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COMBINATORIAL IDENTITIES IN DUAL SEQUENCES
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ABSTRACT. In this paper we derive a general combinatorial identity in terms of
polynomials with dual sequences of coefficients. Moreover, combinatorial identities
involving Bernoulli and Euler polynomials are deduced. Also, various other known
identities are obtained as particular cases.

1. INTRODUCTION

Let {ay, }nen be a sequence of complex numbers where N = {0,1,2,---}. We call
the sequence {a’ },en given by

* n A
an—;(Z)( 1)a; (1.1)
the dual sequence of {ay}nen. It is well known that a}* = a, for all n € N. (See,
e.g. |GKP, pp.192-193].) Those self-dual sequences are of particular interest and
were investigated in [S]. The Bernoulli numbers By, By, - are given by By = 1
and >0, ("TH)B; = 0 (n = 1,2,3,--+); since By = —1/2 and Bay41 = 0 for

k = 1,2,--- the sequence {(—1)"B) }nen is self-dual as observed in [S]. Like the
definition of Bernoulli polynomials (see, e.g. [Su]), we introduce

Ap(z) = zn: (?) (—1)a;z"" and A% (z) = Zn: (Z‘) (—1)afz"".  (1.2)

1=0

Obviously A,(0) = (=1)"an, A,(1) = a}, and

Ao =Y (T D 1= 02 = 0 DA,

- 1
1=0

In 1995 M. Kaneko [K] found the following new recursion formula for Bernoulli
numbers:

k
k+1
Z( + )(k‘-i—j—l—l)BkH:O for k=1,2,---.

=0~ 7
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By means of the Volkenborn integral, H. Momiyama [M] got the following symmetric
extension: If k,l € N and k£ + [ > 0, then

k l
=0y (k’ j 1) (L4 +1)Bu + ()Y <l ? 1) (k+j+1)Bps, = 0.

=0

S,

Jj=0

Recently Wu et al. [WSP] proved further that for k,1 € N we have

k l
)Py (’“ . 1) (7 + DByt + ('Y (l . 1) (k4 +1)Buyy (=)

j=0 j=0
= (=D*(k+14+2)(k+1+ 1)tF
(1.3)
Motivated by the above work, we obtain the following general theorem.
Theorem 1.1. Letk,l e Nandx+y+2z=1. Then
k l *

K\ ey A (y) N o A (?)

—1)* ki 2Tyl gl R

o (o ()i
7=0 J=0 (14)

ao(—z )P+

(k+1+1)(FH

Also,
k l
Nk kxk—j (1 le—g* .
S (5)a a0 = -1 > ()t s
and .
S (") e g 0 A0)
l | (1.6)
F 'Y (1) 4 DA 0
=0~/
=(k+1+2) ((—1)k+1Ak+l+1(y) + (—1)l+1AZ+l+1(z)) .
Remark 1.1. (1.5) in the case | = 0 yields that
k k
> (5t = cotapa- - =30 (D)ot as e ) = Ao ),

=0 =0
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Corollary 1.1. Let k be a nonnegative integer. If a} = a,, for all n € N, then

k
B\ vigor qvkeg Akrira(t) ag(2t — 1)1
jZ::o (j)( RS 22k + 1)() (1.7)
and
k
) <k ;r 1> (k+74+ 1)1 = 2" A5 (8) = —2(k + 1) Agepa (¢). (1.8)
=0

If a} = —ay, for alln € N, then

k
> (520 =0 (19)

=0\

and in particular

Xk: (k) (=1)ag4j = 0.

=0\

Proof. To obtain (1.7)—(1.9), we simply take | = k, x =1 -2t and y = z = t in
(1.4)—(1.6). (1.9) in the case t = 0 gives the last identity. O

Example 1.1. Let ug = 0, w3 = 1, and usy1 = aus + bus—q for s = 1,2,---,
where a and b are complex numbers with a? + 4b # 0. It is well known that
up, = (" — ") /(a — B) for all n € N, where a and [ are the two roots of the
equation 2 — ax — b = 0. Observe that

ey -

1=0

(and hence v} = —u, if a = 1). Also,

zn: (T;) (—1)uf (1 —a)""

1=0

_n n\ (@ —1)"— (B8 —1) gy

_i:()(i) ap LT
@—ar—(@F-a" _, B
oA O
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Let k,l € N. Applying (1.4)—(1.6) with z = a, y = 0 and z = 1 — a, we obtain the
following identities:

. !
Jigh—7 Ut DN (_1)i gli et 110
Z() [+j+1 Z(j)( Vo e 110

Jj= j=0

=0

k l
k41 [+1 - .
Z( ) "I+ G+ Dy — Z( : >(—1)Jal Tk + A+ D

j=0 J
= ((=D)" = (=D)")(k + 1+ 2)up 141

Jj=0

In the case | =k, (1.11) yields the following recursion formula:

S (5) 1t us =0

J=0

Theorem 1.1 has the following important application.

