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Given finite sets X and Y , a stochastic map f : X  Y assigns a
real number fyx to each pair x ∈ X , y ∈ Y in such a way that for
any x , the numbers fyx form a probability distribution on Y .

We call fyx the probability of y given x .

So, we demand:

I fyx ≥ 0 for all x ∈ X , y ∈ Y ,

I
∑
y∈Y

fyx = 1 for all x ∈ X .



We can compose stochastic maps f : X → Y and g : Y → Z by
matrix multiplication:

(g ◦ f )zx =
∑
y∈Y

gzy fyz

and get a stochastic map g ◦ f : X → Z .

We let FinStoch be the category with

I finite sets as objects,

I stochastic maps f : X  Y as morphisms.

Every function f : X → Y is a stochastic map, so we get

FinSet ↪→ FinStoch



Let 1 be your favorite 1-element set. A stochastic map

1
p
// X

is a probability distribution on X .

We call p : 1 X a finite probability measure space.



A measure-preserving map between finite probability measure
spaces is a commuting triangle

1

p

��

q

��

X
f

// Y

So, f : X → Y sends the probability distribution on X to that on
Y :

qy =
∑

x : f (x)=y

px

It’s a ‘deterministic way of processing random data’.



We can compose measure-preserving maps:

1

p

��

q

��

r

��

X
f

// Y g
// Z

So, we get a category FinProb with

I finite probability measure spaces as objects

I measure-preserving maps as morphisms.



Any finite probability measure space p : 1 X has an entropy:

S(p) = −
∑
x∈X

px ln px

This says how ‘evenly spread’ p is.

Or: how much information you learn, on average, when someone
tells you an element x ∈ X , if all you’d known was that it was
randomly distributed according to p.



Flip a coin!

If X = {h, t} and ph = pt = 1
2 , then

S(X , p) = −
(
1
2 ln 1

2 + 1
2 ln 1

2

)
= ln 2

so you learn ln 2 nats of information on average, or 1 bit.

But if ph = 1, pt = 0 you learn

S(X , p) = − (1 ln 1 + 0 ln 0) = 0



What’s so good about entropy? Let’s focus on the information
loss of a measure-preserving map:

1

p

��

q

��

X
f

// Y

IL(f ) = S(X , p)− S(Y , q)

The data processing inequality says that

IL(f ) ≥ 0

Deterministic processing of random data always decreases entropy!



1

p

��

q

��

r

��

X
f
// Y g

// Z

Clearly we have

IL(g ◦ f ) = S(X , p)− S(Z , r)

= S(X , p)− S(Y , q) + S(Y , q)− S(Z , r)

= IL(f ) + IL(g)

So, information loss should be a functor from FinProb to a
category with numbers [0,∞) as morphisms and addition as
composition.



Indeed there is a category [0,∞) with:

I one object ∗
I nonnegative real numbers c as morphisms c : ∗ → ∗
I addition as composition.

We’ve just seen that

IL : FinProb→ [0,∞)

is a functor. Can we characterize this functor?

Yes. The key is that IL is ‘convex-linear’ and ‘continuous’.



We can define convex linear combinations of objects in
FinProb. For for any 0 ≤ c ≤ 1, let

c(X , p) + (1− c)(Y , q)

be the disjoint union of X and Y , with the probability distribution
given by cp on X and (1− c)q on Y .

We can also define convex linear combinations of morphisms.

f : (X , p)→ (X ′, p′), g : (Y , q)→ (Y ′, q′)

give

cf + (1− c)g : c(X , p) + (1− c)(Y , q)→ c(X ′, p′) + (1− c)(Y ′, q′)

This is simply the function that equals f on X and g on Y .



Information loss is convex linear:

IL
(
cf + (1− c)g

)
= cIL(f ) + (1− c)IL(g)

The reason is that

S(c(X , p) + (1− c)(Y , q)) = cS(X , p) + (1− c)S(Y , q) + Sc

where
Sc = −

(
c ln c + (1− c) ln(1− c)

)
is the entropy of a coin with probability c of landing heads-up.
This extra term cancels when we compute information loss.



FinProb and [0,∞) are also topological categories: they have
topological spaces of objects and morphisms, and the category
operations are continuous.

IL : FinProb→ [0,∞) is a continuous functor: it is continuous
on objects and morphisms.



