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CONJECTURES ON REPRESENTATIONS
INVOLVING PRIMES

ZHI-WEI SUN

Abstract. We pose 100 new conjectures on representations in-
volving primes or related things, which might interest number the-
orists and stimulate further research. Below are five typical exam-
ples: (i) For any positive integer n, there exists k ∈ {0, . . . , n} such
that n+ k and n+ k2 are both prime. (ii) Each integer n > 1 can
be written as x + y with x, y ∈ {1, 2, 3, . . .} such that x + ny and
x2+ny2 are both prime. (iii) For any rational number r > 0, there

are distinct primes q1, . . . , qk with r =
∑k

j=1 1/(qj −1). (iv) Every
n = 4, 5, . . . can be written as p+ q, where p is a prime with p− 1
and p + 1 both practical, and q is either prime or practical. (v)
Any positive rational number can be written as m/n, where m and
n are positive integers with pm + pn a square (or π(m)π(n) a pos-
itive square), pk is the k-th prime and π(x) is the prime-counting
function.

1. Introduction

Primes have been investigated for over two thousand years. Never-
theless, there are many problems on primes remain open. The famous
Goldbach conjecture (cf. [2] and [14]) states that any even integer n > 2
can be represented as a sum of two primes. Lemoine’s conjecture (see
[10]) asserts that any odd integer n > 6 can be written as p+ 2q with
p and q both prime; this is a refinement of the weak Goldbach conjec-
ture (involving sums of three primes) proved by I. M. Vinogradov [24]
for large odd numbers and confirmed by H. A. Helfgott [9] completely.
Legendre’s conjecture states that for any positive integer n there is a
prime between n2 and (n+1)2. Another well known conjecture of A. de
Polignac asserts that for any positive even number d there are infinitely
many positive integers n with pn+1−pn = d, where pk denotes the k-th
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prime. (This conjecture in the case d = 2 is the famous twin prime con-
jecture; recently Y. Zhang [26] made an important breakthrough along
this line.) Polignac’s conjecture follows from the following well-known
hypothesis due to A. Schinzel.

Schinzel’s Hypothesis. If f1(x), . . . , fk(x) are irreducible polyno-
mials with integer coefficients and positive leading coefficients such
that there is no prime dividing the product f1(q)f2(q)...fk(q) for al-
l q ∈ Z, then there are infinitely many positive integers n such that
f1(n), f2(n), . . . , fk(n) are all primes.

A positive integer n is said to be practical if every m = 1, . . . , n can
be written as the sum of some distinct (positive) divisors of n. In 1954
B. M. Stewart [15] showed that if q1 < · · · < qr are distinct primes and
a1, . . . , ar are positive integers then m = qa11 · · · qarr is practical if and
only if q1 = 2 and

qs+1 − 1 6 σ(qa11 · · · qass ) for all 0 < s < r,

where σ(n) stands for the sum of all divisors of n. The behavior of prac-
tical numbers is quite similar to that of primes. For example, G. Melfi
[12] proved the following Goldbach-type conjecture of M. Margenstern
[11]: Each positive even integer is a sum of two practical numbers, and
there are infinitely many practical numbers m with m − 2 and m + 2
also practical. Recently, A. Weingartner [25] proved that the number
of practical numbers not exceeding x > 2 is asymptotically equivalent
to cx/ log x, where c is a positive constant close to 1; this analog of the
Prime Number Theorem for practical numbers was first conjectured by
Margenstern [11] in 1991.

In the published papers [19, 20, 22, 23] the author posed many con-
jectures on primes. For example, [22] contains 60 problems on com-
binatorial properties of primes many of which depend on some exact
values of the prime-counting function π(x). (π(x) with x > 0 denotes
the number of primes not exceeding x.)

In this paper we present 100 new conjectures on representations in-
volving primes or related things. In particular, we find some surprising
refinements of Goldbach’s conjecture, Lemoine’s conjecture, Legendre’s
conjecture and the twin prime conjecture. The next section contains
25 conjectures, the first of which is a general hypothesis (similar to
Schinzel’s Hypothesis) on representations of integers involving primes,
and the other 24 conjectures are closely related to this general hypoth-
esis. In Section 3 we include 45 conjectures on various other represen-
tation problems for integers. In Section 4 we pose 30 conjectures on
representations of positive rational numbers and related things. For
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numbers of representations related to some conjectures in Sections 2-4,
the reader may consult [16] for certain sequences in the OEIS.

We hope that the 100 conjectures collected here might interest some
number theorists and stimulate further research.

Throughout this paper, we set N = {0, 1, 2, . . .} and Z+ = {1, 2, 3, . . .}.
For a real number x, the fractional part of {x} is given by x−⌊x⌋. For
a ∈ Z and n ∈ Z+, by {a}n we mean the least nonnegative residue of
a modulo n, i.e., {a}n = n{a/n}. For a ∈ Z and n ∈ Z+ with 2 - n,
( a
n
) denotes the Jacobi symbol. As usual, φ stands for Euler’s totient

function.

2. A general hypothesis and related conjectures

Note that Schinzel’s Hypothesis does not imply Goldbach’s conjec-
ture. Here we pose a general hypothesis on representations of integers.

Conjecture 2.1. (General Hypothesis, 2012-12-28) Let

f1(x, y), . . . , fm(x, y)

be non-constant polynomials with integer coefficients. Suppose that for
all large n ∈ Z+, those f1(x, n−x), . . . , fm(x, n−x) are irreducible, and
there is no prime dividing all the products

∏m
k=1 fk(x, n−x) with x ∈ Z.

If n ∈ Z+ is large enough, then we can write n = x + y (x, y ∈ Z+)
such that |f1(x, y)|, . . . , |fm(x, y)| are all prime.

Remark 2.1. In view of this general hypothesis, almost all of the other
conjectures in this section are essentially reasonable.

Conjecture 2.2. (Symmetric Conjecture, 2015-08-27) For any integer
n > 6, there is a prime p < n/n′ such that n−(pn′−1) and n+(pn′−1)
are both prime, where n′ = 2− {n}2 is 1 or 2 according as n is odd or
even.

Remark 2.2. Conjecture 2.2 is stronger than Goldbach’s conjecture and
Lemoine’s conjecture. We have verified Conjecture 2.2 for all n =
7, . . . , 108, see [16, A261627 and A261628] for related data. Conjecture
2.1 implies that Conjecture 2.2 holds for all sufficiently large integers n.
In fact, if we apply Conjecture 2.1 with f1(x, y) = x, f2(x, y) = 2y + 1
and f3(x, y) = 4x+ 2y − 1, then for sufficiently large n ∈ Z+ there are
primes p and q with n = p + (q − 1)/2 (i.e., 2n − (2p − 1) = q) such
that 2n+2p− 1 = 4p+ q− 2 is prime; if we apply Conjecture 2.1 with
f1(x, y) = 2x+1, f2(x, y) = 2y− 1 and f3(x, y) = 4x+2y− 1, then for
sufficiently large n ∈ Z+ there are primes p and q with n = (p− 1)/2+
(q+1)/2 (i.e., 2n−1−(p−1) = q) such that 2n−1+(p−1) = 2p+q−2
is prime.
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Conjecture 2.3. For each n = 6, 7, . . . there is a prime p < n such
that both 6n− p and 6n+ p are prime.

Remark 2.3. We also have some conjectures involving practical number-
s similar to Conjectures 2.2 and 2.3, see [16, A261641] and Conjectures
3.43 and 3.44. Conjecture 2.1 with f1(x, y) = x, f2(x, y) = 5x + 6y
and f3(x, y) = 7x+6y implies that Conjecture 2.3 holds for sufficiently
large integers n.

Conjecture 2.4. (2012-12-22) Any integer n > 12 can be written as
p+ q (q ∈ Z+) with p, p+ 6, 6q − 1 and 6q + 1 all prime.

Remark 2.4. Conjecture 2.1 implies that Conjecture 2.4 holds for all
sufficiently large integers n. We have verified Conjecture 2.4 for n up to
109, see [16, A199920] for numbers of such representations. Conjecture
2.4 implies that there are infinitely many twin primes and also infinitely
many sexy primes, because for anym = 2, 3, . . . the interval [m!+2,m!+
m] of length m− 2 contains no prime.

Conjecture 2.5. (2013-10-09) Any integer n > 1 can be written as
k + m (k,m ∈ Z+) with 6k − 1 a Sophie Germain prime and {6m −
1, 6m+ 1} a twin prime pair.

Remark 2.5. Recall that a Sophie Germain prime is a prime p with
2p+1 also prime. Conjecture 2.1 implies that Conjecture 2.5 holds for
all sufficiently large integers n. We have verified Conjecture 2.5 for all
n = 2, . . . , 108, see [16, A227923] for numbers of such representations.
Conjecture 2.5 implies that there are infinitely many twin primes and
also infinitely many Sophie Germain primes. For example, if all twin
primes do not exceed an integer N > 2 and (N+1)!/6 = k+m (k,m ∈
Z+) with 6k− 1 a Sophie Germain prime and {6m− 1, 6m+1} a twin
prime pair, then 6k − 1 = (N + 1)! − (6m + 1) with 2 6 6m + 1 6 N
which contradicts that 6k − 1 is prime.

Recall that for two subsets X and Y of Z the sumset X+Y is defined
as {x+ y : x ∈ X and y ∈ Y }.

Conjecture 2.6. (2013-01-03) Let

A ={x ∈ Z+ : 6x− 1 and 6x+ 1 are both prime},
B ={x ∈ Z+ : 6x+ 1 and 6x+ 5 are both prime},
C ={x ∈ Z+ : 2x− 3 and 2x+ 3 are both prime}.

Then

A+B = {2, 3, . . .}, B + C = {5, 6, . . .}, A+ C = {5, 6, . . .} \ {161}.
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Also, if we set 2X := X +X for X ⊆ Z, then
2A ⊇ {702, 703, . . .}, 2B ⊇ {492, 493, . . .}, 2C ⊇ {4006, 4007, . . .}.

