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ABSTRACT

Families of non-lattice tilings of R n by unit cubes are constructed. These tilings are
specializations of certain families of nonlinear codes over GF( 2 ).

These cube-tilings provide building blocks for the construction of cube-tilings such that no
two cubes have a high-dimensional face in common. We construct cube-tilings of R n such that

no two cubes have a common face of dimension exceeding n −
3
1_ _ √ n .
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1. Introduction

In 1907, Minkowski [9] conjectured that all extremal lattices for the supremum norm were of

a certain form, and gave a geometric interpretation of this conjecture: in every lattice tiling of R n

with unit cubes, there are two cubes that have a complete facet in common. In studying

Minkowski’s conjecture, in 1930 O. H. Keller [5] made the stronger conjecture that in any tiling

of R n by unit cubes there are two cubes having a complete facet in common. In 1940, Perron

[10] proved Keller’s conjecture is true in dimensions n up to 6. In 1942 Hajo ´s [2] proved that it

holds for all lattice tilings of R n , which settled Minkowski’s conjecture. Subsequently various

reductions of Keller’s conjecture were made in Hajo ´s [3], Szabo [12] and Corradi and Szabo [1].

Recently, we showed that Keller’s conjecture is false in all dimensions n ≥ 10, by construction,

cf. Lagarias and Shor [6]. It remains open in dimensions 7, 8 and 9.

Let K n denote the largest integer such that every tiling of R n by unit cubes contains two

cubes that have a common face of dimension K n . This paper considers the problem of bounding

K n from above. We shall show by construction that K n ≤ n −
3
1_ _ √ n for all n.

One difficulty with obtaining upper bounds for K n is that constructions of cube-tilings with

no two cubes having a complete facet in common do not carry over in a simple manner from one

dimension to another. One does have

K n + 1 ≤ K n + 1 . (1.1)
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This is easily proved using a ‘‘stacking’’ construction that produces an (n + 1 )-dimensional

tiling from an n-dimensional one, consisting of layers of n-dimensional tilings with successive

layers shifted relative to each other to preclude any common faces between cubes in adjacent

layers. We do not know whether K n ≤ K n + 1 . In fact, in Appendix A we show K 10 ≤ 7, but at

present we only know that K 9 ≤ 8.

Our construction proceeds in two steps. The first step is to construct a large class of non-

lattice cube-tilings, which are combinatorially interesting in their own right. These tilings have a

certain ‘‘additive’’ structure and also have the following properties:

(i) They are periodic with period lattice 2Z n , and all cube centers are in
2
1_ _ Z n .

(ii) Each equivalence class
2
1_ _ Z n (mod Z n) contains exactly 0 or 2 cube-center

equivalence classes.

These tilings arise from nonlinear codes in (Z /4Z ) n having special properties. Property (ii) is a

special case of an extremality property, called 2-extremal, which guarantees that such tilings have

relatively few cube-pairs having a face in common, as we explain further in §2. However, these

tilings do contain cube-pairs having a common facet. The second step is a block-substitution

construction like those in Lagarias and Shor [6], which eliminates all high-dimensional common

faces. The base tilings and the block substitutions used in this construction are derived from two

distinct infinite families of ‘‘additive’’ tilings, which have certain extra properties, described in §4

and §5.

In §2 we define and study 2-extremal cube tilings.

In §3 we describe a class of nonlinear codes which are constructed by an ‘‘additive’’

construction. This construction somewhat resembles that of a linear code in algebraic coding

theory, except that it has a nonlinear global constraint on codewords. We show that certain



- 3 -

subfamilies of these codes satisfy necessary conditions to give 2-extremal cube tilings. We call

these additive codes. In fact, these ‘‘additive’’ constructions suggest general methods to produce

interesting nonlinear codes, possibly useful for other purposes than cube-tiling.

In §4 and §5 we construct two infinite families of additive codes which give 2-extremal cube

tilings, and prove special properties about their codeword distributions. In §6 we use these

additive codes in a block-substitution construction to construct cube-tilings establishing the

bound

K n ≤ n −
3
1_ _ √ n .

This construction generalizes those in Lagarias and Shor [6]. Study of the n = 10 construction in

that paper led to the discovery of the Construction B tilings detailed in §5.

In §7 we discuss an approach to strengthen the upper bound for K n . If a certain kind of 2-

extremal cube tiling exists, then K n ≤ cn for some c < 1.

Finally, in Appendix A we construct a 10-dimensional cube-tiling showing that K 10 ≤ 7.

