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PROBLEMS ON COMBINATORIAL PROPERTIES OF
PRIMES

ZHI-WEI SUN

Abstract. For x > 0 let π(x) be the number of primes not exceeding
x. The asymptotic behaviors of the prime-counting function π(x) and
the n-th prime pn have been studied intensively in analytic number the-
ory. Surprisingly, we find that π(x) and pn have many combinatorial
properties which should not be ignored. In this paper we pose 60 open
problems on combinatorial properties of primes (including connections
between primes and partition functions) for further research. For ex-
ample, we conjecture that for any integer n > 1 one of the n numbers
π(n), π(2n), . . . , π(n2) is prime; we also conjecture that for any integer
n > 6 there exists a prime p < n such that pn is a primitive root modulo
pn. One of our conjectures involving the partition function p(n) states
that for any prime p there is a primitive root g < p modulo p with
g ∈ {p(n) : n = 1, 2, 3, . . .}.

1. Introduction

Prime numbers play important roles in number theory. For x > 0 let

π(x) denote the number of primes not exceeding x. The celebrated Prime

Number Theorem states that

π(x) ∼ Li(x) as x→ +∞,

where Li(x) =
∫ x
2

dt
log t
∼ x

log x
. This has the following equivalent version:

pn ∼ n log n as n→ +∞,

where pn denotes the n-th prime. To get sharp estimations for π(x) is a

main research topic in analytic number theory. It is known (cf. [10]) that

under Riemann’s Hypothesis we have

π(x) = Li(x) +O(
√
x log x) and pn+1 − pn = O(

√
pn log pn).
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For convenience, we also set π(0) = 0.

Many number theorists generally consider primes irregular and only focus

on their asymptotic behaviours. In contrast with the great achievements on

the asymptotic behaviors of π(x) and pn (see [14] for a recent breakthrough

on prime gaps), almost nobody has investigated combinatorial properties of

primes seriously and systematically.

Surprisingly, we find that the functions π(x) and pn have many unexpect-

ed combinatorial properties depending on their exact values. Also, partition

functions arising from combinatorics have nice connections with primes. In

this paper we pose 60 typical conjectures in this direction. The next section

contains 25 conjectures on combinatorial properties of π(x), while Section 3

contains 25 conjectures on combinatorial properties of the function pn. Sec-

tion 4 is devoted to 10 conjectures on primes related to partition functions.

The reader may also consult [12] for the author’s previous conjectures on

alternating sums of consecutive primes.

The 60 selected conjectures in Sections 2–4 are somewhat incredible. N-

evertheless, our numerical computations and related graphs in [11] provide

strong evidences to support them. The author would like to offer 1000 Chi-

nese dollars as the prize for the first complete solution to any one of the 60

conjectures. We hope that the problems here might interest some number

theorists and stimulate further research, but the solutions to most of them

might be beyond the intelligence of human beings.

2. Combinatorial properties of π(x) and related things

Conjecture 2.1. (2014-02-09) (i) For any integer n > 1, π(kn) is prime

for some k = 1, . . . , n. Moreover, for every n = 1, 2, 3, . . ., there is a positive

integer k < 3
√
n+ 3 with π(kn) prime.

(ii) Let n0 = 5, n1 = 3 and n−1 = 6. For each δ ∈ {0,±1} and any

integer n > nδ, there is a positive integer k < n such that k2 + k − 1 and

π(kn) + δ are both prime.

Remark 2.1. (a) We also conjecture that for any integer n > 92 there is

a prime p 6 n with π(pn) prime. We have verified part (i) of Conjecture

2.1 for n up to 2 × 107, and our data and graphs for the sequence a(n) =

|{0 < k < n : π(kn) is prime}| (n = 1, 2, 3, . . .) (cf. [11, A237578]) strongly

support its truth. It seems that |{1 6 k 6 n : π(kn) is prime}| ∼ π(n)/2

as n→ +∞. See also [11, A237615] for part (ii) of Conjecture 2.1, and note

that it is not yet proven that there are infinitely many primes of the form

x2 + x− 1 with x ∈ Z.
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(b) We also conjecture the following analogue of Conjecture 2.1 (cf. [11,

A238703]): For any integers n > m > 0 with m - n, there is a positive

integer k < n with bkn/mc prime. Note that bkn/mc is the number of

multiples of m among 1, 2, . . . , kn.

Conjecture 2.2. (2014-02-10) (i) For any positive integer n, there is a

positive integer k < pn such that π(kn) ≡ 0 (mod n).

(ii) For each positive integer n, the set {π(kn) : k = 1, . . . , 2pn} contains

a complete system of residues modulo n.

Remark 2.2. See [11, A237597] and [11, A237643] for related sequences

concerning this conjecture.

Conjecture 2.3. (2014-02-20) Let n > 1 be an integer. Then π(jn) | π(kn)

for some 1 6 j < k 6 n with k ≡ 1 (mod j).

Remark 2.3. For example, π(3 × 50) = 35 divides π(7 × 50) = 70 with

7 ≡ 1 (mod 3). We have verified the conjecture for all n = 2, 3, . . . , 30000.

See [11, A238224] for a related sequence.

Conjecture 2.4. (i) (2014-02-10) For any positive integer n, there is a

positive integer k < pn such that π(kn) is a square.