Remark 2.6. Conjecture 2.1 implies that each of the sumsets A+B,B+
C,A + C, 2A, 2B, 2C in Conjecture 2.6 contain all sufficiently large
integers.

Conjecture 2.7. (2013-10-12) (i) For any integer n > 3, we can write
2n as p+ q with p, q, 3p− 10, 3q + 10 all prime.

(ii) For any integer n > 4 not equal to 76, we can write 2n as p+ q
with p, 3p− 10, q, 3q − 10 all prime.

Remark 2.7. Note that if 2n = p+ q then 6n = (3p− 10) + (3q + 10).
We have verified Conjecture 2.7 for n up to 108. See [16, A230230] for
related data. Conjecture 2.1 implies that Conjecture 2.7 holds for all
sufficiently large integers n.

Conjecture 2.8. (2012-11-07) For any integer n > 8, we can write
2n− 1 as p+ 2q with p, q and p2 + 60q2 all prime.

Remark 2.8. This is stronger than Lemoine’s conjecture. We have
verified Conjecture 2.8 for n up to 108. See [16, A218825] for related
data.

Conjecture 2.9. (2013-10-16) Any integer n > 3 can be written as
p+ q (q ∈ Z+) with p, 2p2 − 1 and 2q2 − 1 all prime.

Remark 2.9. See [16, A230351] for related data. Note that each of 7,
12, 68, 330 has a unique required representation:

7 = 3 + 4, 2 · 32 − 1 = 17, 2 · 42 − 1 = 31;

12 = 2 + 10, 2 · 22 − 1 = 7, 2 · 102 − 1 = 199;

68 = 43 + 25, 2 · 432 − 1 = 3697, 2 · 252 − 1 = 1249;

330 = 7 + 323, 2 · 72 − 1 = 97, 2 · 3232 − 1 = 208657.

In 2001 A. Murthy (cf. [13]) conjectured that for any integer n > 1
there is an integer 0 < k < n such that kn + 1 is prime. In 2005 he
[13] conjectured any integer n > 3 can be written as x+ y (x, y ∈ Z+)
with xy − 1 prime. In 1990s Ming-Zhi Zhang (cf. [6, p. 161]) asked
whether any odd integer n > 1 can be written as a + b with a, b ∈ Z+

and a2 + b2 prime.

Conjecture 2.10. (2012-12-20) (i) For any integer n > 3, there is an
integer k ∈ {1, . . . , n − 1} such that kn + 1 and k(n − k)− 1 are both
prime.

(ii) For any odd integer n > 1, there is an integer k ∈ {1, . . . , n− 1}
such that kn+ 1 and k2 + (n− k)2 are both prime.
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Remark 2.10. This combines Murthy’s conjectures and Zhang’s con-
jecture. We also conjecture that any integer n > 3 can be written as
x+ y with x, y ∈ Z+ such that 3x± 1 and xy− 1 are all prime (cf. [16,
A220431]).

Conjecture 2.11. (2013-11-12) (i) Any integer n > 2 can be written
as k + m (k,m ∈ Z+) with k2m − 1 prime. Also, each integer n > 4
can be written as k +m (k,m ∈ Z+) with k2m+ 1 prime.

(ii) Any integer n > 1 can be written as k + m (k,m ∈ Z+) with
(km)2 + km + 1 prime. Also, each integer n > 2 can be written as
k +m (k,m ∈ Z+) with (km)2 + km− 1 (or 2k2m2 − 1) prime.

Remark 2.11. See [16, A231633] for related data.

Conjecture 2.12. (2013-10-13) (i) For any integer n > 1, there is a
prime p 6 n such that (p− 1)n+1 is prime. Moreover, for any integer
n > 4, there is a prime p < n such that 3p + 8 and (p − 1)n + 1 are
both prime.

(ii) Any integer n > 5 can be written as p+q (q ∈ Z+) with p, 3p−10
and (p− 1)q − 1 all prime.

Remark 2.12. See [16, A230243 and A230241] for related data.

Conjecture 2.13. (2012-12-16) For any integer n > 1, we can write
2n as p+q, where p is a Sophie Germain prime, q is a positive integer,
and (p− 1)2 + q2 is prime.

Remark 2.13. This is stronger than Zhang’s conjecture. Conjecture 2.1
implies that any sufficiently large n can be written as x+y (x, y ∈ Z+)
with p = 2x+ 1, 2p+ 1 = 4x+ 3 and

(p− 1)2 + (2n− p)2 = (2x)2 + (2y − 1)2

all prime. See [16, A220554] for related data. For example, 32 = 11+21
with 11 a Sophie Germain prime and (11− 1)2 + 212 = 541 a prime.

Conjecture 2.14. (i) (2011-11-04) Any odd integer n > 1 can be writ-
ten as x+ y with x, y ∈ Z+ such that x4 + y4 is prime.

(ii) (2012-12-01) Any integer n > 10 can be written as p+q (q ∈ Z+)
with p, p+ 6 and p2 + 3pq + q2 = n2 + pq all prime.

(iii) (2013-11-21) Let n > 1 be an odd integer. We can write n =
k +m with k,m ∈ Z+ such that both k2 +m2 and k3 +m2 are prime.

Remark 2.14. See [16, A218656, A218654, A218754 and A232269] for
related data.

Conjecture 2.15. (Olivier Gerard and Zhi-Wei Sun, 2013-10-13). For
any integer n > 1, we can write 2n as p+q with p, q and (p−1)(q+1)−1
all prime.
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Remark 2.15. This is stronger than Goldbach’s conjecture. Note also
that (p− 1) + (q+ 1) = p+ q. We have verified Conjecture 2.15 for all
n = 2, . . . , 108. See [16, A227909] for related data.

Conjecture 2.16. (2012-11-30) Any integer n > 7 can be written as
p+q (q ∈ Z+) with p and 2pq+1 both prime. In general, for each m ∈ N
any sufficiently large integer n can be written as x+ y (x, y ∈ Z+) with
x−m, x+m and 2xy + 1 all prime.

Remark 2.16. We have verified the first assertion in Conjecture 2.16 for
all n = 8, 9, . . . , 109. See [16, A219864] for related data. Concerning the
general statement in Conjecture 2.16, for m = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
it suffices to require that n is greater than

623, 28, 151, 357, 199, 307, 357, 278, 697, 263

respectively.

Conjecture 2.17. (2013-10-14) Any integer n > 3 can be written as
p+ q (q ∈ Z+) with p and (p+ 1)q/2 + 1 both prime.

Remark 2.17. We have verified this conjecture for all n = 4, . . . , 108.
See [16, A230254] for related data. For example, 30 has a unique
representation 2 + 28 with (2 + 1)28/2 + 1 = 43 prime.

Bertrand’s Postulate proved by Chebyshev in 1852 states that for
any positive integer n, the interval [n, 2n] contains at least a prime.
Goldbach’s conjecture essentially asserts that for any integer n > 1
there is an integer k ∈ {0, . . . , n} such that n − k and n + k are both
prime. The following conjecture is of a similar flavor.

Conjecture 2.18. (2012-12-18) For each positive integer n, there is
an integer k ∈ {0, . . . , n} such that n+ k and n+ k2 are both prime.

Remark 2.18. We have verified this for n up to 108. See [16, A185636
and A204065] for related data. The author would like to offer 100 US
dollars as the prize for the first solution of Conjecture 2.18.

Conjecture 2.19. (2013-04-15) For any positive integer n, there is a
positive integer k 6 4

√
n+ 1 such that n2 + k2 is prime.

Remark 2.19. Note that the least k ∈ Z+ with 632 + k2 prime is 32 =
4
√
63 + 1.

Conjecture 2.20. (2013-10-15) (i) For any integer n > 5, there is a
prime p < n with p+ 6 and n+ (n− p)2 both prime.

(ii) For any integer n > 3, there is a prime p < n with 3p − 4 and
n2 + (n− p)2 both prime.



8 ZHI-WEI SUN

Remark 2.20. See [16, A227898 and A227899] for related data.

Conjecture 2.21. (2013-11-20) (i) Any integer n > 1 can be written
as x+ y with x, y ∈ Z+ such that x+ ny and x2 + ny2 are both prime.

(ii) Any integer n > 2 can be written as x + y with x, y ∈ Z+ such
that nx+ y and nx− y are both prime. Also, any integer n > 2 can be
written as x+ y with x, y ∈ Z+ such that x2 + (n− 2)y2 is prime.

(iii) Any integer n > 2 can be written as p+ q with q ∈ Z+ such that
p and p3 + nq2 (or p+ nq) are both prime.

Remark 2.21. See [16, A232174, A231883 and A232186] for related
data. For example, 20 = 11+9 with 11+20 ·9 = 191 and 112+20 ·92 =
121 + 20 × 81 = 1741 both prime. The author would like to offer 200
US dollars as the prize for the first solution to part (i) of Conjecture
2.21. We also conjecture that there are infinitely many n ∈ Z+ such
that pn = x2 + ny2 for some x, y ∈ Z+ (where pn is the n-th prime).

Conjecture 2.22. (2013-10-14) Any integer n > 1 can be written as
x+ y with x, y ∈ Z+ such that 2x+1, x2 + x+1 and y2 + y+1 are all
prime. Also, each integer n > 1 can be written as x+ y with x, y ∈ Z+

such that x2 + 1 (or 4x2 + 1) and 4y2 + 1 are both prime.

Remark 2.22. See [16, A230252] for related data. For example, 31 =
14+ 17 with 2 · 14+ 1 = 29, 142 +14+ 1 = 211 and 172 +17+ 1 = 307
all prime.

In 2001 Heath-Brown [8] proved that there are infinitely many primes
of the form x3 + 2y3 where x and y are positive integers.