A (nonlinear) code in Z /2Z (resp. Z /4Z ) is simply a finite set of distinct vectors in

(Z /2Z ) n (resp. (Z /4Z ) n). A linear code is a linear subspace of (Z /2Z ) n (resp. (Z /4Z ) n).

Coding theory is concerned with the construction of such sets whose vectors are far apart in an

appropriate metric, and which correspond to dense packings of space with appropriately scaled

unit balls for this metric. Standard references for coding theory include MacWilliams and

Sloane [8] and van Lint [13]. Cube-tilings are perfect packings, and are analogous to ‘‘perfect

codes’’ in coding theory. We use coding theory terminology to emphasize this analogy, because

our constructions may eventually prove useful in constructing codes in other contexts. The proofs

in this paper use no results from coding theory, however. Some further references on related

tiling problems appear in Stein [11].
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2. 2-Extremal Cube Tilings

Perron [10] showed that if there exists a cube tiling in R n with no two cubes having a

common face of dimension d, then there exists a periodic cube tiling with period lattice 2Z n

having the same property. (His argument can easily be extended to show that the centers of the

cubes in this periodic tiling can be taken in the lattice
2n

1_ __ Z n .) Thus one need only study 2Z n-

periodic cube tilings.

A 2Z n-periodic cube tiling is completely specified by the cubes whose centers lie in the

fundamental domain

^ = { (x 1 , . . . , x n ) : 0 ≤ x i < 2 } .

There are exactly 2n equivalence classes v + 2Z n of cube-centers, where v = (v 1 ,v 2 , . . . , v n )

has 0 ≤ v i < 2. Two distinct equivalence classes v + 2Z n and w + 2Z n contain cube-pairs

sharing a common face (of some dimension ≥ 0) if and only if v − w ∈ Z n . Call two classes v

and w Z -adjacent if v − w ∈ Z n . The 2n equivalence classes in any 2Z n-periodic cube tiling

are divided up into Z -adjacency classes. If {m i : 1 ≤ i ≤ l} are the cardinalities of the Z -

adjacency classes in a 2Z n-periodic tiling, then

i = 1
Σ
l

m i = 2n . (2.1)

Also
i = 1
Σ
l

m i (m i − 1 ) counts the number of ordered pairs of equivalence classes containing

cube-pairs having a common face.

The fundamental fact about Z -adjacency is that each Z -adjacency class must contain at least

2 elements. Since two cubes have a common face of some dimension if and only if they have a

common corner (0-face), this is equivalent to the following elementary fact.
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Lemma 2.1. In any tiling of R n by unit cubes, every corner of every cube touches the corner of

at least one adjacent cube.

Proof. Move the tiling by a Euclidean motion so that the corner is at 0, with cubes oriented

parallel to the axes. Now assign to each cube touching 0 the number counting every orthant in R n

such that the cube contains an interior point of this orthant. The cube of which 0 is a corner

counts one orthant, while all cubes touching 0, but with 0 not being a corner, count an even

number of orthants. Since each of the 2n orthants is counted exactly once, some other cube

covers an odd number of orthants. This cube must therefore count one orthant, and has a corner

at 0.

Lemma 2.1 supplies the constraint

m i ≥ 2 (2.2)

on Z -adjacency classes of 2Z n-periodic cube tilings.

In searching for 2Z n-periodic cube-tilings that do not contain any cube-pairs meeting in a

high-dimensional face, it seems reasonable to single out those tilings that have the fewest cube-

pairs sharing a common face of any dimension, i.e. those that minimize
i = 1
Σ
l

m i (m i − 1 ). Now

i = 1
Σ
l

m i (m i − 1 ) subject to the constraints (2.1) and (2.2) is minimized with all m i = 2 and

l = 2n − 1 . We therefore call any 2Z n-cube tiling having this minimality property (all m i = 2) a

2-extremal tiling. It is easy to construct examples of 2-extremal tilings in all dimensions.

Another reason to single out 2-extremal tilings for special consideration arises from the

problem of obtaining lower bounds for K n . If a 2Z n-periodic cube-tiling is not 2-extremal, then

it must contain two cubes sharing a face of dimension d ≥
3
n_ _ . To see this, consider a Z -

adjacency class containing at least 3 elements {v i + 2Z n : 1 ≤ i ≤ 3 }. By the pigeonhole

principle two of these elements v 1 ,v 2 ,v 3 must agree (mod 2) on at least n /3 of their coordinates,
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and these two cubes then share a common face of the required dimension. Thus if K n were to be

smaller than n /3, any 2Z n-periodic cube-tiling attaining this bound would be 2-extremal. Hence

analysis of 2-extremal cube-tilings seems necessary in obtaining lower bounds for K n .