(ii) (2014-02-14) Let n be any positive integer. Then, for some k =

1, . . . , n, the number of twin prime pairs not exceeding kn is a square.

Remark 2.4. See [11, A237598, A237612, A237840, A237879 and A237975]

for some sequences related to this conjecture. Similar to part (i), we con-

jecture that for any integer n > 9 there is a positive integer k < pn/2

such that π(kn) is a triangular number. We have verified part (ii) of the

conjecture for all n = 1, . . . , 22000; for example, for n = 19939 we may

take k = 12660 since there are exactly 10002 = 106 twin prime pairs not

exceeding 12660× 19939 = 252427740.

Conjecture 2.5. (i) (2014-02-24) For any integer n > 5, there is a positive

integer k < n with kn+ π(kn) prime.

(ii) (2014-03-06) If n is a positive integer, then pkn − π(kn) is prime for

some k = 1, . . . , n.

Remark 2.5. See [11, A237712 and A238890] for related sequences. Part

(ii) of the conjecture implies that there are infinitely many primes p with

p− π(π(p)) prime.

Conjecture 2.6. (2014-03-07) (i) For any integer n > 2, there is a prime

p 6 n with π(π((p− 1)n)) prime.
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(ii) Let n be any positive integer. Then π(π(kn)) is a square for some

k = 1, . . . , n. Also, there exists a positive integer k 6 (n + 1)/2 such that

π(π(kn)) is a triangular number.

Remark 2.6. See [11, A238504, A238902 and A239884] for related data and

graphs. We have verified the two assertions in Conjecture 2.6(ii) for n up

to 2× 105 and 105 respectively; for example,

π(π(8514× 9143)) = π(4550901) = 5652,

π(π(37308× 98213)) = π(174740922) = 31232,

π(π(83187× 192969)) = π(715034817) = 60822.

We guess that there are positive constants c1 and c2 such that

c1 6
|{1 6 k 6 n : π(π(kn)) is a square}|

log n
6 c2 for all n = 2, 3, . . . .

Conjecture 2.7. (i) (2014-02-17) For any integer n > 4 and k = 1, . . . , n,

we have π(kn)1/k > π((k + 1)n)1/(k+1).

(ii) (2014-02-22) Let n be any positive integer. Then, π((k + 1)n) −
π(kn) (the number of primes in the interval (kn, (k + 1)n]) is a square

for some k = 0, . . . , n− 1.

Remark 2.7. For any integer n > 1, Bertrand’s postulate (first proved by

Chebyshev in 1850) indicates that π(2n) > π(n), and Oppermann’s con-

jecture states that π((n − 1)n) < π(n2) < π(n(n + 1)). Our computation

suggests that π(kn) < π((k+ 1)n) for any integers n > k > 0. A conjecture

of Firoozbakht (cf. [9, p. 185]) asserts that the sequence p
1/n
n (n = 1, 2, 3, . . .)

is strictly decreasing, and the author’s recent paper [13] contains many sim-

ilar conjectures on monotonicity of arithmetical sequences. See also [11,

A238277] for a sequence related to Conjecture 2.7(ii).

Conjecture 2.8. (i) (2014-03-16) Let n > 3 be an integer. Then π(pn) −
π((p − 1)n) is prime for some prime p < n. Also, there is an odd prime

p 6 n with π(p+1
2
n)− π(p−1

2
n) prime.

(ii) (2014-02-22) For any integer n > 3, there is a number k ∈ {1, . . . , n−
1} with π(kn)− π((k − 1)n) and π((k + 1)n)− π(kn) both prime.

Remark 2.8. See [11, A239328, A239330 and A238278] for related data and

graphs.

Conjecture 2.9. (2014-02-22) (i) For any integer n > 1, there is a positive

integer k < n such that the intervals (kn, (k+ 1)n) and ((k+ 1)n, (k+ 2)n)

contain the same number of primes, i.e.,

π(kn), π((k + 1)n), π((k + 2)n)
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form a three-term arithmetic progression.

(ii) For any integer n > 4, there is a positive integer k < pn such that

π(kn), π((k + 1)n), π((k + 2)n), π((k + 3)n)

form a four-term arithmetic progression.

Remark 2.9. See [11, A238281] for a sequence related to part (i) of this

conjecture.

Conjecture 2.10. (2014-02-23) For any positive integer n, we have

|{π((k + 1)n)− π(kn) : k = 0, . . . , n− 1}| >
√
n− 1,

and equality holds only when n is 2 or 26.

Remark 2.10. See [11, A230022] for related data and graphs.

Conjecture 2.11. (2014-02-24) Let n > 1 be an integer. Then, for some

prime p 6 pn, the three numbers π(p), π(p+ n), π(p+ 2n) form a nontrivial

arithmetic progression, i.e., π(p+ 2n)− π(p+ n) = π(p+ n)− π(p) > 0.

Remark 2.11. See [11, A210210] for a related sequence.

Conjecture 2.12. (i) (2014-02-08) Each integer n > 10 can be written as

k+m with k and m positive integers such that π(km) (or π(k2m)) is prime.

(ii) (2014-03-20) For any integer n > 9, there are positive integers k and

m with k+m = n such that π(2k)−π(k) and π(2m)−π(m) are both prime.