Conjecture 2.23. (2012-12-14) Any positive integer n can be written
as x+y (x, y ∈ N) with x3+2y3 prime. In general, for each positive odd
integer m, any sufficiently large integer can be written as x+ y (x, y ∈
N) with xm + 2ym prime.

Remark 2.23. See [16, A220413] for related data. For any integer d > 2,
not every sufficiently large integer n can be written as x+ y (x, y ∈ N)
with x3+dy3 prime. For, if n is a multiple of a prime divisor p of d−1,
then x3 + d(n− x)3 ≡ (1− d)x3 ≡ 0 (mod p) for any integer x.

Conjecture 2.24. (2013-04-15) For any integer n > 4, there is a
positive integer k < n such that p = 2n+k and 2n3+k3 = 2n3+(p−2n)3

are both prime.

Remark 2.24. See [16, A224030] for related data.

Conjecture 2.25. (2012-12-16) Let m be a positive integer. Then,
any sufficiently large odd integer n can be written as x+ y (x, y ∈ Z+)
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with xm + 3ym prime (and any sufficiently large even integer n can be
written as x+ y (x, y ∈ Z+) with xm + 3ym + 1 prime). In particular,
if m 6 6 or m = 18, then each positive odd integer can be written as
x+ y (x, y ∈ N) with xm + 3ym prime.

Remark 2.25. See [16, A220572] for related data and comments. For
example, 5 can be written as 1 + 4 with

118 + 3 · 418 = 206158430209

prime.

3. Other representation problems for positive integers

Conjecture 3.1. (2013-11-12) Any integer n > 1 can be written as
x+y (x, y ∈ Z+) with [x, y]+1 prime, where [x, y] is the least common
multiple of x and y. Also, each integer n > 3 can be written as x +
y (x, y ∈ Z+) with [x, y]− 1 prime.

Remark 3.1. See [16, A231635] for related data. For example, 10 = 4+6
with [4, 6] + 1 = 13 and [4, 6]− 1 = 11 both prime.

As usual, for x ∈ Z we let Tx denote the triangular number x(x+1)/2.

Conjecture 3.2. (i) (2013-11-10) Any integer n > 1 can be written as
x + y (x, y ∈ Z+) with Tx + y2 prime. Also, any integer n > 6 can be
written as x+ y (x, y ∈ Z+) with Tx + y4 prime.

(ii) (2013-11-18) Any integer n > 1 can be written as x+y (x, y ∈ Z+)
with p = 2x+ 1 and Tx + y = n+ (p− 1)(p− 3)/8 both prime.

Remark 3.2. See [16, A228425 and A232109] for related data. For
example, 18 = 7 + 11 with T7 + 112 = 149 prime, 27 = 5 + 22 with
T5 + 224 = 234271 prime, and 18 = 11 + 7 with 2 · 11 + 1 = 23 and
T11 + 7 = 73 both prime.

Conjecture 3.3. (2012-10-15) Each n = 1, 2, 3. . . . can be written as
Tx + y with x, y ∈ N such that Ty + 1 is prime.

Remark 3.3. See [16, A229166] for related data. For example, 34 has a
unique required representation: 34 = T5+19 with T19+1 = 191 prime.

Conjecture 3.4. (2012-12-09) Any integer n > 2 can be written as
x2 + y (x, y ∈ Z+) with 2xy − 1 prime. In other words, for each
n = 3, 4, . . . there is a prime of the form 2k(n− k2)− 1 with k ∈ Z+.

Remark 3.4. We have verified Conjecture 3.4 for all n = 3, 4, . . . , 3 ·109.
See [16, A220272] for related data. For example, 18 = 32 + 9 with
2× 3× 9− 1 = 53 prime.
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Conjecture 3.5. (2013-10-21) Any integer n > 1 can be written as
x2 + y with 2y2 − 1 prime, where x, y ∈ N. In other words, for each
n = 2, 3, 4, . . . there is an integer 0 6 k 6 √

n such that 2(n− k2)2 − 1
is prime.

Remark 3.5. We have verified this conjecture for all n = 2, 3, . . . , 108.
See [16, A230494] for related data. For example, 9 = 12 + 8 with
2 · 82 − 1 = 127 prime.

Conjecture 3.6. (2013-11-11) (i) Any integer n > 1 can be written
as k + m (k,m ∈ Z+) with 2k + m prime. In other words, for each
n = 2, 3, . . . there is a positive integer k < n with n+ 2k − k prime.

(ii) For any integer n > 3, there is a positive integer k < n such that
n+ 2k + k is prime.

Remark 3.6. We have verified parts (i) and (ii) of this conjecture for
n up to 107 and 3.8× 106 respectively, see [16, A231201, A231557 and
A231725] for related data and other similar conjectures. For example,
9302003 = 311468 + 8990535 with 2311468 + 8990535 a prime of 93762
decimal digits. In [21] the author proved that the set {2k − k : k =
1, 2, 3, . . .} contains a complete system of residues modulo any positive
integer. The author would like to offer 1000 US dollars as the prize for
the first solution to part (i) of Conjecture 3.6.

Conjecture 3.7. (2013-11-23) Any integer n > 3 can be written as
p+ (2k − k) + (2m −m) with p prime and k,m ∈ Z+.

Remark 3.7. For example, 94 has a unique required representation 31+
(23−3)+(26−6). See [16, A232398] for related data. After the author
verified this conjecture for n up to 2× 108, Qing-Hu Hou extended the
verification to 1010 in Dec. 2013. In contrast with Conjecture 3.7, R.
Crocker [3] proved in 1971 that there are infinitely many positive odd
numbers not of the form p+ 2k + 2m with p prime and k,m ∈ Z+.

Conjecture 3.8. (2013-11-11) Let r ∈ {1, 2}. Then any integer n > 1
can be written as k +m (k,m ∈ Z+) with 2kmr + 1 prime. Also, any
integer n > 2 can be written as k+m (k,m ∈ Z+) with 2kmr−1 prime.

Remark 3.8. See [16, A231561] for related data.

Conjecture 3.9. (i) (2013-11-10) Any integer n > 1 can be written as
k+m (k,m ∈ Z+) with Fk+m (or Fk+2m, or Fk+m(m+1)) prime,
where the Fibonacci sequence (Fj)j>0 is given by F0 = 0, F1 = 1, and
Fj+1 = Fj + Fj−1 for j ∈ Z+.

(ii) (2014-04-27) Any integer n > 1 can be written as k +m (k,m ∈
Z+) with Lk +m prime, where the Lucas sequence (Lj)j>0 is given by
L0 = 2, L1 = 1, and Lj+1 = Lj + Lj−1 for j ∈ Z+.
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Remark 3.9. See [16, A231555 and A241844] for related data. We have
verified parts (i) and (ii) of Conjecture 3.9 for n up to 3.7 × 106 and
7× 106 respectively.

Conjecture 3.10. (i) (2013-11-11) Any integer n > 1 can be written
as k + m (k,m ∈ Z+) with k!m + 1 prime. Also, Any integer n > 3
can be written as k +m (k,m ∈ Z+) with k!m− 1 prime.

(ii) (2014-03-19) Let r ∈ {1,−1}. For each integer n > 1, there is a
number k ∈ {1, . . . , n} with k!n+ r prime.

Remark 3.10. See [16, A231516 and A231631] for related data. We have
verified part (i) of Conjecture 3.10 for n up to 106. We also conjecture
that for any integer n > 2 there is a positive integer k <

√
n log n with

k!(n− k) + 1 prime.

Conjecture 3.11. (i) (2015-04-01) Let k,m ∈ Z+ with k + m > 2.
Then any integer n > 2 can be written as ⌊p/k⌋+ ⌊q/m⌋ with p and q
both prime.

(ii) (2015-04-24) Let

T :=
{⌊x

9

⌋
: x− 1 and x+ 1 are twin prime

}
=
{⌊x

3

⌋
: 3x− 1 and 3x+ 1 are twin prime

}
.

Then, any positive integer can be written as the sum of two distinct
elements of T one of which is even.

Remark 3.11. See [16, A256555 and A256707] for related data. Part (i)
of Conjecture 3.11 in the case k = m = 2 reduces to Goldbach’s con-
jecture, and it reduces to Lemoine’s conjecture when {k,m} = {1, 2}.
Part (ii) of Conjecture 3.11 implies the twin prime conjecture.

Conjecture 3.12. (2014-03-03) (i) Let 1 < m < n be integers with
m - n. Then ⌊kn/m⌋ is prime for some k = 1, . . . , n− 1.

(ii) Let m > 2 and n > 2 be integers. Then there is a prime p < n
with ⌊(n − p)/m⌋ a square. Also, there is a prime p < n such that
⌊(n−p)/m⌋ is a triangular number of the form T(q−3)/2 = (q−1)(q−3)/8
with q an odd prime.

(iii) For each n = 3, 4, . . ., there is a prime p < n with ⌊(n− p)/5⌋ a
cube.

Remark 3.12. See [16, A238703, A238732 and A238733] for related
data.

Conjecture 3.13. (i) (2013-10-21) Let

S = {n ∈ Z+ : 2n+ 1 and 2n3 + 1 are both prime}.
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Then any integer n > 2 is a sum of three elements of S.
(ii) (2013-10-22) Any integer n > 5 can be written as a+ b+ c with

a, b, c ∈ Z+ such that

{a2 + a± 1}, {b2 + b± 1}, {c2 + c± 1}

are all twin prime pairs!

Remark 3.13. See [16, A230507 and A230516] for related data and
comments.

Conjecture 3.14. (2013-10-11) Let

P = {p : p, p+ 6 and 3p+ 8 are all prime}.

Then, for any integer n > 6, we can write 2n + 1 = p + q + r with
p, q, r ∈ P such that p+ q + 9 is also prime.