There exist 2-extremal lattice tilings in all dimensions. The next section describes a method

to construct nonlinear codes, which we show in §4 and §5 yield nonlattice 2-extremal cube tilings

which have all cube-centers in
2
1_ _ Z n .

3. Nonlinear Codes

We construct nonlinear codes which produce codewords in the set { 0 , 1 , 2 , 3 }n . (One can

regard these as binary codes by identifying this set with { 0 , 1 }2n .) The codes are designed to

satisfy unusual distance constraints on their codewords, motivated by their application to cube-

tilings. These codes always consist of two distinct sets of codewords, which we call

complements. Under suitable circumstances both complements have cardinality 2n − 1 each,

yielding 2n codewords in all, cf. Theorem 3.1.

The construction is based on an n × n matrix M with entries in { 0 , 1 } , which we call the

generator matrix. From it form the matrix

A = A(M) : = I + 2M , (3.1)

where I is the identity matrix. Form the set of 2n vectors V(A) consisting of all 2n sums of

distinct row vectors of A, with entries taken (mod 4). Let V even (M) consist of all vectors in V(A)

containing an even number of entries 3 (mod 4); this is one part of the global constraint. Let

AT = AT (M) : = I + 2MT ,

and let Veven
∗ (MT ) consist of all vectors in the corresponding set V(AT ) consisting of all vectors

containing an odd number of entries that are 0 (mod 4); this is the other part of the global

constraint. The nonlinear code is
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# (M) : = V even (M) < (Veven
∗ (MT ) + 2e) , (3.2)

where e = ( 1 , 1 , . . .1 ). We call the sets # + (M) : = V even (M) and # − (M) : = Veven
∗ (MT ) + 2e

complements, and note that all vectors in # − (M) contain an odd number of entries that are 2

(mod 4).

We are interested in generator matrices M that yield # (M) satisfying the conditions

V even (M) = Veven
∗ (MT ) = 2n − 1 , (3.3)

and

V even (M) > (Veven
∗ (MT ) + 2e) = ∅ . (3.4)

Then # (M) has exactly 2n codewords. We call those # (M) satisfying (3.3) balanced and call

those # (M) satisfying (3.4) additive codes.

The cube-tiling problem involves a stronger notion of distance between codewords than just

being an additive code. We say that the e-distance between v , w ∈ (Z /4Z ) n is:

d e (v , w) = #{ i : v i − w i = 2 } .

The discussion in §2 and in Lagarias and Shor [6] establishes:

Proposition 3.1. Let # be a set of 2n vectors in { 0 , 1 , 2 , 3 }n . Then
2
1_ _ # + 2Z n gives the cube-

centers of a tiling of R n with cubes of sidelength 1 parallel to the axes if and only if

d e (v , w) ≥ 1 for all distinct vectors v , w ∈ # .

Henceforth we shall always use sets # ⊆ { 0 , 1 , 2 , 3 }n to specify 2Z n-periodic cube tilings

which have all cube-centers in
2
1_ _ Z n . We note the following additional property of such tilings.
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Lemma 3.1. Suppose # ⊆ { 0 , 1 , 2 , 3 }n gives a cube-tiling
2
1_ _ # + 2Z n . Let the map

φ̂ : # → { 0 , 1 }n be induced coordinatewise from the map φ : Z /4Z → Z /2Z given by

φ( 0 ) = φ( 1 ) = 0, φ( 2 ) = φ( 3 ) = 1. Then φ̂ is one-to-one and onto. The same holds for the

map ψ̂ induced from ψ :Z /4Z → Z /2Z given by ψ( 0 ) = ψ( 3 ) = 0, ψ( 1 ) = ψ( 2 ) = 1.

Proof. Since #  = 2n , it suffices to prove that φ̂ is one-to-one. By Proposition 3.1, if

x 1 ,x 2 ∈ # then d e (x 1 ,x 2 ) ≥ 1, so x 1 ,x 2 differ by 2 in some coordinate i, hence φ̂(x 1 ) and

φ̂(x 2 ) differ in this coordinate; similarly for ψ̂.