Also, any integer n > 4 can be written as a sum of two positive integers k

and m such that π(2k)− π(k) is a prime and π(2m)− π(m) is a square.

Remark 2.12. See [11, A237497, A239428 and A239430] for related data

and graphs. As π(2k + 2) − π(k + 1) − (π(2k) − π(k)) ∈ {0,±1} and

π(2n) − π(n) ∼ n/ log n, there are infinitely many positive integers k with

π(2k)−π(k) prime. Similar to part (i), we also conjecture (cf. [11, A237531])

that for any integer n > 5 there is a positive integer k < n/2 such that

ϕ(k(n−k))−1 and ϕ(k(n−k))+1 are twin prime, where ϕ denotes Euler’s

totient function.

For x > 0, we use π2(x) to denote the number of twin prime pairs not

exceeding x, i.e., π2(x) = |{p 6 x : p and p− 2 are both prime}|.

Conjecture 2.13. (2014-02-15) (i) Each integer n > 5 can be written as

k +m with k and m positive integers such that π2(km) is prime.

(ii) Any integer n > 8 can be written as k + m with k and m positive

integers such that π2(km)− 1 and π2(km) + 1 are twin prime.
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Remark 2.13. This is an analogue of Conjecture 2.12(i) for twin prime pairs.

Conjecture 2.14. (i) (2014-02-11) For any positive integer n, the set {π(k2) :

k = 1, . . . , 2pn+1 − 3} contains a complete system of residues modulo n.

(ii) (2014-02-17) The sequence n
√
π(n2) (n = 3, 4, . . .) is strictly decreas-

ing.

(iii) (2014-02-17) For any integer n > 0, the interval [π(n2), π((n + 1)2)]

contains at least one prime except for n = 25, 35, 44, 46, 105.

Remark 2.14. Legendre’s conjecture asserts that for each positive integer n

there is a prime between n2 and (n+ 1)2.

Conjecture 2.15. (i) (2014-02-11) For any integer n > 8, π(k) and π(k2)

are both prime for some integer k ∈ (n, 2n).

(ii) (2014-02-11) There are infinitely many primes p with π(p), π(π(p))

and π(p2) all prime.

(iii) (2014-04-09) For any positive integer n, there are infinitely many

primes p with π(kp) prime for all k = 1, . . . , n.

Remark 2.15. See [11, A237657, A237687 and A240604] for related se-

quences and data.

Conjecture 2.16. (i) (2014-02-09) For any integer n > 1, π(n + k2) is

prime for some k = 1, . . . , n − 1. In general, for each a = 2, 3, . . ., if

an integer n is sufficiently large, then π(n + ka) is prime for some k =

1, . . . , n− 1.

(ii) (2014-02-10) Let n > 4 be an integer. Then n + π(k2) is prime for

some k = 1, . . . , n.

(iii) (2014-03-01) If a positive integer n is not a divisor of 12, then n2 +

π(k2) is prime for some 1 < k < n. For any integer n > 4, π(n2) + π(k2)

is prime for some 1 < k < n. Also, for each n = 2, 3, . . . there is a positive

integer k < n such that π((k+1)2)−π(k2) and π(n2)−π(k2) are both prime.

Remark 2.16. See [11, A237582, A237595 and A238570] for related se-

quences. In 2012 the author conjectured that if n is a positive integer then

n+ k and n+ k2 are both prime for some k = 0, . . . , n (cf. [11, A185636]).

Conjecture 2.17. (i) (2014-02-08) For any integer n > 4, there is a prime

p < n with pn + π(p) prime. Moreover, for every positive integer n, there

is a prime p <
√

2n log(5n) with pn+ π(p) prime.

(ii) (2014-03-02) For any integer n > 2, there is a prime p 6 n with

2π(p)− (−1)n and pn+ ((−1)n − 3)/2 both prime.
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Remark 2.17. See [11, A237453 and A238643] for related data and graphs.

We have verified parts (i) and (ii) for n up to 108. As a supplement to

part (i), we also conjecture that for every n = 1, 2, 3, . . . there is a positive

integer k < 3
√
n such that kn+ pk = π(pk)n+ pk is prime. Part (ii) implies

that for any odd prime p there is a prime q 6 p with pq − 2 prime. By

Chen’s work [2], there are infinitely many primes p with p+ 2 a product of

at most two primes.

Conjecture 2.18. (2013-11-24) (i) Every n = 4, 5, . . . can be written as

p+ q − π(q), where p and q are odd primes not exceeding n.

(ii) For any integer n > 7, there is a prime p < n with n+ p− π(p) also

prime.

Remark 2.18. We have verified part (i) for all n = 4, 5, . . . , 108; for example,

9 = 7 + 5 − π(5) with 7 and 5 prime. See [11, A232463 and A232443] for

related sequences.

Conjecture 2.19. (2014-02-06) (i) For any integer n > 2, there is a prime

p < 2n with π(p) and 2n− p both prime.

(ii) For any integer n > 36, we can write 2n − 1 = a + b + c with a, b, c

in the set {p : p and π(p) are both prime}.

Remark 2.19. Part (i) is a refinement of Goldbach’s conjecture, and part (ii)

is stronger than the weak Goldbach conjecture finally proved by Helfgott

[7]. See [11, A237284 and A237291] for related representation functions.