Remark 3.14. This implies not only Goldbach’s weak conjecture but
also Goldbach’s conjecture for even numbers. See [16, A230217 and
A230219] for related data. Note that 37 has a unique required repre-
sentation 7 + 13 + 17; in fact,

7, 7 + 6 = 13, 3× 7 + 8 = 29,

13, 13 + 6 = 19, 3 · 13 + 8 = 47,

17, 17 + 6 = 23, 3 · 17 + 8 = 59,

and 7 + 13 + 9 = 29 are all prime.

Conjecture 3.15. (2013-10-12) Let

P ′ = {p : p, 3p− 4, 3p− 10 and 3p− 14 are all prime}.

Then, for any integer n > 17, we can write 2n = p + q + r + s with
p, q, r, s ∈ P ′.

Remark 3.15. See [16, A230223 and A230224] for related data. Note
that such a representation involves 16 primes! For example, 54 has a
unique required representation 7 + 11 + 17 + 19; in fact,

7, 3 · 7− 4 = 17, 3 · 7− 10 = 11, 3 · 7− 14 = 7,

11, 3 · 11− 4 = 29, 3 · 11− 10 = 23, 3 · 11− 14 = 19,

17, 3 · 17− 4 = 47, 3 · 17− 10 = 41, 3 · 17− 14 = 37,

19, 3 · 19− 4 = 53, 3 · 19− 10 = 47, 3 · 19− 14 = 43

are all prime.
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Conjecture 3.16. (i) (2015-10-01) Any integer n > 1 can be written
as x2 + y2 +φ(z2) with x, y ∈ N, x 6 y and z ∈ Z+ such that y or z is
prime.

(ii) (2015-10-02) Each positive integer can be written as x2 + y2 +
p(p+ ε)/2, where x, y ∈ Z, ε ∈ {±1}, and p is a prime.

Remark 3.16. See [16, A262311, A262785, A262982, A262985, A263992,
A263998, A264010 and A264025] for related data and similar conjec-
tures. For example, 13 = 12 + 22 + φ(42) with 2 prime, 94415 =
1152 + 1782 + φ(2232) with 223 prime, 97 = 12 + 92 + 5(5 + 1)/2 with
5 prime, and 538 = 32 + 82 + 31(31− 1)/2 with 31 prime. It is known
that each n ∈ N can be expressed as the sum of two squares and a
triangular number (cf. [17]).

Conjecture 3.17. (2014-02-26) (i) Any integer n > 6 can be written
as k +m (k,m ∈ Z+) such that pk + π(m) is a triangular number.

(ii) Any integer n > 10 can be written as k + m (k,m ∈ Z+) such
that p = pk + π(m) and p+ 2 are both prime.

Remark 3.17. See [16, A238405 and A238386] for related data. For
example, 72 = 41 + 31 with p72 + π(31) = 179 + 11 = 19 · 20/2 a
triangular number, and 108 = 15+ 93 with p15 + π(93) = 47+ 24 = 71
and 71 + 2 = 73 twin prime.

Conjecture 3.18. (2014-03-05) Any integer n > 2 can be written as
q + m with m ∈ Z+ such that q, pq − q + 1 and ppm − pm + 1 are all
prime.

Remark 3.18. See [16, A237715] for related data.

Conjecture 3.19. (2014-01-04) For any integer n > 6, there is a prime
q < n/2 with pq − q + 1 prime such that n− (1 + {n}2)q is prime.

Remark 3.19. This conjecture is stronger than Goldbach’s conjecture
and Lemoine’s conjecture, and it also implies that there are infinitely
many primes q with pq − q + 1 prime. See [16, A235189] for related
data. For example, 7, p7 − 7 + 1 = 17− 6 = 11 and 61− 2 · 7 = 47 are
all prime, and 31, p31 − 31 + 1 = 97 and 98− 31 = 67 are all prime.

Conjecture 3.20. (2014-02-04) (i) For any integer n > 2, we can
write 2n = p + q with p, q and φ(p + 2) ± 1 all prime. Also, for any
integer n > 12 we can write 2n− 1 = 2p+ q with p, q and φ(p+1)± 1
all prime.

(ii) Any integer n > 24 can be written as (1 + {n}2)p + q with
p, q, φ(p+ 1)− 1 and φ(q − 1) + 1 all prime.
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Remark 3.20. See [16, A237168, A237183 and A237184] for related
data. Note that either of the two parts is stronger than Goldbach’s
conjecture and Lemoine’s conjecture. Also, part (i) of Conjecture 3.20
implies the twin prime conjecture.

Conjecture 3.21. (2014-02-04) (i) Any integer n > 12 can be written
as k +m with k,m ∈ Z+ and k ̸= m such that φ(k)± 1 and φ(m)± 1
are all prime.

(ii) Any integer n > 6 can be written as k+m (k,m ∈ Z+) such that
both {pk, pk + 2} and {φ(m)− 1, φ(m) + 1} are twin prime pairs.

(iii) Any integer n > 6 can be written as k + m (k,m ∈ Z+) with
ppk+2 and φ(m)±1 all prime. Also, each n = 2, 3, 4, . . . can be written
as k +m (k,m ∈ Z+) with ppk + 2 and 6m± 1 all prime.

(iv) Any integer n > 8 can be written as k + m (k,m ∈ Z+) with
pppk − 2 and φ(m)± 1 all prime.

(v) Any integer n > 8 can be written as k + m (k,m ∈ Z+) with
3k ± 1 and φ(m)± 1 all prime.

(vi) Any integer n > 12 can be written as p + q (q ∈ Z+) with p,
p+ 6 and φ(q)± 1 all prime.

Remark 3.21. See [16, A237127, A237130, A218829 and A237253] for
related data and comments. Clearly each part of Conjecture 3.21 im-
plies the twin prime conjecture.

Conjecture 3.22. (2013-12-31) (i) Any integer n > 1 with n ̸= 8 can
be written as k +m (k,m ∈ Z+) such that p = k + φ(m) and 2n − p
are both prime.

(ii) Each integer n > 2 can be written as k + m (k,m ∈ Z+) such
that p = k + φ(m) and 2n+ 1− 2p are both prime.

Remark 3.22. Clearly parts (i) and (ii) are stronger than Goldbach’s
conjecture and Lemoine’s conjecture respectively. See [16, A234808 and
A234809] for related data. For example, 24 = 9+15 with 9+φ(15) = 17
and 2 · 24− 17 = 31 both prime, and 41 = 7 + 34 with 7 + φ(34) = 23
and 2 · 41 + 1− 2 · 23 = 37 both prime.

Conjecture 3.23. (2014-02-02) (i) Any integer n > 1 can be written
as k +m (k,m ∈ Z+) such that 6k ± 1 and k + φ(m) are all prime.

(ii) Any integer n > 3 with n ̸= 12 can be written as k +m (k,m ∈
Z+) such that 6k ± 1 and k + φ(m)/2 are all prime.

(iii) Each integer n > 5 can be written as k + m (k,m ∈ Z+) with
k + φ(m)/2 a square.

Remark 3.23. See [16, A236968 and A236567] for related data.
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Conjecture 3.24. (2014-01-13) Define

K := {k ∈ Z+ : k(k + 1)− pk is prime}.

(i) Any integer n > 3 can be written as a+ b with a, b ∈ K.
(ii) Any integer n > 2 can be expressed as the sum of an element of

K and a positive triangular number.
(iii) Any integer n > 3 can be written as the sum of an element of

K and a prime q with pq − q + 1 also prime.
(iv) Any integer n > 7 can be written as k + m (k,m ∈ Z+) such

that q = pk + φ(m) and q(q + 1)− pq are both prime.

Remark 3.24. See [16, A235592, A235613, A235614, A235661, A235703,
A232353] for related data.

Conjecture 3.25. (2014-01-18) (i) Any integer n > 7 can be written
as k+m (k,m ∈ Z+) such that p = φ(k) +φ(m)/2− 1 is a prime and
also 2 is a primitive root modulo p.

(ii) Any integer n > 38 can be written as k + m (k,m ∈ Z+) such
that p = pk+φ(m) is a Sophie Germain prime and also 2 is a primitive
root modulo p.

Remark 3.25. See [16, A235987] for related data and comments. For
example, 79 = 19+60, p19+φ(60) = 67+16 = 83 is a Sophie Germain
prime and 2 is a primitive root modulo 83.

Conjecture 3.26. (i) (2012-12-23) Any integer n > 5 can be written
as k +m (k,m ∈ {3, 4, . . .}) with 2φ(k) + 2φ(m) − 1 prime.

(ii) (2012-12-24) For any integer a > 1, there is a positive integer
N(a) such that any integer n > N(a) can be written as k + m with
k,m ∈ {3, 4, . . .} such that aφ(k) + aφ(m)/2 − 1 is prime. Moreover, we
may take N(2) = N(3) = . . . = N(6) = N(8) = 5 and N(7) = 17.

Remark 3.26. See [16, A234309, A234347 and A234359] for related data
and comments. Clearly, part (ii) of Conjecture 3.26 implies that for
each a = 2, 3, . . . there are infinitely many primes of the form a2k+am−1
with k,m ∈ Z+.

Conjecture 3.27. (2013-12-26) (i) Any integer n > 10 can be written
as k +m (k,m ∈ Z+) with 2φ(k)/2+φ(m)/6 + 3 prime. Also, any integer
n > 13 can be written as k + m (k,m ∈ Z+) with 2φ(k)/2+φ(m)/6 − 3
prime.

(ii) Any integer n > 25 can be written as k + m (k,m ∈ Z+) with
3 · 2φ(k)/2+φ(m)/8 + 1 prime. Also, any integer n > 15 can be written as
k +m (k,m ∈ Z+) with 3 · 2φ(k)/2+φ(m)/12 − 1 prime.
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(iii) Any integer n > 27 can be written as k + m (k,m ∈ Z+) with
2 · 3φ(k)/2+φ(m)/12 +1 prime. Also, any integer n > 37 can be written as
k +m (k,m ∈ Z+) with 2 · 3φ(k)/2+φ(m)/12 − 1 prime.