Lemma 3.1 has a useful consequence concerning the structure of 2Z n-cube-tilings with all

cube-centers in
2
1_ _ Z n . Partition # as

# = # 0 < # 1 < # 2 < # 3 ,

according as the value of the first coordinate of each vector in # is 0 , 1 , 2 or 3. Lemma 3.1

implies, using φ̂, that

# 0 < # 1 = 2n − 1 , # 2 < # 3 = 2n − 1 , (3.5)

and, using ψ̂, that

# 0 < # 3 = 2n − 1 , # 1 < # 2 = 2n − 1 .

These equalities imply that any 2Z n-cube-tiling with cube-centers in
2
1_ _ Z n has

# 0 = # 2 , # 1 = # 3 . (3.6)

A cube-tiling code is a balanced additive code # (M) such that d e (v ,w) ≥ 1 for any two

distinct codewords; it yields a 2Z n-periodic cube-tiling via Proposition 3.1.

It seems a hard problem to obtain necessary and sufficient conditions characterizing any of the

three properties: balance condition (3.3), additivity condition (3.4), or being a cube-tiling code.
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In the rest of the section we present sufficient conditions for some of these properties.

We start with the balance condition (3.3). Let the row sums of M be denoted r 1 ,r 2 , . . . , r n

and the column sums c 1 ,c 2 , . . . , c n .

Property BC. The n × n matrix M has r i ≡ c i (mod 2) for 1 ≤ i ≤ n, and

i = 1
Σ
n

r i =
i = 1
Σ
n

c i ≡ 1 ( mod 2 ) .

We prove the following:

Theorem 3.1. If the n × n matrix M has Property BC and n is odd, then # (M) is balanced.

Proof. We first show that V even (M) = 2n − 1 holds for all n, even or odd. Let v 1 , . . . , v n

denote the rows of A. If S⊆{ 1 , 2 , . . . , n} set

w S =
i∈S
Σ v i , w

_ _
S =

i /∈S
Σ v i . (3.7)

It suffices to show that exactly one of each complementary pair w S ,w
_ _

S is in V even (M).

To do this, let t S , t
_

S count the number of entries that are 3 (mod 4) in w S ,w
_ _

S , respectively.

Block-partition the entries of w S and w
_ _

S as pictured:

i∈S i∈S
_

w
_ _

S =

w S =

IV III

II I

All entries in I and IV are odd, while all entries in II and III are even. Let a I ,a II ,a III ,a IV denote

the sum of the entries in each part, and suppose S = s. Then
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a I = s + 2t S

a IV = n − s + 2t
_

S .

This yields

a I − a IV = 2s − n + 2 (t S − t
_

S ) .

≡ 2s − n + 2 (t S + t
_

S ) ( mod 4 ) . (3.8)

However, the definition of w S yields

a I + a II = s + 2


i∈S
Σ r i





.

Also, one has

a II + a IV = (n − s) + 2


i /∈S
Σ c i





.

Subtracting these equations yields

a I − a IV = ( 2s − n) + 2


i∈S
Σ r i





− 2


i /∈S
Σ c i





.

Comparing this with (3.8) gives

2 (t S + t
_

S ) ≡ 2


i∈S
Σ r i





− 2


i /∈S
Σ r i





( mod 4 ) ,

after using the hypothesis r i ≡ c i (mod 2) of Property BC. Hence

t S + t
_

S ≡
i∈S
Σ r i −

i /∈S
Σ r i ( mod 2 ) .

≡
i∈S
Σ r i +

i /∈S
Σ r i ( mod 2 )

≡ 1 ( mod 2 ) ,

using Property BC, so exactly one of w S ,w
_ _

S is in V even (M).
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We show that Veven
∗ (MT ) = 2n − 1 for n odd by a similar argument. Let v 1 , . . . , v n now

denote the rows of AT , and define w S ,w
_ _

S by (3.7). Let tS
∗ , t

_
S
∗

denote the number of entries that

are 0 (mod 4) in w S ,w
_ _

S , respectively. Using the block-partition as above, we have

a II = 2 (n − s − tS
∗ ) ,

a III = 2 (s − t
_

S
∗

) ,

and these yield

a II − a III = 2n + 2 (tS
∗ + t

_
S
∗

) ( mod 4 ) . (3.9)

Now

a I + a II = s + 2


i∈S
Σ c i





,

where c i occurs instead of r i since we use MT instead of M. Also

a I + a III = s + 2


i∈S
Σ r i





,

and since r i ≡ c i (mod 2), these yield

a II − a III = 0 .

Combined with (3.9), this gives

tS
∗ + t

_
S
∗

≡ n ( mod 2 ) ,

which for n ≡ 1 (mod 2) is the desired parity condition.

The balancing condition (3.3) apparently holds for a much wider class of M than those

satisfying Property BC. In computational experiments on randomly selected M we found, in

every case tested, that

V even (M) = 2n − 1 or 2n − 1 ± 2r , (3.10)
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where 1 ≤ r ≤ n − 2, and similarly for Veven
∗ (MT ). It seems an interesting combinatorial problem

to establish when (3.10) holds and to characterize the values of r that may occur.