Recall that a prime p with 2p + 1 also prime is called a Sophie Germain

prime.

Conjecture 2.20. (2014-02-13) (i) For any integer n > 4, there is a prime

p < n such that π(n− p) is a Sophie Germain prime. Also, for any integer

n > 8 there is a prime p < n such that π(n − p) − 1 and π(n − p) + 1 are

twin prime.

(ii) For any integer n > 4, there is a prime p < n such that 3m± 1 and

3m + 5 are all prime with m = π(n − p). Also, for any integer n > 8,

there is a prime p < n such that 3m ± 1 and 3m − 5 are all prime with

m = π(n− p).

Remark 2.20. See [11, A237768 and A237769] for related sequences. We

have verified part (i) for n up to 2× 107.

Conjecture 2.21. (2014-02-13) (i) For any integer n > 4, there is a prime

p < n such that the number of Sophie Germain primes among 1, . . . , n− p
is a Sophie Germain prime.
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(ii) For any integer n > 12, there is a prime p < n such that

r = |{q 6 n− p : q and q + 2 are twin prime}|

and r + 2 are twin prime.

Remark 2.21. See [11, A237815 and A237817] for related sequences.

Conjecture 2.22. (2014-02-12) (i) For any integer n > 2, there is a prime

p < n such that π(n− p) is a square. Also, for any integer n > 2 there is a

prime p < n such that π(n− p) is a triangular number.

(ii) For any integer n > 2, there is a prime p 6 pn such that π(n + p) is

a square.

Remark 2.22. See [11, A237706 and A237710] for related sequences. We

have verified the first assertion in part (i) for n up to 5× 108, and guessed

that the number of primes p < n with π(n − p) a square is asymptotically

equivalent to c
√
n with c a constant in the interval (0.2, 0.22). We also

conjecture the following analogue (cf. [11, A238732]) of Conjecture 2.22(i):

For any integers m > 2 and n > 2, there is a prime p < n such that

b(n− p)/mc is a square.

Conjecture 2.23. (2014-02-13) (i) For any integer n > 11, there is a prime

p < n such that the number of Sophie Germain primes among 1, . . . , n− p
is a square.

(ii) For any integer n > 54, there is a prime p < n such that the number

of Sophie Germain primes among 1, . . . , n− p is a cube.

Remark 2.23. Part (i) is an analogue of Conjecture 2.22(i) for Sophie Ger-

main primes. See [11, A237837] for a sequence related to part (ii).

Conjecture 2.24. (2014-03-02) (i) For every n = 2, 3, . . ., there is an odd

prime p < 2n such that the number of squarefree integers among 1, . . . , p−1
2
n

is prime.

(ii) For any integer n > 3, there is a prime p < n such that the number

of squarefree numbers among 1, . . . , n− p is prime.

Remark 2.24. See [11, A238645 and A238646] for related sequences.

Conjecture 2.25. (2014-02-22) For any integer n > 4, there is a number

k ∈ {1, . . . , n} such that the number of prime ideals of the Gaussian ring

Z[i] with norm not exceeding kn is a prime congruent to 1 modulo 4.

Remark 2.25. Z[i] is a principal ideal domain, and any prime ideal P of

it has the form (p) with p a rational prime congruent to 3 modulo 4 or
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p = a+ bi with N(p) = a2 + b2 a rational prime not congruent to 3 modulo

4. (Cf. [8, p. 120].) So, the number of prime ideals of Z[i] with norm not

exceeding x actually equals

π(
√
x) + |{

√
x < p 6 x : p is a prime with p 6≡ 3 (mod 4)}|.

3. Combinatorial properties involving the function pn

Conjecture 3.1. (Unification of Goldbach’s Conjecture and the Twin Prime

Conjecture, 2014-01-29) For any integer n > 2, there is a prime q with 2n−q
and pq+2 + 2 both prime.

Remark 3.1. We have verified this for n up to 2 × 108. See [11, A236566]

for a related sequence. Note that the conjecture implies the Twin Prime

Conjecture. In fact, if all primes q with pq+2 + 2 prime are smaller than

an even number N > 2, then for any such a prime q the number N !− q is

composite since N !− q ≡ 0 (mod q) and N !− q > q(q + 1)− q > q.

Conjecture 3.2. (Super Twin Prime Conjecture, 2014-02-05) Any integer

n > 2 can be written as k + m with k and m positive integers such that

pk + 2 and ppm + 2 are both prime.

Remark 3.2. We have verified the conjecture for n up to 109. See [11,

A218829, A237259, A237260] for related sequences. If p, p+ 2 and π(p) are

all prime, then we call {p, p + 2} a super twin prime pair. Conjecture 3.2

implies that there are infinitely many super twin prime pairs. In fact, if all

those positive integers m with ppm + 2 prime are smaller than an integer

N > 2, then by Conjecture 3.2, for each j = 1, 2, 3, . . ., there are positive

integers k(j) and m(j) with k(j) + m(j) = jN such that pk(j) + 2 and

ppm(j)
+ 2 are both prime, and hence k(j) ∈ ((j− 1)N, jN) since m(j) < N ;

thus
∞∑
j=1

1

pk(j)
>

∞∑
j=1

1

pjN
,

which is impossible since the series on the right-hand side diverges while

the series on the left-hand side converges by Brun’s theorem on twin primes

(cf. [3, p. 14]).