Theorem 1.2. Let k and [ be nonnegative integers.
(i) If x +y+ 2 =0 then

k I+j l k+j k+l+1
RO o (e
= \J I+j+1 = \J k+i+1 (k+1+1)(51
(1.12)

k .
—1)’ 2
jz ( ) k+i+1) k+1)(F) (1.13)

(ii)) For n € N let B,,(z) denote the Bernoulli polynomial of degree n. Suppose
that x +y+z=1. Then

In particular,

k l
oy (et iy () Rl - O
=\ l+j+1 = k+ji+1  (k+1+1)(5h
(1.14)
Also

-

I
=

’ Zk: ( ) #* I Biij(y) = (-1) (;)a:l_jBkﬂ(z) (1.15)

j=0 J
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and

k
—1)k jz:% (k j 1) "IN 1+ 5+ 1) By (y)

l ‘ 1.16
(1) B -

=0\ J
=(=1)%(k +1+2) (Brsi41(z +y) — Brri11(y)) -

(iii) The second part remains valid if we replace all the Bernoulli polynomials
in (1.14)-(1.16) by corresponding Euler polynomials defined by 2e*/(e* + 1) =

Zno () /n‘

Proof. (i) Let ap =1 and a; =0 for ¢ = 1,2,3,.... For any n € N we clearly have
al =1, A,(t) =t"and AX(t) =t —-1)". fe+y+2=0,thenz+y+(1+2)=1
and A} (1 + z) = 2", therefore (1.12) follows from (1.4). When | = k, x = —1 and
y=2z=1/2,(1.12) yields (1.13).

(ii) Let a,, = (=1)"B,, for n € N. Then A} (z) = A,(z) = B, (z). Applying The-
orem 1.1 we obtain the identities (1.14)—(1.16). (Note that B,,(1—t) = (—1)"B,(t).)

(iii) By the definition of the Euler polynomials, F, (1 — z) = (—=1)"E, (z) and
Ey(z+y) =>",(1)Ei(z)y™ " for any n € N. Let a, = (—1)"E,(0) for n =
0,1,2,---. Then a, = 37" (1) Ei(0) = En(1) = ay, and A, (z) = A} (2) = E,(x).
So we have part (iii) by Theorem 1.1.

The proof of Theorem 1.2 is now complete. [

Remark 1.2. In the case x =1, y =t and z = —t, (1.16) turns out to be (1.3) since
Bn(1+1t) = B,(t) +nt"1. (1.15) in the case x = 1, and its analogue with respect
to Euler polynomials were recently discovered in [WSP]. When | = k, x =1 — 2t
and y = z = t, (1.14) and (1.16) yield the following interesting identities:

k
i Bryjra(t) (2t —1)%FH1
JZ( ) - k+j+1 202k +1)(%) (117)
k
> (k j 1) (k+j+1)(1—26)" 7By (t) = —2(k + 1) Bags1(t). (1.18)
=0

They remain valid if the Bernoulli polynomials are replaced by corresponding Euler
polynomials.

In the next section we will give more applications of Theorem 1.1. Section 3 will
be devoted to a proof of Theorem 1.1.

2. MORE APPLICATIONS OF THEOREM 1.1

Theorem 2.1. Let {a,}nen be a sequence of complex numbers, and let k,l € N.
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Then we have

k l *
k P Q41 ( ) P Oktjt1 ao
E ‘ _1 J_miT g E 3 J = . 2.1
j:O(J)( [+j+1 = k+j+1 (k+1+1)(8 (2.1)
Also,

é (") 1vans - g (§) v, (22)
and

J

i (k + 1) Y (1454 Dagsj + Z (l i 1) (=17 (k+j+ 1)ajy, 23

=(k+1+2) ((_1)kak+l+1 + (=D'aj i) -

Proof. (2.1)—(2.3) follow from (1.4)—(1.6) in the case z =1l and y =2 =0. O

Ezample 2.1. Let k,l,m € N. The Stirling numbers S(m,n) (n € N) of the
second kind are given by z™ = Y ° S(m,n)(z),, where () = 1 and (x), =
z(x—1)---(x—n+1) forn=1,2,---. Observe that

i (?)(-U%( )4ilS (m, 1) ZS m,i)(n); =n™ for n € N.

i=0
Applying (2.2) we obtain the identity
k

> (Busamsimten =3 (v eim e

=0 =0

Ezample 2.2. For n = 1,2,3,... the nth Bell number b,, expresses the number of
partitions of a set of cardinality n, in addition by = 1. It is well known that

Z (n) (=1)*((=1)'b;) = b1 forn € N.
i
i=0

(See, e.g. [GKP, p.359].) Applying Theorem 2.1 to the sequence {(—1)"b, }nen We
obtain the following three identities for k£, € N.