Next we study the disjointness condition (3.4) necessary to have an additive code.

Property AC. Each row of M contains an odd number of ones, i.e. all r i ≡ 1 (mod 2).

We prove below that Property AC is a sufficient condition for an additive code, which

furthermore makes the cube-tiling e-distance criterion hold between vectors v, w lying in different

complements of # (M).

Theorem 3.2. If M has Property AC, then any v ∈ V even (M) and w ∈ Veven
∗ (MT ) + 2e satisfy

d e (v , w) ≡ 1 ( mod 2 ) . (3.11)

In particular, # is an additive code containing V even (M) + Veven
∗ (MT )elements.

Note that even if the code # (M) has cardinality 2n , it does not necessarily yield a cube-tiling

# + 2Z n , because some pair of vectors in V even (M) (resp. Veven
∗ (MT ) + 2e) may have zero e-

distance. Extra conditions on M are needed for this not to occur. Two infinite families of such M

are constructed in §4 and §5.

Proof of Theorem 3.2. Both complements of the code # (M) remain unchanged under

simultaneous permutations of rows and columns, i.e. replacing M by M′ = PMPT , where P is a

permutation matrix. Also Property AC is preserved under this action, so it suffices to prove the

theorem for any such M′ .

We choose such a permutation so that v is a sum of initial rows of A′ = I + 2M′ , and

w − 2e is the sum of a consecutive set of rows of (A′ ) T . Then M′ has a block-partition

M′ =






S 41

S 31

S 21

S 11

S 42

S 32

S 22

S 12

S 43

S 33

S 23

S 13

S 44

S 34

S 24

S 14 






, (3.12)
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where the S ii are square matrices of sizes s 1 , s 2 , s 3 and s 4 , respectively, v is the sum of the first

s 1 + s 2 rows of A′ , and w − 2e is the sum of the transposes of the middle s 2 + s 3 columns of

A′ . In terms of this block-partition,

v = (v 1 ,v 2 ,v 3 ,v 4 ) ,

w − 2e = (w 1 ,w 2 ,w 3 ,w 4 ) ,

with

v i = 2 [e(s 1 ) S 1i + e(s 2 ) S 2i ] + e(s i ) (δ( 1 ,i) + δ( 2 ,i) ) (3.13)

w i = 2 [e(s 2 ) Si2
T + e(s 3 ) Si3

T ] + e(s i ) (δ(i , 2 ) + δ(i , 3 ) )

where e(s i ) denotes a row vector of all ones of size s i , and δ(i , j) = 1 if i = j and 0 otherwise.

The congruence (3.11) is equivalent to showing that v and w − 2e agree (mod 4) in an odd

number of coordinates. If d i denotes the number of entries in which v i and w i agree (mod 4),

then this is equivalent to showing that

d 1 + d 2 + d 3 + d 4 ≡ 1 ( mod 2 ) .

The matrix A′ has all its entries even except for its diagonal entries, which are all odd. Hence

all entries of v 1 , v 2 , w 2 and w 3 are odd, while all entries of v 3 , v 4 , w 1 and w 4 are even. It

follows that d 1 = 0 and d 3 = 0. Thus it remains to prove that

d 2 + d 4 ≡ 1 ( mod 2 ) . (3.14)

Now let t i j denote the sum of all entries of the zero-one matrix S i j , i.e. t i j counts the number

of ones in S i j . From (3.13),

v 2 − w 2 = 2 [e(s 1 ) S 12 + e(s 2 ) S 22 − e(s 2 ) S22
T − e(s 3 ) S23

T ] . (3.15)

The sum of the entries in v 2 − w 2 (mod 4) is 2 (s 2 − d 2 ) (mod 4), by definition of d 2 , since

v 2 ≡ w 2 (mod 2). However it is also (v 2 − w 2 ) e(s 2 ) T (mod 4), and, using (3.15), this equals
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2 (t 12 + t 22 − t 22 − t 23 ) (mod 4). Thus we obtain

d 2 + s 2 ≡ t 12 + t 23 ( mod 2 ) . (3.16)

Likewise (3.13) gives

v 4 − w 4 = 2 [e(s 1 ) S 14 + e(s 2 ) S 24 − e(s 2 ) S42
T − e(s 3 ) S43

T ]

from which we similarly derive

d 4 + s 4 ≡ t 14 + t 24 + t 42 + t 43 ( mod 2 ) . (3.17)

Now recall that since v ∈ V even (M′ ) it contains an even number of entries ≡ 3 (mod 4). It

contains exactly s 1 + s 2 odd entries, namely (v 1 ,v 2 ). The sum of its odd entries must therefore

be s 1 + s 2 (mod 4), and so

s 1 + s 2 ≡ (v 1 ,v 2 ) e(s 1 + s 2 ) T ( mod 4 )

≡ s 1 + s 2 + 2 (t 11 + t 21 + t 12 + t 22 ) ( mod 4 ) .