Conjecture 3.3. (2014-01-28) Any integer n > 2 can be written as k + m

with k and m positive integers such that both {6k± 1} and {pm, pm + 2} are

twin prime pairs.

Remark 3.3. Clearly this implies the Twin Prime Conjecture. We have

verified Conjecture 3.3 for n up to 2 × 107. See [11, A236531] for related

data and graphs.
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Conjecture 3.4. (2014-02-07) Any integer n > 1 can be written as k + m

with k and m positive integers such that p2k − 2, p2m − 2 and p2pm − 2 are all

prime.

Remark 3.4. We have verified this for n up to 108. See [11, A237413 and

A237414] for related sequences. It is not yet proven that there are infinitely

many primes of the form x2 − 2 with x ∈ Z.

Conjecture 3.5. (i) (2013-11-25) The set

{k +m : 0 < k < m < n, and pk, pm, pn form an arithmetic progression}

coincides with {5, 6, 7, . . .}.
(ii) (2014-02-22) For every n = 1, 2, 3, . . ., there is a positive integer

k 6 3pn + 8 such that pkn, p(k+1)n, p(k+2)n form a three-term arithmetic pro-

gression.

Remark 3.5. Recall that the Green-Tao theorem (cf. [4]) asserts that there

are arbitrarily long arithmetic progressions of primes. See [11, A232502 and

A238289] for related sequences.

Conjecture 3.6. (2014-03-01) (i) For any integer n > 6, there is a number

k ∈ {1, . . . , n} with pkn + 2 (or pk2n + 2) prime. Moreover, for every n =

1, 2, 3, . . . there is a positive integer k < 3
√
n+ 6 with pkn + 2 prime.

(ii) For any positive integer n, there is a number k ∈ {1, . . . , n} such that

2k + 1 and p2kn − 2 are both prime.

Remark 3.6. Clearly part (i) is stronger than the Twin Prime Conjecture,

while part (ii) implies that there are infinitely many primes p with p2 − 2

prime. See [11, A238573 and A238576] for related data and graphs.

Conjecture 3.7. (i) (2013-12-01) There are infinitely many positive inte-

gers n such that

n± 1, pn ± n, npn ± 1

are all prime.

(ii) (2014-01-20) There are infinitely many primes q with p2q + 4q2 and

q2 + 4p2q both prime.

Remark 3.7. For part (i), the first such a number n is 22110; see [11,

A232861] for a list of the first 2000 such numbers n. See also [11, A236193]

for a list of the first 10000 suitable primes q in part (ii) of Conjecture 3.7.

Conjecture 3.8. (i) (2013-12-07) For every n = 2, 3, . . ., there is a positive

integer k < n with kpn−k + 1 prime. Also, for any integer n > 2, there is a

positive integer k < n with kpn−k − 1 prime.
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(ii) (2013-12-11) Let n > 5 be an integer. Then pkpn−k − 6 is prime for

some 0 < k < n.

Remark 3.8. See [11, A233296 and A233529] for related data and graphs.

By Chen’s work [2], there are infinitely many primes p with p+ 6 a product

of at most two primes.

Conjecture 3.9. (2013-11-23) Let n > 6 be an integer. Then pk + pn−k− 1

is prime for some k = 1, . . . , n − 1. Also, p2k + p2n−k − 1 is prime for some

k = 1, . . . , n− 1.

Remark 3.9. See [11, A232465] for a related sequence.

Conjecture 3.10. (2013-12-10) (i) For any integer n > 3, there is a positive

integer k < n such that p2k + 4p2n−k is prime.

(ii) Let n > 10 be an integer. Then there is a positive integer k < n with

p3k + 2p3n−k prime. Also, p3k + 2p2n−k is prime for some 0 < k < n.

Remark 3.10. See [11, A233439] for a sequence related to part (i). In 2001

Heath-Brown [6] proved that there are infinitely many primes of the form

x3 + 2y3 with x, y ∈ Z.

Conjecture 3.11. (2014-03-01) (i) If a positive integer n is not a divisor of

6, then p2q + (pn− 1)2 is prime for some prime q < n. Also, for any positive

integer n 6= 1, 2, 9, there is a prime q < n with (pq − 1)2 + p2n prime.

(ii) For every n = 2, 3, . . ., there is a positive integer k < n with p3n + 2p3k
prime.

Remark 3.11. See [11, A238585] for a sequence related to the first assertion

in the conjecture.

Conjecture 3.12. (i) (2013-12-05) Any integer n > 7 can be written as

k +m with k and m positive integers such that 2k + pm is prime.

(ii) (2013-12-06) Any integer n > 3 can be written as k + m with k and

m positive integers such that k! + pm is prime.

Remark 3.12. See [11, A233150 and A233206] for related sequences. We

have verified parts (i) and (ii) for n up to 3× 107 and 107 respectively. For

example, for n = 28117716 we may take k = 81539 and m = 28036177 so

that 2k + pm is prime, also 11 = 4 + 7 with 4! + p7 = 24 + 17 = 41 prime.