! i Dktjyo e biyjr1 1
(j)(_l) k+j+1 _(_l)l;(j)l+j+1 ICEREEN GO (25)

MN

j=0 0
"k Ny .
> ()oes =X () b, 26)
=0\ =0\

k

k+1 [+1 iy .
Z( A [EE bwz( D0 Db
)= 7=0

= (k+1+2)(bkri+2 — brtit1)- (2.7)
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Theorem 2.2. Let k,l,m € N. Then we have

k

j;) (f)%(x+l;j+l) (2.8)
o 2 )

"k j(z+?+1) L j<k:i;—%1) _ T
Z (j)(_l) (mfl) +Z (]) (_1) (m—l) - (k—Fl—}—l)(k;l) (2‘9)

k+j

and

SO EO e

Proof. Let a, = (") for n € N. By identity (3.47) of H. W. Gould [G] or (5.24)
of [GKP], we have

" /n (x4 (=nn(, ") ifm=n,
* —1) _ m—n
in ; <Z)( ) ( m ) {0 otherwise.

Applying (2.1) we obtain (2.8).
Let ¢, = (Y) /() for n € N. Then ¢, = (“.¥) /(%) by (7.1) of [G], in fact

n n

(=2 G () - g (50
:(_l)n(n—1;x+y> _ (x;y)

Note that (n + 1)(nil) = x(mgl) for any n € N. So (2.9) and (2.10) follow from
the first two identities in Theorem 2.1. O
3. PROOF OF THEOREM 1.1

Lemma 3.1. Leti,k,l € N. Then
k

> (j) (k jj) ()4 =3 (’;) (Z —;—j)tlﬂ'—i. (3.1)

=0 J=0

<.



8 ZHI-WEI SUN

Proof. Clearly

l

) (l ‘fi—j)tlJrji _ Z <§) (k‘;])(_l)lj(l L gy
:z: <k> (tlj)(i) - zl: (jl.)(—l)” (1 +t2!k+j)(i>
(

i=o \J i=0
i k !
2! t =0 7 =0 J
1 di l k k l
_5-@@ 1+ —1+8)*1+t-1)")=0.

This proves (3.1). O

Proof of Theorem 1.1. Observe that

k ! X
E\ i Aig(y) l A (2)
-1 k $k J J -1 l l—j J
( )Z(Y) I+7+1 ( )Z J k+ji+1
j=0 j=0
k s I+j .
E\ ki ; l+7+1 ; ; :
—(—1 k l+7+1 1 3+1 ; I4+j4+1—(i+1)
(=1, <j>l+j+1(a0y iy i1 )T ey
_7:0 =0
l _ k+j+1 .
AN k+g+1) i
+ (—1 ! ) -1 Ta;tz +j+1-r
( );_%(J)kﬂﬂ ;} ( r (=1)
k41 a
— ; 1 i4+1 Yi+1
cao—f—;c( ) P
where
ko k. yl it
e~y (F)at
=\ I+j+1

! i kHjtl :
AN A k+j+1 .
—1) v AN R
* )Z<)k+j+1 ; ( r >( )"z
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k—j (l +J) ylti—i
S (e 2 (e (e
)

i<r<k4j+1

—j k+] i k+J_Z j—i—(r—1—1
)t a( i )(_1)k+y+1 Z (T_l_i)(—z)kﬂ (r—1—i)

i<r<ktj+l
_(1)E Z:: (j) (k -:J) (o)~ (1 — 2)kHi=i,

Obviously ¢; = 0 when x = 0. If x # 0, then

RO HO o by

j=0 j=0
by Lemma 3.1.
Let us now calculate the value of c¢. Clearly
k ; l ;
k’ ) I+5+1 1 k+j+1 ]
(—Dfe=>" ( .>.1:k_] (Y ( > DT (g et
— \J l+J+1 — E+j+1
j= j=
ko oy L/l ety
=) < .)xk_]/ t’ﬂdt—z (.)(—x)l_J/ 9+ dt
—o \J 0 J 0
ji
T+ l
:/yz (k) k=5 ¢l+7 qg¢ — / Y ( ) )l_jtk+jdt
0 50

T+y T+y x
/ sk(s—a:)lds—/ th(t —z)ldt = —/ s (s — x)lds
T 0 0

:_/1<tx)k(tx_gp) rdt — ( )l+1 k+l+1B(k+1 l+ )
0

where B(k + 1,1+ 1) := fol tF(1 — t)'dt is known to be

Fk+1)T(1+1) E!! 1
Tk+1+2) (k+l+)!  (kti+ 1))
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So we have ¢ = (—2)* 1 /((k +1+1)(%).

In view of the above, (1.4) holds.

If we replace z in (1.4) by 1 — x — y and take partial derivation with respect to
y, then we obtain (1.5) from (1.4). Substituting £+ 1 and [ + 1 for k£ and [ in (1.5)
and taking derivation with respect to y, we then get (1.6).

The proof of Theorem 1.1 is now complete. [J
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