(iv) Any integer n > 10 can be written as k + m (k,m ∈ Z+) with
2φ(k)+φ(m)/4 − 5 prime.

Remark 3.27. This implies that there are infinitely many primes in any
of the following seven forms:

2n + 3, 2n − 3, 3 · 2n + 1, 3 · 2n − 1, 2 · 3n + 1, 2 · 3n − 1, 2n − 5.

We have verified Conjecture 3.27 for n up to 50,000. See [16, A234451,
A236358 and A234504] for related data.

Conjecture 3.28. (2012-12-24) (i) Any integer n > 1 can be written
as k +m (k,m ∈ Z+) with (k + 1)φ(m) + k prime. Also, each integer
n > 1 can be written as k+m (k,m ∈ Z+) with k(k+1)φ(m)+1 prime.

(ii) Any integer n > 5 can be written as k + m (k,m ∈ Z+) with
(k + 1)φ(m)/2 − k prime. Also, each integer n > 3 can be written as
k +m (k,m ∈ Z+) with k(k + 1)φ(m)/2 − 1 prime.

Remark 3.28. This conjecture is somewhat curious. See [16, A234360]
for related data.

Conjecture 3.29. (i) (2014-02-02) Any integer n > 8 can be written
as i+j with i, j ∈ Z+ and i < j such that φ(i)φ(j) is a square. Also, for
each k = 3, 4, . . ., any integer n > 3k can be written as i1+ i2+ . . .+ ik
with i1, i2, . . . , ik ∈ Z+ not all equal such that φ(i1)φ(i2) · · ·φ(ik) is a
k-th power.

(ii) (2014-02-09) Any integer n > 8 can be written as i + j with
i, j ∈ Z+ and i < j such that φ(ij) + 1 is a square. Also, for each

k = 3, 4, . . ., any integer n > 2k + 1 can be written as
∑k

j=1 ij with

i1, i2, . . . , ik ∈ Z+ such that φ(i1i2 . . . ik) is a k-th power.
(iii) (2014-02-04) Let k > 1 be an integer. Any sufficiently large

integer n can be written as
∑k

j=1 ij with i1, . . . , ik ∈ Z+ and i1 < . . . <

ik such that all those φ(ij) (j = 1, . . . , k) are k-th powers.
(iv) (2014-02-02) For each k = 3, 4, . . . any sufficiently large integer

n can be written as i1+ i2+ . . .+ ik with i1, i2, . . . , ik not all equal such
that the product i1i2 . . . ik is a k-th power.

Remark 3.29. See [16, A236998, A233386, A237523, A237524, A237123,
A237050] for related data. For any integer k > 1, we clearly have
2k + 2 = 4 + (k − 1)2 with φ(4 · 2k−1) = 2k a k-th power. In con-
trast with part (i) of Conjecture 3.29, we also conjecture that (cf. [16,
A237049]) for each k = 2, 3, 4, . . . any sufficiently large integer n can
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be written as
∑k

j=1 ij with i1, i2, . . . , ik ∈ Z+ not all equal such that∏k
j=1 σ(ij) is a k-th power, where σ(m) denotes the sum of all positive

divisors of m ∈ Z+.

Conjecture 3.30. (i) (2013-12-21) Any integer n > 5 can be written
as k +m with k,m ∈ Z+ such that (φ(k) + φ(m))/2 is prime.

(ii) (2013-12-22) Any positive integer n not dividing 6 can be written
as k +m with k,m ∈ Z+ such that kφ(m) + 1 is a square. Also, any
integer n > 4 can be written as k +m with k,m ∈ Z+ and k < m such
that kφ(m)− 1 and kφ(m) + 1 are both prime.

(iii) (2013-12-12) Any integer n > 5 can be written as k + m with
k,m ∈ Z+ such that φ(k)φ(m)− 1 and φ(k)φ(m) + 1 are both prime.

(iv) (2013-12-23) Any integer n > 4 can be written as k+m (k,m ∈
Z+) with φ(k2)φ(m)− 1 a Sophie Germain prime.

Remark 3.30. See [16, A233918, A234200, A234246, A233547, A234308]
for related data. For example, 13 = 3 + 10 with (φ(3) + φ(10))/2 = 3
prime, 13 = 4 + 9 with 4φ(9) + 1 = 25 a square, 18 = 5 + 13
with {5φ(13) ± 1} = {59, 61} a twin prime pair, 26 = 7 + 19 with
{φ(7)φ(19)± 1} = {107, 109} a twin prime pair, and 30 = 2+ 28 with
φ(22)φ(28)− 1 = 23 a Sophie Germain prime.

Conjecture 3.31. (2013-12-12) (i) Any integer n > 1 can be written
as k2+m with σ(k2)+φ(m) prime, where k and m are positive integers
with k2 6 m.

(ii) Any integer n > 1 can be written as k +m with k,m ∈ Z+ such
that σ(k)2 + φ(m) (or σ(k) + φ(m)2) is prime.

Remark 3.31. See [16, A233544] for related data and comments. We
have verified part (i) of Conjecture 3.31 for all n = 2, . . . , 108; for
example, 25 = 22 + 21 with σ(22) + φ(21) = 7 + 12 = 19 prime.

Conjecture 3.32. Let n > 2 be an integer.
(i) (2013-12-14) If n is even, then n can be written as p+σ(k), where

p is an odd prime and k ∈ {1, . . . , n− 1}.
(ii) (2013-12-17) If n is odd, then n can be written as p+φ(k2), where

p is a prime and k is a positive integer with k2 < n.

Remark 3.32. See [16, A233654, A233793 and A233867] for related
data. For example, 28 = 13+ σ(8) with 13 prime, and 29 = 23+φ(32)
with 23 prime. Note that if n = p + q with p and q both prime then
n+ 1 = p+ (q + 1) = p+ σ(q) and n− 1 = p+ (q − 1) = p+ φ(q).

Conjecture 3.33. (2012-12-29) (i) For each integer n > 8 with n ̸= 14,
there is a prime p between n and 2n with (n

p
) = 1. If n ∈ Z+ is not a

square, then there is a prime p between n and 2n with (n
p
) = −1.
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(ii) For any integer n > 5 there is a prime p ∈ (n, 2n) with (2n
p
) = 1.

For any integer n > 6 there is a prime p ∈ (n, 2n) with (−n
p
) = −1.

Remark 3.33. We have verified this refinement of Bertrand’s postulate
for n up to 5× 108.

Conjecture 3.34. (2012-12-29) For any positive integer n there is a
prime p between n2 and (n + 1)2 with (n

p
) = 1. Also, for any integer

n > 1 we have (n(n+1)
p

) = 1 for some prime p ∈ (n2, (n+ 1)2).

Remark 3.34. We have verified this refinement of Legendre’s conjecture
for n up to 109.

Conjecture 3.35. (Olivier Gerard and Zhi-Wei Sun, 2012-11-19) For
any integer n > 400 with n ̸= 757, 1069, 1238, there are odd primes p
and q with (p

q
) = ( q

p
) = 1 such that p+ (1 + {n}2)q = n.

Remark 3.35. We have verified Conjecture 3.35 for n up to 108. See [5]
for the announcement of this conjecture.

Conjecture 3.36. (2012-11-22) Let m be any integer. Then, for every

sufficiently large integer n there are primes p > q > 2 with (p−(1+{n}2)m
q

) =

( q+m
p

) = 1 and p+ (1 + {n}2)q = n.

Remark 3.36. Conjecture 3.36 in the case m = 0 corresponds to Con-
jecture 3.35.

Conjecture 3.37. (2012-12-30) Any integer n > 5 can be written as
p+(1+{n}2)q, where p is an odd prime and q is a prime not exceeding

n/2 such that ( q
n
) = 1 if 2 - n, and ( (q+1)/2

n+1
) = 1 if 2 | n.

Remark 3.37. We have verified this refinement of Goldbach’s and Lemoine’s
conjectures for n up to 109.

Conjecture 3.38. (2013-01-19) (i) Any even integer 2n > 4 can be
written as p+q = (p+1)+(q−1), where p and q are primes with p+1
and q − 1 both practical.

(ii) For each integer n > 8, we can write 2n−1 = p+q = 2p+(q−p),
where p and q − p are both prime, and q is practical.

Remark 3.38. We have verified both parts of Conjecture 3.38 for n up
to 108. See [16, A209320 and A209315] for related data.

If one of n and n+1 is prime and the other is practical, then we call
{n, n+1} a couple. As powers of two are practical numbers, {2p−1, 2p}
is a couple if 2p − 1 is a Mersenne prime, and {22n , 22n +1} is a couple
if 22

n
+ 1 is a Fermat prime. If p is a prime and p − 1 and p + 1 are
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both practical, then we call {p − 1, p, p + 1} a sandwich of the first
kind. If {p, p + 2} is a twin prime pair and p + 1 is practical, then
we call {p, p + 1, p + 2} a sandwich of the second kind. For example,
{88, 89, 90} is a sandwich of the first kind, while {59, 60, 61} is a
sandwich of the second kind. See [16, A210479] for the list of the first
10,000 sandwiches of the first kind, and [16, A258838] for the list of
the first 10,000 sandwiches of the second kind.

Conjecture 3.39. (2013-01-12) (i) For any integer n > 8 the interval
[n, 2n] contains a sandwich of the first kind.

(ii) For each n = 7, 8, . . . the interval [n, 2n] contains a sandwich of
the second kind.

(iii) For any integer n > 231 the interval [n, 2n] contains four con-
secutive integers p− 1, p, p+ 1, p+ 2 with {p, p+ 2} a twin prime pair
and {p− 1, p+ 1} a twin practical pair.

(iv) There are infinitely many quintuples {m−2,m−1,m,m+1,m+
2} with {m− 1,m+ 1} a twin prime pair and m,m± 2 all practical.