Part (i) was motivated by the author’s conjecture (cf. [11, A231201]) that

any integer n > 1 can be written as a sum of two positive integers k and m

with 2k + m prime. We also conjecture that for any integer n > 1 there is

a number k ∈ {1, . . . , n} with k!n− 1 (or k!n+ 1) prime.
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Conjecture 3.13. (i) (2013-12-05) Any integer n > 2 can be written as

k +m with m > k > 0 integers such that
(
2k
k

)
+ pm is prime.

(ii) (2014-03-19) For any integer n > 4, there exists an integer 1 < k <√
n log n such that pn +

(
pk−1

(pk−1)/2

)
is prime.

Remark 3.13. We have verified parts (i) and (ii) for n up to 108 and 107

respectively. See [11, A233183 and A239451] for related data and graphs.

Conjecture 3.14. (2014-01-21) For any integer n > 20, there is a positive

integer k < n such that m = ϕ(k) +ϕ(n−k)/8 is an integer with
(
2m
m

)
+ pm

prime.

Remark 3.14. This implies that there are infinitely many positive integers

m with
(
2m
m

)
+ pm prime. (By Stirling’s formula,

(
2m
m

)
∼ 4m/

√
mπ as m→

+∞.) See [11, A236241] for the corresponding representation function, and

[11, A236242] for a list of 52 values of m with
(
2m
m

)
+pm prime. For example,

when m = 30734 the number
(
2m
m

)
+pm is a prime with 18502 decimal digits.

Conjecture 3.15. (i) (2013-12-29) Any integer n > 9 can be written as

k + m with k and m positive integers such that q = k + pm and pq − q + 1

are both prime.

(ii) (2014-03-05) Each integer n > 1 can be written as k + m with k and

m positive integers such that

ppk − pk + 1, pp2k+1
− p2k+1 + 1 and ppm − pm + 1

are all prime.

(iii) (2014-03-06) For any positive integer n, there is a number k ∈
{1, . . . , n} such that ppk − pk + 1 and ppkn − pkn + 1 are both prime.

(iv) (2014-03-06) There are infinitely many primes q with pq − q + 1 and

pq′ − q′ + 1 both prime, where q′ is the first prime after q.

Remark 3.15. See [11, A234694, A238766, A238878] for data and graphs

related to parts (i)-(iii). We have verified part (ii) of the conjecture for all

n = 2, 3, . . . , 107. See also [11, A234695] for the first 10000 primes q with

pq − q + 1 also prime, and [11, A238814] for the first 10000 primes q with

pq − q + 1 and pq′ − q′ + 1 both prime.

Conjecture 3.16. (2014-03-03) Let m > 0 and n > 2m+ 1 be integers. If

m = 1 and 2 | n, or m = 3 and n 6≡ 1 (mod 6), or m ∈ {2, 4, 5, . . .}, then

there is a prime p < n such that q = b(n− p)/mc and pq − q+ 1 (or q2− 2)

are both prime.

Remark 3.16. In the case m = 1, this is a refinement of Goldbach’s conjec-

ture. When m = 2, it is stronger than Lemoine’s conjecture which states



PROBLEMS ON COMBINATORIAL PROPERTIES OF PRIMES 13

that any odd number n > 5 can be written as p + 2q with p and q both

prime. Conjecture 3.16 in the case m > 2 is completely new. We have

verified the conjecture for all m = 1, . . . , 40 and n = 2m + 2, . . . , 106. See

[11, A235189, A238134 and A238701] for related data and graphs.

Conjecture 3.17. (2014-01-30) Any odd number greater than 5 can be writ-

ten as a sum of three elements of the set

{q : both q and pq − q + 1 are prime}.

Remark 3.17. This is stronger than the weak Goldbach conjecture finally

proved by Helfgott [7]. See [11, A236832] for the corresponding representa-

tion function.

Conjecture 3.18. (2014-01-19) For any integer n > 32, there is a positive

integer k < n − 2 such that q = ϕ(k) + ϕ(n − k)/2 + 1 and pq − q ± 1 are

all prime.

Remark 3.18. See [11, A236097 and A236119] for related sequences. The

conjecture implies that there are infinitely twin prime pairs of the form

pq − q ± 1 with q prime.

Conjecture 3.19. (2014-01-17) For any integer n > 38, there is a positive

integer k < n such that q = ϕ(k) + ϕ(n − k)/3 + 1, r = pq − q + 1 and

s = pr − r + 1 are all prime.

Remark 3.19. See [11, A235924 and A235925] for related sequences. The

conjecture implies that there are infinitely primes q with r = pq− q+ 1 and

s = pr − r + 1 both prime.

Conjecture 3.20. (2014-01-17) For each m = 2, 3, . . ., there is a prime

chain q1 < . . . < qm of length m such that qk+1 = pqk − qk + 1 for all

0 < k < m.

Remark 3.20. For such chains of length m = 4, 5, 6, see [11, A235934,

A235935 and A235984]. We also have some other conjectures similar to

Conjecture 3.20, see, e.g., [11, A236066 and A236481].

Conjecture 3.21. (i) (2014-03-06) For any integer n > 5, there is a positive

integer k < n such that 2k − 1 and pkn + kn are both prime.

(ii) (2014-01-04) Any integer n > 8 can be written as k(k+ 1)/2 +m with

k and m positive integers such that pk(k+1)/2 + ϕ(m) is prime.