Hence

t 11 + t 21 + t 12 + t 22 ≡ 0 ( mod 2 ) . (3.18)

Next, since w − 2e ∈ Veven
∗ ( (M′ ) T ), it contains an odd number of entries ≡ 0 (mod 4). It

contains exactly s 1 + s 4 even entries, namely (w 1 ,w 4 ), so the sum of its even entries is

2 + 2 (s 1 + s 4 ) (mod 4). Thus

2 + 2 (s 1 + s 4 ) ≡ (w 1 ,w 4 ) e(s 1 + s 4 ) T ( mod 4 )

≡ 2 (t 12 + t 13 + t 42 + t 43 ) ( mod 4 ) .

This yields

1 + s 1 + s 4 ≡ t 12 + t 13 + t 42 + t 43 ( mod 2 ) . (3.19)

Now add (3.16), (3.17) and (3.19) to obtain
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1 + d 2 + d 4 + s 1 + s 2 ≡ t 13 + t 23 + t 14 + t 24 ( mod 2 ) . (3.20)

Next, adding (3.18) to this gives

1 + d 2 + d 4 + s 1 + s 2 ≡ (t 11 + t 12 + t 13 + t 14 ) + (t 21 + t 22 + t 23 + t 24 ) ( mod 2 ) .

The right side of this congruence is simply the sum of the first s 1 + s 2 rows of M, hence by

Property AC it is s 1 + s 2 (mod 2). This yields

d 2 + d 4 ≡ 1 ( mod 2 ) ,

completing the proof.

In what follows we will only consider nonlinear codes # (M) with n ≡ 1 (mod 2), which have

both Property AC and Property BC. The construction of the two complements # + and # − of a

code # (M) is generally asymmetrical, but in this special case the asymmetry disappears, i.e. one

can show that V even (M) coincides with the set of all vectors in V(A) having an odd number of

entries that are 0 (mod 4), and Veven
∗ (MT ) coincides with the set of all vectors in V(AT )

containing an even number of entries 3 ( mod 4). We omit a proof as this fact is not needed in the

sequel.

4. Cube-Tiling Codes: Construction A

In this section only, for a fixed dimension n, let M n denote the circulant matrix

Circ ( 0 , 1 , 0 , . . . , 0 ). Then A(M n ) = Circ ( 1 , 2 , 0 , . . . , 0 ), so, for example,

A(M 5 ) =







2 0 0 0 1

0 0 0 1 2

0 0 1 2 0

0 1 2 0 0

1 2 0 0 0







.

The set # (M n ) is called a Construction A code, and we denote it # A
n . We shall prove that # A

n is

a cube-tiling code when n is odd, and then prove a special property about any two cubes in this
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tiling having a high-dimensional common face.

Theorem 4.1. For odd n, # A
n is a cube-tiling code which gives a 2-extremal cube-tiling of R n .

Proof. The circulant matrix M n has Property BC, and since n ≡ 1 (mod 2), # A
n is balanced by

Theorem 3.1. M n also has Property AC, hence by Theorem 3.2 it is an additive code with 2n

elements, and

d e (w ,w′ ) ≥ 1

holds when w and w′ lie in different complements of # A
n .

Now suppose w ,w′ ∈ V even (M). Our object is to show that d e (w ,w′ ) ≥ 1. We study the

larger set V of 2n vectors

y = (y 1 , . . . , y n ) = v i 1
+ . . . + v im

which are sums of distinct rows v i of A(M n ). The vectors in V have a simple description, arising

because the vectors v i have only two nonzero components, which are consecutive, and because

the set {v i } is closed under a cyclic shift of coordinates. They are characterized using the

directed graph pictured in Figure 4.1.

_ _____________
Insert Figure 4.1 about here

_ _____________

The vertices of the graph & correspond to the possible values of a coordinate y i of y, and a

directed edge gives a transition to an allowed value of y i + 1 . Then y ∈ V if and only if the

sequence (y 1 ,y 2 , . . . , y n ,y 1 ) describes a closed directed path of length n in &. (That is, they

consist of those vectors whose entries, viewed cyclically, consist of blocks of the form 1 3 j 2,

where j ≥ 0, separated by blocks of zeros, possibly empty, plus the single vector

3n = ( 3 , 3 , . . . , 3 ).)