Remark 3.39. . For those middle terms m described in part (iv) of
Conjecture 3.39, the reader may consult [16, A209236]. It is known
that (cf. [12]) there are infinitely many practical numbers m with
m± 2 also practical.

Conjecture 3.40. (i) (2013-01-23) Each n = 4, 5, . . . can be written
as p + q, where {p − 1, p, p + 1} is a sandwich of the first kind, and q
is either prime or practical.

(ii) (2013-01-29) Any integer n > 11 can be written as (1+ {n}2)p+
q+ r, where {p− 1, p, p+1} and {q− 1, q, q+1} are sandwiches of the
first kind, and {r − 1, r, r + 1} is a sandwich of the second kind.

Remark 3.40. We have verified parts (i) and (ii) of Conjecture 3.40
for n up to 108 and 107 respectively. For numbers of representations
related to parts (i) and (ii), see [16, A210480 and A210681].

Conjecture 3.41. (2013-01-29) (i) Any integer n > 6 can be written
as p+q+r such that {p−1, p, p+1} and {q−1, q, q+1} are sandwiches
of the first kind, and {6r − 1, 6r, 6r + 1} is a sandwich of the second
kind.

(ii) Every n = 3, 4, . . . can be expressed as x+ y+ z with x, y, z ∈ Z+

such that {6x−1, 6x, 6x+1}, {6y−1, 6y, 6y+1} and {6z−1, 6z, 6z+1}
are all sandwiches of the second kind.

(iiii) Each integer n > 7 can be written as p+ q+x2 with x ∈ Z such
that {p− 1, p, p+1} is a sandwich of the first kind and {q− 1, q, q+1}
is a sandwich of the second kind.
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Remark 3.41. We also conjecture that each n = 3, 4, . . . can be written
as the sum of two triangular numbers and a prime p with {p−1, p, p+1}
a sandwich of the first kind. See [16, A210681] for related comments.

Conjecture 3.42. (2013-01-30) (i) For any integer n > 8, we can
write 2n = p + 2q + 3r, where {p − 1, p, p + 1}, {q − 1, q, q + 1} and
{r − 1, r, r + 1} are all sandwiches of the first kind.

(ii) Each integer n > 5 can be written as the sum of a prime p with
{p− 1, p, p+ 1} a sandwich of the first kind, a prime q with q + 2 also
prime, and a Fibonacci number.

Remark 3.42. See [16, A211190 and A211165] for related data. We
have verified part (ii) of Conjecture 3.42 for n up to 2, 000, 000.

Conjecture 3.43. (i) (2013-01-14) Any odd number n > 1 can be
expressed as p + q, where p is a Sophie Germain prime and q is a
practical number.

(ii) (2013-01-19) For any integer n > 2, there is a practical number
q < n such that n− q and n+ q are both prime or both practical.

Remark 3.43. We have verified this conjecture for n up to 108. See [16,
A209253 and A209312] for related data. We also conjecture that each
positive integer can be represented as the sum of a practical number
and a triangular number (cf. [16, A208244]), which is an analog of
the author’s conjecture on sums of primes and triangular numbers (cf.
[18]).

Conjecture 3.44. (2015-08-28) (i) For any integer n > 6, there is a
prime p < n such that n − (p + 1) and n + (p + 1) are both prime or
both practical.

(ii) For any integer n > 2 there is a prime p < n such that n−(p−1)
and n+ (p− 1) are both prime or both practical.

Remark 3.44. See [16, A261653] for related data, and compare this
conjecture with Conjectures 2.2, 2.3 and 3.43.

Conjecture 3.45. (2015-07-12) (i) There are infinitely many sand-
wiches {n− 1, n, n + 1} of the first kind such that {pn − 1, pn, pn + 1}
is also a sandwich of the first kind.

(ii) There are infinitely many sandwiches {n − 1, n, n + 1} of the
second kind such that {pn − 1, pn, pn + 1} is a sandwich of the first
kind.

Remark 3.45. See [16, A257924 and A257922] for related data.
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4. On representations of positive rational numbers

It is well known that any positive rational number can be written as
finitely many distinct unit fractions. It is also known that the series∑∞

n=1 1/pn diverges as proved by Euler.

Conjecture 4.1. (i) (2015-09-09) For any positive rational number r,
there are finitely many distinct primes q1, . . . , qk such that

r =
k∑

j=1

1

qj − 1
.

(ii) (2015-09-12) For any positive rational number r, there are finitely
many distinct primes q1, . . . , qk such that

r =
k∑

j=1

1

qj + 1
.

(iii) (2015-09-12) For any positive rational number r, there are finite-

ly many distinct practical numbers q1, . . . , qk with r =
∑k

j=1 1/qj.

Remark 4.1. For example,

2 =
1

2− 1
+

1

3− 1
+

1

5− 1
+

1

7− 1
+

1

13− 1
=

1

1
+

1

2
+

1

4
+

1

6
+

1

12

with 2, 3, 5, 7 all prime and 1, 2, 4, 6, 12 all practical, and

1 =
1

2 + 1
+

1

3 + 1
+

1

5 + 1
+

1

7 + 1
+

1

11 + 1
+

1

23 + 1

with 2, 3, 5, 7, 11, 23 all prime. Also,

10

11
=

1

3− 1
+

1

5− 1
+

1

13− 1
+

1

19− 1
+

1

67− 1
+

1

199− 1

=
1

2 + 1
+

1

3 + 1
+

1

5 + 1
+

1

7 + 1
+

1

43 + 1
+

1

131 + 1
+

1

263 + 1

=
1

2
+

1

4
+

1

8
+

1

48
+

1

132
+

1

176

with 2, 3, 5, 7, 13, 19, 43, 67, 131, 199, 263 all prime and 2, 4, 8, 48, 132, 176
all practical. After learning Conjecture 4.1 from the author, Qing-Hu
Hou verified parts (i) and (ii) in Nov. 2015 for all rational numbers
r ∈ (0, 1) with denominators not exceeding 100. The author would like
to offer 500 US dollars as the prize for the first solution to parts (i) and
(ii) of Conjecture 4.1.
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Conjecture 4.2. (2015-09-09) Let m be any positive integer.
(i) All the rational numbers

k∑
i=j

1

(pi − 1)m
with 1 6 j 6 k

are pairwise distinct! If

k∑
i=j

1

(pi − 1)m
and

t∑
r=s

1

(pr − 1)m

have the same fractional part with

0 < min{2, k} 6 j 6 k, 0 < min{2, t} 6 s 6 t and j 6 s,

but the ordered pairs (j, k) and (s, t) are different, then we must have
m = 1 and

k∑
i=j

1

pi − 1
= 1 +

t∑
r=s

1

pr − 1
;

moreover, either (j, k) = (2, 6) and (s, t) = (5, 5), or (j, k) = (2, 5) and
(s, t) = (18, 18), or (j, k) = (2, 17) and (s, t) = (6, 18).

(ii) If
k∑

i=j

1

(pi + 1)m
and

t∑
r=s

1

(pr + 1)m

have the same fractional part with

1 6 j 6 k, 1 6 s 6 t and j 6 s,

but the ordered pairs (j, k) and (s, t) are different, then we must have
m = 1 and

k∑
i=j

1

pi + 1
−

t∑
r=s

1

pr + 1
∈ {0, 1};

moreover, (j, k) = (1, 9) and (s, t) = (6, 8), or (j, k) = (4, 4) and
(s, t) = (8, 10), or (j, k) = (4, 7) and (s, t) = (5, 10), or (j, k) = (1, 10)
and (s, t) = (5, 7).

(iii) For any integer d > 1, the rational numbers

k∑
i=j

1

(pi + d)m
with 1 6 j 6 k

have pairwise distinct fractional parts.

Remark 4.2. Recall that
∑∞

j=1 1/pj diverges.
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Actually Conjecture 4.2 was motivated by our following conjecture
whose proofs might involve primes.

Conjecture 4.3. (i) (2015-09-09) If 1/j + ...+1/k and 1/s+ ...+1/t
have the same fractional part with

0 < min{2, k} 6 j 6 k, 0 < min{2, t} 6 s 6 t and j 6 s,

but the ordered pairs (j, k) and (s, t) are different, then we have

1

j
+ . . .+

1

k
= 1 +

1

s
+ . . .+

1

t
;

moreover, one of the following (a)-(d) holds.
(a) (j, k) = (2, 6) and (s, t) = (4, 5),
(b) (j, k) = (2, 4) and (s, t) = (12, 12),
(c) (j, k) = (2, 11) and (s, t) = (5, 12),
(d) (j, k) = (3, 20) and (s, t) = (7, 19).
(ii) (2015-09-11) Let a > b > 0 and m > 0 be integers with gcd(a, b) =

1 < max{a,m}. Then the numbers

k∑
i=j

1

(ai− b)m
with 1 6 j 6 k and (j > 1 if k > a− b = 1)

have pairwise distinct fractional parts. Also, for each r = 0, 1, the
numbers

k∑
i=j

(−1)i−jr

(ai− b)m
with 1 6 j 6 k and (j > 1 if k > a− b = 1)

have pairwise distinct fractional parts.

Remark 4.3. In 1918 J. Kürschak proved that for any integers k > j > 1
the number 1/j + ... + 1/k is not an integer. In 1946 P. Erdős and I.
Niven [4] used Sylvester’s theorem (which states that the product of n
consecutive integers greater than n is divisible by a prime greater than
n) to show that all the numbers 1/j + ... + 1/k with 1 6 j 6 k are
pairwise distinct.

If d ∈ Z+ is not a square, then the Pell equation x2 − dy2 = 1 has
infinitely many integral solutions. Thus, for r = a/b with a, b ∈ Z+

and gcd(a, b) = 1, if r is not a square of rational numbers then there is
a positive integer k such that (ka)(kb)+1 is a square, i.e., we can write
a/b = m/n with m,n ∈ Z+ such that mn + 1 is a square. Motivated
by this, below we consider various representations of positive rational
numbers.
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Conjecture 4.4. (i) (2015-07-03) The set{m

n
: m,n ∈ Z+ and pm + pn is a square

}
contains any positive rational number r. Also, any rational number
r > 1 can be written as m/n with m,n ∈ Z+ such that pm − pn is a
square.