Theorem (Baez, Fritz, Leinster). Any continuous convex-linear
functor

F : FinProb→ [0,∞)

is a constant multiple of the information loss: for some α ≥ 0,

g : (X , p)→ (Y , q) =⇒ F (g) = α IL(g)

The easy part of the proof: show that

F (g) = Φ(X , p)− Φ(X , q)

for some quantity Φ(X , p). The hard part: show that

Φ(X , p) = −α
∑
x∈X

px ln px

http://arxiv.org/abs/1106.1791


Two generalizations:

1) There is precisely a one-parameter family of convex structures
on the category [0,∞). Using these we get information loss
functors

ILβ : FinProb→ [0,∞)

based on Tsallis entropy:

Sβ(X , p) =
1

β − 1

(
1−

∑
x∈X

pβx

)
which reduces to the ordinary entropy as β → 1.

http://math.ucr.edu/home/baez/information_loss.pdf#9


2) The entropy of one probability distribution on X relative to
another:

I (p, q) =
∑
x∈X

px ln

(
px
qx

)
is the expected amount of information you gain when you thought
the right probability distribution was q and you discover it’s really
p. It can be infinite!

There is also category-theoretic characterization of relative entropy.



This uses a category FinStat where the objects are finite
probability measure spaces, but the morphisms look like this:

1

p

��

q

��

X
f

33 Y
s

ss

f ◦ p = q
f ◦ s = 1Y

We have a measure-preserving map f : X → Y equipped with a
stochastic right inverse s : Y  X . Think of f as a ‘measurement
process’ and s as a ‘hypothesis’ about the state in X given the
measurement in Y .



Any morphism in FinStat

1

p

��

q

��

X
f

33 Y
s

ss

f ◦ p = q
f ◦ s = 1Y

gives a relative entropy S(p, s ◦ q). This says how much
information we gain when we learn the ‘true’ probability
distribution p on the states of the measured system, given our
‘guess’ s ◦ q based on the measurements q and our hypothesis s.



1

p

��

q

��

X
f

33 Y
s

ss

f ◦ p = q
f ◦ s = 1Y

Our hypothesis s is optimal if p = s ◦ q: our guessed probability
distribution equals the true one! In this case S(p, s ◦ q) = 0.

Morphisms with an optimal hypothesis form a subcategory

FP ↪→ FinStat



Theorem (Baez, Fritz). Any lower semicontinuous convex-linear
functor

F : FinStat→ [0,∞]

vanishing on morphisms in FP is a constant multiple of relative
entropy.

The proof is hard! Can you simplify it?

http://math.ucr.edu/home/baez/relative_entropy.pdf


The category FinStoch and its big brother Stoch also appear in
the work of Brendan Fong:

• Causal Theories: a Categorical Perspective on Bayesian Networks.

a

��

//

��

b

��

c

��

d

�� ��

e f

As usual in Bayesian network theory, he starts with a directed
acyclic graph G where, intuitively speaking:

I each vertex is a ‘variable’

I each directed edge a→ b is a ‘causal relationship’: the value
of a may affect that of b.

http://arxiv.org/abs/1301.6201
http://en.wikipedia.org/wiki/Bayesian_network
http://en.wikipedia.org/wiki/Bayesian_network
http://en.wikipedia.org/wiki/Bayesian_network


Roughly speaking, starting from a directed acyclic graph G , he
forms the category with finite products CG freely generated by:

I one object for each vertex of G ,

I one morphism fb : a1 × · · · × an → b whenever ai are all the
parents of b:

a1

""

a2

��

· · · an−1

��

an

{{
b

(and thus fb : 1→ b if b has no parents).



This category CG is the causal theory described by the graph G . A
model of this theory in FinStoch is a symmetric monoidal functor

F : CG → FinStoch

This gives

I a finite set F (b) for each vertex b of the graph

I a probability measure F (fb) : 1 F (b) for each vertex with
no parents

I a stochastic map F (fb) : F (a1)× · · · × F (an) F (b)
whenever ai are all the parents of b

I and thus a random variable for each vertex

I automatically obeying the ‘independence’ assumptions we
want in Bayesian network theory! If two vertices have no
common ancestors, their random variables are stochastically
independent.



So: we’re starting to see how category theory connects

I signal flow diagrams

I electrical circuit diagrams

I stochastic Petri nets

I chemical reaction networks

I Bayesian networks, entropy and information

These connections can help us develop a unified toolkit for
modelling complex systems made of interacting parts... like living
systems, and our planet.

But there’s a lot of work to do! Please help. Check this out:

The Azimuth Project
www.azimuthproject.org

http://www.azimuthproject.org/azimuth/show/HomePage
http://www.azimuthproject.org/azimuth/show/HomePage

