. Akad. Wiss.,
Phys.-Math. Kl., No. 6, 280-293, 1933.Davenport, H. "Über
numeri abundantes." Sitzungsber. Preuss. Akad. Wiss., Phys.-Math. Kl.,
No. 6, 830-837, 1933.Deléglise, M. "Bounds for the
Density of Abundant Integers." Exp. Math.7, 137-143, 1998.Dickson,
L. E. History
of the Theory of Numbers, Vol. 1: Divisibility and Primality. New York:
Dover, pp. 3-33, 2005.Erdős, P. "On the Density of the
Abundant Numbers." J. London Math. Soc.9, 278-282, 1934.Finch,
S. R. "Abundant Numbers Density Constant." §2.11 in Mathematical
Constants. Cambridge, England: Cambridge University Press, pp. 126-127,
2003.Guy, R. K. Unsolved
Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 45-46,
1994.Kobayashi, M. "On the Density of Abundant Numbers." Ph.D.
thesis. Hanover, NH: Dartmouth College, 2010.Singh, S. Fermat's
Enigma: The Epic Quest to Solve the World's Greatest Mathematical Problem.
New York: Walker, pp. 11 and 13, 1997.Sloane, N. J. A.
Sequence A005101/M4825 in "The On-Line
Encyclopedia of Integer Sequences."Souissi, M. Un Texte Manuscrit
d'Ibn Al-Bannā' Al-Marrakusi sur les Nombres Parfaits, Abondants, Deficients,
et Amiables. Karachi, Pakistan: Hamdard Nat. Found., 1975.Wall,
C. R. "Density Bounds for the Sum of Divisors Function." In The
Theory of Arithmetic Functions: Proceedings of the Conference at Western Michigan
University, April 29-May 1, 1971. (Ed. A. A. Gioia and D. L. Goldsmith).
New York: Springer-Verlag, pp. 283-287, 1971.Wall, C. R.;
Crews, P. L.; and Johnson, D. B. "Density Bounds for the Sum of Divisors
Function." Math. Comput.26, 773-777, 1972.Wall,
C. R.; Crews, P. L.; and Johnson, D. B. "Density Bounds for the
Sum of Divisors Function." Math. Comput.31, 616, 1977.