Next, any ordered pair of vectors w ,w′ ∈ V define a closed directed path in the product graph
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& × &, induced from the paths on & of w and w′ separately. Suppose d e (w ,w′ ) = 0. This

means that this closed directed path never visits any of the vertices labelled (0
2), (2

0), (1
3) or (3

1) in

& × &. Let &̂2 denote the subgraph of & × & obtained by deleting these four vertices; it is

pictured in Figure 4.2.

_ _____________
Insert Figure 4.2 about here

_ _____________

Any closed directed path in &̂2 must lie entirely in one of the two sets of vertices

! = { (0
0) , (1

1) , (2
2) , (3

3) } or @ = { (0
3) , (1

2), (2
1) , (3

0) }. To see this, note that there are no

edges between ! and @, and any directed path entering % = { (0
1) , (1

0), (2
3) , (3

2) } must enter

from ! and must exit to @, so cannot be a closed path.

If (w ,w′ ) gives a closed path in ! , then all their entries must agree, i.e. w = w′ . Next,

suppose (w ,w′ ) gives a closed directed path in @, see Figure 4.3.

_ _____________
Figure 4.3 about here

_ _____________

This path necessarily visits vertices (1
2) and (2

1) the same number of times, because when it leaves

vertex (2
1) it cannot return to it without visiting vertex (1

2) first, and vice-versa. Since n is odd,

this closed directed path must visit vertices (3
0) and (0

3) an odd number of times in total. Hence

one of w or w′ contains an odd number of entries equal to 3, so it is impossible that both

w ,w′ ∈ V even (M n ). Thus if w ,w′ ∈ V even (M n ) with w ≠ w′ , then

d e (w ,w′ ) ≥ 1 .

If w ,w′ ∈ Veven
∗ (Mn

T ) + 2e then
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d e (w ,w′ ) ≥ 1 ,

by an analogous graph-theoretic argument which we omit.

Thus # A
n is a cube-tiling code. It is automatically 2-extremal because all vectors in

V even (M n ) differ (mod 2); in fact all 2n vectors in V are all incongruent (mod 2).

We next show that if two cubes in the cube-tiling from # A
n have a sufficiently high-

dimensional face in common, then the corresponding cube-center vectors in # A
n have a positive

fraction of matching coordinates having value 0.

Theorem 4.2. Suppose that n is odd, and that w ,w′ are distinct vectors in the cube-tiling code

# A
n with

w ≡ w′ ( mod 2 ) . (4.1)

Suppose that w agrees with w′ in l coordinate places, and let l = l 0 + l 1 + l 2 + l 3 where l 0 ,

l 1 , l 2 and l 3 denote the number of matching coordinates equal to 0 , 1 , 2 and 3, respectively.

Then l is even, and

l 0 = l 2 , l 1 = l 3 .

In particular, exactly
2
1_ _ l matching coordinates take values 0 or 1.

Proof. The proof of Theorem 4.1 indicated that all vectors in V even (M n ) correspond to closed

directed paths of length n in the graph & of Figure 4.1. Similarly the vectors in Veven
∗ (Mn

T ) + 2e

correspond exactly to those closed directed paths in the graph &′ pictured in Figure 4.4.

_ _____________
Insert Figure 4.4 about here.

_ _____________

We are interested in pairs w , w′ satisfying (4.1). They must be in opposite complements,

hence (w , w′ ) corresponds to a closed path in the product graph & × &′ that visits only vertices
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(j
i) with i ≡ j (mod 2). The restriction &̃ of & × &′ to these vertices is pictured in Figure 4.5.

_ ___________________
Insert Figure 4.5 about here.

_ ___________________

In what fashion can a closed path in &̃ visit the matching vertices { (j
i) : 0 ≤ i ≤ 3 }? This is

specified by the contracted graph pictured in Figure 4.6.

_ ___________________
Insert Figure 4.6 about here.

_ ___________________

Any closed path in this graph clearly visits (0
0) the same number of times as (2

2), and visits (1
1) the

same number of times as (3
3).