(ii) (2015-08-20) Any positive rational number r ̸= 1 can be written
as m/n with m,n ∈ Z+ such that ppm + ppn is a square.

Remark 4.4. We have verified part (i) of Conjecture 4.4 for all those
rational numbers r = a/b with a, b ∈ {1, . . . , 200} (cf. [16, A259712
and A257856]) and part (ii) of Conjecture 4.4 for all those rational
numbers r = a/b ̸= 1 with a, b ∈ {1, . . . , 60}. For example, 2 = 20/10
with p20 + p10 = 71 + 29 = 102, and 2 = 92/46 with pp92 + pp46 =
p479 + p199 = 3407 + 1217 = 682.

Conjecture 4.5. (2015-07-08) The set{m

n
: m,n ∈ Z+, and φ(m) and σ(n) are both squares

}
contains any positive rational number r.

Remark 4.5. We have verified Conjecture 4.5 for all those r = a/b
with a, b ∈ {1, . . . , 150} (cf. [16, A259915 and A259916]). For ex-
ample, 4/5 = 136/170 with φ(136) = 82 and σ(170) = 182, and
5/4 = 1365/1092 with φ(1365) = 242 and σ(1092) = 562.

Conjecture 4.6. (i) (2015-07-05) Any positive rational number r can
be written as m/n with m,n ∈ Z+ such that π(m)π(n) is a positive
square.

(ii) (2015-07-06) Any positive rational number r can be written as
m/n with m,n ∈ Z+ such that π(m) and π(π(n)) are positive squares.

Remark 4.6. We have verified part (i) of this conjecture for all those
rational numbers r = a/b with a, b ∈ {1, . . . , 60}. See [16, A259789]
for related data. For example, 49/58 = 1076068567/1273713814 with

π(1076068567)π(1273713814) = 54511776 · 63975626 = 590544242.

Conjecture 4.7. (2015-07-10) Each positive rational number r < 1
can be written as m/n with 1 < m < n such that π(m)2 + π(n)2 is a
square. Also, any rational number r > 1 can be written as m/n with
m > n > 1 such that π(m)2 − π(n)2 is a square.
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Remark 4.7. We have verified this conjecture for all those rational num-
bers r = a/b with a, b ∈ {1, . . . , 50}. See [16, A255677] for related data.
For example, 23/24 = 19947716/20815008 with

π(19947716)2 + π(20815008)2 = 12674972 + 13190042 = 18292952,

and 7/3 = 26964/11556 with

π(26964)2 − π(11556)2 = 29582 − 13922 = 26102.

Motivated by Conjecture 4.7, we raise the following conjecture which
sounds interesting and challenging.

Conjecture 4.8. (i) (2015-07-11) For any n ∈ Z+, there are distinct
primes p, q, r such that π(pn)2 = π(qn)2 + π(rn)2.

(ii) (2015-07-13) For any n ∈ Z+, there are distinct primes p, q, r
with π(pn) = π(qn)π(rn) (or π(pn) = π(qn) + π(rn)).

Remark 4.8. See [16, A257364 and A257928] for related data.

Conjecture 4.9. (i) (2015-07-02) Any positive rational number r can
be written as m/n with m,n ∈ Z+ such that p(m)2 + p(n)2 is prime,
where p(·) is the partition function.

(ii) (2015-08-20) Any positive rational number r ̸= 1 can be written
as m/n with m,n ∈ Z+ such that p(pm) + p(pn) is prime.

Remark 4.9. Conjecture 4.9 implies that there are infinitely many
primes of the form p(m)2+p(n)2 withm,n ∈ Z+ as well as primes of the
form p(q)+ p(r) with q and r both prime. We have verified part (i) for
all those rational numbers r = a/b with a, b ∈ {1, . . . , 100}, and part
(ii) for all those rational numbers r = a/b ̸= 1 with a, b ∈ {1, . . . , 37}.
See [16, A259531, A259678, A261513 and A261515] for related data.
For example, 4/5 = 124/155 with

p(124)2 + p(155)2 =28419405002 + 664931820972

=4429419891190341567409

prime, and 3 = 138/46 with

p(p138) + p(p46) =p(787) + p(199)

=3223934948277725160271634798 + 3646072432125

=3223934948277728806344066923

prime.

Conjecture 4.10. (2015-08-17) Any positive rational number r can be
written as m/n, where m and n are positive integers with (m±1)2+n2

and m2 + (n± 1)2 all prime.
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Remark 4.10. We have verified this for all those r = a/b with a, b ∈
{1, . . . , 60}. See [16, A261382] for related data. It is easy to prove that
if m and n are positive integers with (m± 1)2 + n2 and m2 + (n± 1)2

all prime then either m = n = 2 or m ≡ n ≡ 0 (mod 5).

Conjecture 4.11. (i) (2015-06-28) Each rational number r > 0 can be
written as m/n, where m and n are positive integers with

pm ±m, pn ± n, pm + n and pn +m

all prime.
(ii) (2015-07-02) Any rational number r > 0 can be written as m/n,

where m and n are positive integers with

m2 + p2m, n2 + p2n, m2 + p2n and n2 + p2m

all prime.
(iii) (2015-08-15) Any rational number r > 0 can be written as m/n

with m and n in the set

{k ∈ Z+ : k + 1, k2 + 1 and k2 + p2k are all prime}
={q − 1 : q, (q − 1)2 + 1 and (q − 1)2 + p2q−1 are all prime}.

Remark 4.11. We have verified parts (i)-(ii) for those r = a/b with
a, b ∈ {1, . . . , 150} and part (iii) for those r = a/b with a, b ∈ {1, . . . , 60}.
See [16, A259492 and A261339] for related data.

Conjecture 4.12. (i) (2015-06-30) Let

U := {n ∈ Z+ : n± 1 and pn + 2 are all prime}.
Then any positive rational number r can be written as m/n with m,n ∈
U .

(ii) (2015-06-28) Let

V := {n ∈ Z+ : pn + 2 and ppn + 2 are both prime}.
Then any positive rational number r can be written as m/n with m,n ∈
V .

(iii) (2015-06-12) Let

Q := {q ∈ Z+ : q is practical with q ± 1 twin prime}.
Then any positive rational number r can be written as q/q′ with q, q′ ∈
Q.

Remark 4.12. We have verified part (i) for all those r = a/b with a, b ∈
{1, . . . , 100}, part (ii) for all those r = a/b with a, b ∈ {1, . . . , 400},
and part (iii) for all those r = a/b with a, b ∈ {1, . . . , 1000}. See [16,
A259539, A259540, A259487, A259488 and A258836] for related data.
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For example, 4/5 = 11673840/14592300 with 11673840 and 14592300
in the set U .

Motivated by part (i) of Conjecture 4.12 and [22, Conjecture 3.7(i)],
we pose the following conjecture.

Conjecture 4.13. (2015-07-01) There are infinitely many positive in-
tegers n such that the seven numbers

n± 1, pn + 2, pn ± n, npn ± 1

are all prime.

Remark 4.13. We have listed the first 160 such positive integers n the
least of which is 2523708 (cf. [16, A259628]).

Conjecture 4.14. (2015-08-24) Any positive rational number r can be
written as m/n, where m and n belong to the set

{k ∈ Z+ : pk + 2, pk + 6 and pk + 8 are all prime}.
Also, each positive rational number r can be written as m/n, where m
and n belong to the set

{k ∈ Z+ : pk + 4, pk + 6 and pk + 10 are all prime}.

Remark 4.14. This conjecture implies that there are infinitely many
prime quadruples (p, p+2, p+6, p+8) as well as (p, p+4, p+6, p+10),
which is a special case of Schinzel’s Hypothesis. See [16, A261541]
for related data. For example, 3/4 = m/n with m = 20723892 and
n = 27631856, and

pm + 2 = 387875563, pm + 6 = 387875567, pm + 8 = 387875569,

pn + 2 = 525608593, pn + 6 = 525608597, pn + 8 = 525608599

are all prime.

Conjecture 4.15. (2015-08-23) Any positive rational number r can be
written as m/n, where m and n belong to the set

W = {k ∈ Z+ : pk + 2 is prime and ppk+2 − ppk = 6}.

Remark 4.15. See [16, A261528 and A261533] for related data. For
example, 2 = 1782/891 with 891 and 1782 in the set W . Conjecture
4.15 implies that there are infinitely many twin prime pairs {q, q + 2}
with pq+2 − pq = 6.

Conjecture 4.16. (2015-08-14) Each positive rational number r can
be written as m/n with m and n in the set

{k ∈ Z+ : p2k − 2 and p2pk − 2 are both prime}.
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Remark 4.16. We have verified this for all those r = a/b with a, b ∈
{1, . . . , 300}. See [16, A261281] for related data.

Conjecture 4.17. (i) (2014-05-14) For any prime p > 5, there is a
positive square k2 < p such that the inverse of k2 modulo p is prime,
where the inverse of a ∈ {1, . . . , p − 1} modulo p denotes the unique
x ∈ {1, . . . , p− 1} with ax ≡ 1 (mod p).

(ii) (2015-08-18) Any positive rational number r 6 1 can be written
as m/n with m,n ∈ Z+ such that the inverse of m modulo pn is a
square.

Remark 4.17. We have checked part (i) of Conjecture 4.17 for those
primes p < 1.8× 108. See [16, A242425 and A242441] for related data.
For example, the inverse of 42 modulo 23 is the prime 13.

Conjecture 4.18. (2014-08-26) (i) Any integer n > 2 with n ̸= 8 can
be written as k + m with k,m ∈ Z+ and k ̸= m such that pk is a
primitive root modulo pm and pm is also a primitive root modulo pk.