Remark 3.21. See [11, A238881 and A235061] for related sequences. Moti-

vated by part (i), we conjecture that for any integer-valued polynomial P (x)
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with positive leading coefficient there are infinitely many positive integers n

with pn+2P (n) prime. When P (x) is constant, this reduces to a conjecture

of de Polignac.

Conjecture 3.22. (2013-12-16) (i) Any integer n > 100 can be written as

k2 +m with k and m positive integers such that ϕ(k2) + pm is prime.

(ii) If an integer n > 6 is not equal to 18, then it can be written as k2 +m

with k and m positive integers such that σ(k2)+pm−1 is prime, where σ(j)

is the sum of all positive divisors of j.

Remark 3.22. See [11, A236548] for a sequence related to part (i). Conjec-

ture 3.22 was motivated by the author’s conjecture (cf. [11, A233544]) that

any integer n > 1 can be written as k2 +m with σ(k2) +ϕ(m) prime, where

k and m are positive integers with m > k2.

Conjecture 3.23. (2014-02-01) (i) For any integer n > 13, there is a prime

q < n such that q + 2 and pn−q + q + 1 are both prime.

(ii) If a positive integer n is not a divisor of 12, then there is a prime

q < n such that 3(pn−q + q)− 1 and 3(pn−q + q) + 1 are twin prime.

Remark 3.23. See [11, A236831 and A182662] for related sequences.

Conjecture 3.24. (2014-05-22) (i) Any integer n > 3 can be written as

a+ b with a and b in the set

{k > 0 : the inverse of k mod pk is prime},

where the inverse of k mod pk refers to the unique x ∈ {1, . . . , pk − 1} with

kx ≡ 1 (mod pk).

(ii) Every n = 2, 3, 4, . . . can be written as a+ b with a and b in the set

{k > 0 : k is a primitive root modulo pk}.

Remark 3.24. See [11, A242753 and A242748] for related sequences. We

have verified parts (i) and (ii) for n up to 108 and 3× 105 respectively. We

also conjecture that for any prime p > 5 there is a positive square k2 < p

such that the inverse of k2 mod p is prime (cf. [11, A242425]), and that any

integer n > 7 can be written as k +m with k,m ∈ {2, 3, . . .} such that the

least positive residue of pk modulo k is prime and the least positive residue

of pm modulo m is a square (cf. [11, A242950]).

Conjecture 3.25. (2014-06-01) Let n > 6 be an integer. Then there is a

prime p < n such that pn is a primitive root modulo pn. Also, there is a

prime q < n such that q(n− q) is a primitive root modulo pn.

Remark 3.25. See [11, A243164 and A243403] for related data and graphs.

We have verified Conjecture 3.25 for all n = 7, . . . , 2× 105.
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4. On primes related to partition functions

For n = 1, 2, 3, . . ., let p(n) denote the number of ways to write n as a

sum of positive integers with the order of addends ignored. The function

p(n) is called the partition function. For each positive integer n, let q(n)

denote the number of ways to write n as a sum of distinct positive integers

with the order of addends ignored. The function q(n) is usually called the

strict partition function. It is known that

p(n) ∼ eπ
√

2n/3

4
√

3n
and q(n) ∼ eπ

√
n/3

4(3n3)1/4
as n→ +∞

(cf. [5] and [1, p. 826]). So both p(n) and q(n) grow eventually faster than

any polynomial in n.

Conjecture 4.1. (i) (2014-02-27) Let n be any positive integer. Then p(n)+

k is prime for some k = 1, . . . , n. Also, q(n) + k is prime for some k =

1, . . . , n.

(ii) (2014-02-28) Let n > 1 be an integer. Then p(n) + p(k)− 1 is prime

for some 0 < k < n, and p(k) + q(n) is prime for some 0 < k < n. Also,

for any integer n > 7, there is a positive integer k < n with n+ p(k) prime.

(iii) (2014-03-12) Let n > 1 be an integer. Then there exists a number

k ∈ {1, . . . , n − 1} such that kp(n)(p(n) − 1) + 1 is prime. Also, we may

replace kp(n)(p(n)−1)+1 by p(k)p(n)(p(n)−1)+1 or p(k)p(n)(p(n)+1)−1.

Remark 4.1. See [11, A238457, A238509, A239209 and A239214] for related

data and graphs. For part (i) or part (ii), we have verified the first assertion

for n up to 1.5 × 105. For part (iii), we have verified the first assertion for

n up to 105. Conjecture 4.1 might be helpful in finding large primes.

Conjecture 4.2. (2014-02-27) (i) For any integer n > 2, there is a prime

q < n with 2p(n − q) + 1 prime. Also, for every n = 4, 5, . . ., there is a

prime q < n with 2p(n− q)− 1 prime.

(ii) For each integer n > 2, there is a prime p < n with q(n − p) + 1

prime. Also, for any integer n > 6, there is a prime p < n with q(n−p)−1

prime.

Remark 4.2. This is an analogue of Conjecture 2.20. We have verified the

conjecture for n up to 105. See [11, A238458 and A238459] for related

sequences.

Conjecture 4.3. (i) (2013-12-26) For any integer n > 127, there is a pos-

itive integer k < n− 2 such that p(k + ϕ(n− k)/2) is prime.
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(ii) (2013-12-28) For any integer n > 727, there is a positive integer

k < n− 2 such that q = ϕ(k) +ϕ(n− k)/2 + 1 and p(q− 1) are both prime.

Remark 4.3. Clearly, part (ii) implies that there are infinitely many primes

q with p(q − 1) prime. We have verified parts (i) and (ii) for n up to 25000

and 56000 respectively. See [11, A234470, A234567 and A234569] for related

data and graphs.

Conjecture 4.4. (i) (2014-03-13) For each integer n > 3, there is a number

k ∈ {1, . . . , n} with p(n+ k) + 1 prime. Also, for any integer n > 15, there

is a number k ∈ {1, . . . , n} with p(n+ k)− 1 prime.

(ii) (2013-12-26) Any integer n > 5 can be written as k + m with k,m ∈
{3, 4, . . .} such that q(ϕ(k)ϕ(m)/4) + 1 is prime.

Remark 4.4. See [11, A239232 and A234475] for related data and graphs.

The conjecture implies that there are infinitely many primes of the form

p(n) + 1 (or p(n)− 1, or q(n) + 1) with n a positive integer.

Conjecture 4.5. (2013-12-29) Any integer n > 7 can be written as k + m

with k and m positive integers such that p = pk + ϕ(m) and q(p) − 1 are

both prime. Also, any integer n > 7 not equal to 15 can be written as k+m

with k and m positive integers such that p = pk + ϕ(m) and q(p) + 1 are

both prime.

Remark 4.5. This implies that there are infinitely many primes p with q(p)−
1 (or q(p) + 1) prime. See [11, A234615 and A234644] for related data and

graphs. We also conjecture that for any integer n > 14 there exists a prime

p with n < p < 2n such that q(p) + 1 is prime.

Conjecture 4.6. (2014-01-07) For any integer n > 60, there is a positive

integer k < n such that m ± 1 and q(m) + 1 are all prime, where m =

ϕ(k) + ϕ(n− k)/4.

Remark 4.6. This implies that there are infinitely many positive integers m

with m ± 1 and q(m) + 1 all prime. We have verified the conjecture for n

up to 105. See [11, A235343 and A235344] for related data and graphs.

Conjecture 4.7. (2014-01-25) (i) For any integer n > 128, there is a

positive integer k < n such that r = ϕ(k) + ϕ(n− k)/6 + 1 and p(r) + q(r)

are both prime.

(ii) For every n = 18, 19, . . ., there is a positive integer k < n such that

m = ϕ(k)/2 + ϕ(n− k)/8 is an integer with p(m)2 + q(m)2 prime.



PROBLEMS ON COMBINATORIAL PROPERTIES OF PRIMES 17

Remark 4.7. Clearly, part (i) implies that there are infinitely many primes

of the form p(r) + q(r) with r prime. And part (ii) implies that there are

infinitely many positive integers m with p(m)2 + q(m)2 prime. We have

verified parts (i) and (ii) for n up to 30000 and 65000 respectively. See [11,

A236419, A236412 and A236413] for related data and graphs.

For any positive integer n, q̄(n) = p(n) − q(n) is the number of ways to

write n as a sum of unordered positive integers with some part repeated (or

even).

Conjecture 4.8. (2014-01-25) (i) For any integer n > 99, there is a positive

integer k < n such that p = ϕ(k)/2 + ϕ(n − k)/12 + 1 and q̄(p) are both

prime.

(ii) For any integer n > 3, there is a positive integer k < n− 2 such that

q(m)2 + q̄(m)2 is prime, where m = k + ϕ(n− k)/2.

Remark 4.8. Clearly, part (i) implies that there are infinitely many primes

of the form q̄(p) with p prime. And part (ii) implies that there are infinitely

many positive integers m with q(m)2 + q̄(m)2 prime. See [11, A236417,

A236439 and A236440] for related data and graphs.

Conjecture 4.9. (i) (2014-03-12) Let n > 1 be an integer. Then the number

kp(n)q(n)q̄(n)−1 is prime for some k = 1, . . . , n. Also, 2p(k)p(n)q(n)q̄(n)+

1 is prime for some k = 1, . . . , n− 1.

(ii) (2014-01-26) Any integer n > 2 can be written as k + m with k and

m positive integers such that q(k) + q̄(m) is prime.

(iii) (2013-12-08) For every n = 2, 3, . . ., there is a positive integer k < n

with 2k − 1 + q(n− k) prime.

Remark 4.9. See [11, A239207, A236442 and A233390] for related data and

graphs. We have verified the two assertions in part (i) for n up to 83000

and 50000 respectively. We have also checked part (iii) for n up to 2× 105;

for example, for n = 147650 we may take k = 17342 so that 2k−1+q(n−k)

is prime.

Conjecture 4.10. (2014-04-24) (i) For any prime p, there exists a primitive

root g < p modulo p which is also a partition number (i.e., g = p(n) for

some positive integer n).

(ii) For any prime p > 3, there exists a primitive root g < p modulo

p which is also a strict partition number (i.e., g = q(n) for some positive

integer n).
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Remark 4.10. We have verified parts (i) and (ii) for all primes below 2×107

and 5 × 106 respectively; see [11, A241504 and A241516] for related data

and graphs. We also conjecture that for any prime p there is a primitive

root g < p modulo p with g − 1 a square (cf. [11, A239957 and A241476]).
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