(ii) Any positive rational number r ̸= 1 can be written as m/n with
m,n ∈ Z+ such that pm is a primitive root modulo pn and also pn is a
primitive root modulo pm.

Remark 4.18. See [16, A261387] for related data and comments.

Conjecture 4.19. (2015-07-20) Let n ∈ Z+ and s, t ∈ {1,−1}. Then
any positive rational number r0 can be written as (pqn + s)/(prn + t)
with q and r both prime, unless n > r0 = 1 and {s, t} = {1,−1}.

Remark 4.19. We have verified this conjecture in the case n = 1 for
all those r0 = a/b with a, b ∈ {1, . . . , 500} (cf. [16, A258803]). For
n = 2, . . . , 10 we have verified Conjecture 4.19 for all those r0 = a/b
with a, b ∈ {1, . . . , 30} (cf. [16, A260252]). For example, 23 = (p17209−
1)/(p1039 − 1) = (190579 − 1)/(8287 − 1) with 1039 and 17209 both
prime.

Conjecture 4.20. (2015-08-02) (i) If a, b, c are positive integers with
gcd(a, b) = gcd(a, c) = gcd(b, c) = 1, and a ̸= b and a+ b ≡ c (mod 2),
then for any n ∈ Z+ the linear equation ax− by = c has solutions with
x and y in the set {pqn : q is prime}.

(ii) Let a and b be relatively prime positive integers, and let c be any
integer. For any n ∈ Z+, the linear equation ax− by = c has solutions
with x and y in the set {π(pn) : p is prime}.

Remark 4.20. Note that part (i) of Conjecture 4.20 is an extension of
Conjecture 4.19. In the a = c = 1 and b = 2, it asserts that for any
n ∈ Z+ there are primes q and r such that 2pqn+1 = prn. This implies
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that there are infinitely many Sophie Germain primes. Also, part (ii)
of Conjecture 4.20 with c = 0 asserts that for any n ∈ Z+ the set{

π(pn)

π(qn)
: p and q are primes

}
contains all positive rational numbers (cf. [16, A260232]). We have
checked both parts of the conjecture for a, b, c = 1, . . . , 20 and n =
1, . . . , 30. For related data, see [16, A260886 and A260888].

Recall that a prime p is called a Chen prime if p+ 2 is a product of
at most two primes. In 1973 J. Chen [1] proved that there are infinitely
many Chen primes.

Conjecture 4.21. (i) (2015-07-14) For any positive integer n, there
are i, j, k ∈ Z+ with i ̸= j such that pkn + 2 = pinpjn.

(ii) (2015-07-15) For any positive integer n, there are i, j, k ∈ Z+

with i ̸= j such that p2kn − 2 = pinpjn.

Remark 4.21. See [16, A257926 and A260080] for related data. Clearly,
part (i) of Conjecture 4.21 implies that there are infinitely many Chen
primes.

Conjecture 4.22. (2015-07-15) Let d be a nonzero integer and let
n ∈ Z+. Set

D := {pkn + d : k = 1, 2, 3, . . .}.
(i) If gcd(6, d) = 1, then there are two distinct elements x and y of

D with x+ y ∈ D and x− y ∈ D.
(ii) For each k = 1, 2, we have xy = zk for some distinct elements

x, y, z of D.

Remark 4.22. See [16, A260078, A257938 and A260082] for related
data.

Conjecture 4.23. (2015-07-17) (i) Let a, n ∈ Z+ and b, c ∈ Z with
gcd(a, b, c) = 1, 2 - (a + b + c) and 3 - gcd(b, a + c). If b2 − 4ac is
not a square, then there are x, y ∈ {pkn : k = 1, 2, 3, . . .} such that
y = ax2 + bx+ c.

(ii) For any a, n ∈ Z+ and b, c ∈ Z, there are x, y ∈ {π(pn) :
p is prime} such that y = ax2 + bx+ c.

Remark 4.23. See [16, A260120 and A260140] for related data. Part
(i) of Conjecture 4.23 implies that for any n ∈ Z+ there are j, k ∈ Z+

with p2kn − 2 = pjn (or (pkn − 1)2 = pjn − 1). Part (ii) of Conjecture
4.23 implies that for any n ∈ Z+ there are primes p and q with π(pn) =
π(qn)2.
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Conjecture 4.24. (2015-08-14) Let

S1 := {q + 1 : q and pq + 2 are both prime}
and

S2 := {q − 1 : q and pq − 2 are both prime}.
For any i, j ∈ {1, 2}, each positive rational number r can be written as
m/n with m ∈ Si and n ∈ Sj, unless i ̸= j and r = 1.

Remark 4.24. See [16, A261295] for related data. For example, 4/5 =
15648/19560 with 15647, p15647 + 2 = 171763, 19559 and p19559 + 2 =
219409 all prime. A twin prime pair {p, p + 2} with π(p) also prime
is called a super twin prime pair (cf. [22, Conjecture 3.2 and Remark
3.2]).

Conjecture 4.25. (2015-08-18) Let s, t ∈ {1,−1}. Then any positive
rational number r can be written as m/n with m and n in the set

Ks,t := {k ∈ Z+ : ppk + spk + t = pq for some prime q}.

Remark 4.25. This implies that for any s, t ∈ {±1} there are infinitely
many primes q with p = pq + sq + t and π(p) both prime. See [16,
A260753 and A261136] for related data. For example, 3 = 6837/2279,
and

pp6837−p6837+1 = p68777−68777+1 = 865757−68776 = 796981 = p63737

with 63737 prime, and

pp2279−p2279+1 = p20147−20147+1 = 226553−20146 = 206407 = p18503

with 18503 prime.

Conjecture 4.26. (2015-08-16) Any positive rational number can be
written as m/n, where m and n are positive integers with ppmppn =
pq + 2 for some prime q.

Remark 4.26. See [16, A261352 and A261353] for related data. For
example, 4 = 2424/606 and

pp2424pp606 = p21589p4457 = 244471 ·42643 = 10424976853 = p473490161+2

with 473490161 prime. Conjecture 4.26 implies that there are infinitely
many prime triples (q, r, s) with pq + 2 = prps.

Conjecture 4.27. (2014-08-17) (i) Let d be any nonzero integer. Then
any positive rational number r can be written as m/n with m,n ∈ Z+

such that (ppm + d)(ppn + d) = pq + d for some prime q.
(ii) For any nonzero integer d, there are infinitely many prime triples

(q, r, s) with q, r, s distinct such that (pq + d)2 = (pr + d)(ps + d).
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Remark 4.27. See [16, A261385 and A261395] for related data and
comments. Clearly, for each d ∈ Z \ {0}, part (i) of Conjecture 4.27
implies that the equation xy = z has infinitely many solutions with
x, y, z ∈ {pq + d : q is prime}, and part (ii) of Conjecture 4.27 implies
that the set {pq + d : q is prime} contains infinitely many nontrivial
3-term geometric progressions.

Conjecture 4.28. (2015-08-16) (i) Let a, b, c ∈ Z+ with a ̸= b, a+ b ≡
c (mod 2) and gcd(a, b) = gcd(a, c) = gcd(b, c) = 1. Then any positive
rational number r can be written as m/n with m and n in the set

{k ∈ Z+ : apq − bppk = c for some prime q},
thus there are infinitely many pairs of primes q and r such that apq −
bpr = c.

(ii) Let a ∈ Z+ and b, c ∈ Z with gcd(a, b, c) = 1. If 2 - (a + b + c),
3 - gcd(b, a + c), and b2 − 4ac is not a square, then the equation y =
ax2+bx+c has infinitely many solutions with x, y ∈ {pq : q is prime}.

Remark 4.28. See [16, A261361, A261362 and A261354] for related data
and comments. Clearly, part (i) of Conjecture 4.28 implies that there
are infinitely many prime pairs q and r with 2pq +1 = pr, and part (ii)
of Conjecture 4.28 implies that there are infinitely many prime pairs q
and r with p2q − 2 = pr.

Conjecture 4.29. (i) (2015-08-18) For any j = ±1 and n ∈ Z+, there
is a positive integer k such that kn+ j = pq and k2n+1 = pr for some
pair of primes q and r.

(ii) (2015-08-20) Each positive rational number r 6 1 can be written
as m/n, where m and n are positive integers such that ppm , ppn , ppk , ppl
form a four-term arithmetic progression for some k, l ∈ Z+.

(iii) (2015-08-25) Any positive rational number r can be written as
m/n, where m and n are positive integers with (pppm + pppn )/2 = ppq
for some prime q.

Remark 4.29. See [16, A261437, A261462 and A261583] for related
data.

Motivated by Conjecture 4.29, we define

p(1)n = pn, and p(m+1)
n = p(m)

pn for m,n = 1, 2, 3, . . . ,

and pose the following conjecture.

Conjecture 4.30. (2015-08-25) (i) If q ∈ Z+ and a ∈ Z are relatively
prime, then for any m ∈ Z+ there are infinitely many n ∈ Z+ with

p
(m)
n ≡ a (mod q).
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(ii) For any integer k > 2 and m > 0, the set Pm := {p(m)
n : n ∈ Z+}

contains infinitely many nontrivial k-term arithmetic progressions.
(iii) For any m,n ∈ Z+, we have

n+1

√
p
(m+1)
n+1

n

√
p
(m+1)
n

<

n+1

√
p
(m)
n+1

n

√
p
(m)
n

< 1.

Remark 4.30. Part (i) of Conjecture 4.30 is an extension of Dirichlet’s
theorem on primes in arithmetic progressions, and part (ii) of Conjec-
ture 4.30 is an extension of the Green-Tao theorem [7]. Part (iii) is an
analog of Firoobakht’s conjecture (cf. [19]), we also conjecture that the
sequence ( n

√
qn)n>3 is strictly decreasing if qn denotes the n-th practical

number.
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