A strengthening of Theorem 4.2 can be proved when w and w′ have many matching

coordinates, namely at least
4
3_ _ n. It can be checked that the only ways two vectors w , w′

satisfying (4.1) can have four consecutive matching coordinates is that these coordinates are some

cyclic permutation of 0132. Using this fact, one can easily show that

l i ≥ l −
4
3_ _ n , i = 0 , 1 , 2 , 3 . (4.2)

5. Cube-Tiling Codes: Construction B

In this section only, for all odd n, let M n denote the matrix with subdiagonal and

superdiagonal given by

(M n ) i + 1 ,i = 1 1 ≤ i ≤ n − 1 , (5.1a)

(M n ) 2i, 2i + 1 = 1 1 ≤ i ≤
2

n − 3_ ____ , (5.1b)

with first row given by
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(M n ) 1 ,i = 1 3 ≤ i ≤ n , (5.1c)

with last column given by

(M n ) n,n − 4i = (M n ) n,n − 4i − 1 = 1 , 1 ≤ i ≤


 4

n_ _




, (5.1d)

also with the 2 × 2 block checkerboard pattern for (M n ) i, j in the region i + 2 ≤ j ≤ n − 1,

(M n ) i, j = 1 if (i , j) consists of one element each from

0, 1 (mod 4) and from 2, 3 (mod 4), (5.1e)

and with all other (M n ) i, j = 0. The resulting matrices

A n = A(M n ) = I + 2M n

have slightly different patterns according as n = 1 or 3 (mod 4), see Figure 5.1.

_ ___________________
Insert Figure 5.1 about here.

_ ___________________

The set # (M n ) is called a Construction B code and we denote it # B
n . We shall prove that # B

n is a

cube-tiling code, and later show that codewords congruent (mod 2) must differ in either exactly

one coordinate or else in many coordinates.

Before giving the proofs, we point out an important property of the vectors in A n . Let v i

denote the i-th row of A n and vi
∗ the i-th row of An

T , i.e. the i-th column of A n . Let ⊕ denote the

exclusive-or operation on residues (mod 4) viewed as binary numbers, i.e.

0⊕0 = 1⊕1 = 2⊕2 = 3⊕3 = 0, 1⊕3 = 3⊕1 = 2 and i⊕ j = i + j (mod 4) otherwise. The

important property of A n is that v i ⊕vi
∗ takes only three possible values. Namely, if n ≡ 1

(mod 4), then
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v i ⊕vi
∗ =







2 ( 2200 ) 4

n − 5_ ____

2202

2 ( 0022 ) 4
n − 5_ ____

0020

0 2n − 1

if i ≡ 0 or 1 ( mod 4 ) and i ≠ 1 or n ,

if i ≡ 2 or 3 ( mod 4 ) or i = n ,

if i = 1 ,

(5.2a)

while if n ≡ 3 (mod 4), then

v i ⊕vi
∗ =







2 ( 2200 ) 4

n − 3_ ____

20

2 ( 0022 ) 4
n − 3_ ____

02

0 ( 2 ) n − 1

if i ≡ 0 , 1 ( mod 4 ) or i = n , and i ≠ 1 .

if i ≡ 2 , 3 ( mod 4 ) and i ≠ n ,

if i = 1 ,

(5.2b)

The formulae (5.2) are easily verified by direct calculation from (5.1). Also note that the three

vectors on the right side of (5.2a) (resp. (5.2b)) together with the vector 0n , form a set closed

under the ⊕ operation. The formulae (5.2) prove extremely important in studying the structure of

codewords in # B . They are particularly useful in studying codewords that are congruent

(mod 2), due to the identity that, if v i ≡ vi′ (mod 2),

v i − vi
∗ ≡ v i ⊕ vi

∗ ( mod 4 ) , (5.3)

cf. Theorem 5.2.

We also note that the first vector v 1 in the matrix A n has a special structure different from the

other vectors in A n , which is reflected in (5.2) and also in the different e-distance behavior of the

codewords in # B
n depending on the parity of their first coordinate (Theorem 5.2 (ii)).

Theorem 5.1. For odd n, # B
n is a cube-tiling code which gives a 2-extremal cube-tiling of R n .

Proof. For odd n, the matrices M n have odd row and column sums, hence have property BC and

property AC. Consequently # B
n is balanced by Theorem 3.1, and is an additive code by Theorem

3.2, and satisfies

d e (w ,w′ ) ≥ 1
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when w and w′ are in different complements of # B
n .

Now suppose w ,w′ ∈ # + = V even (M n ). We wish to show that they differ by 2 in some

coordinate. It proves convenient to study the larger set V consisting of all 2n possible sums of

rows of A n . So suppose

y 1 =
i∈I1

Σ v i , y 2 =
i∈I2

Σ v i

are arbitrary members of V. Just as in the proof of Theorem 3.1, our object is to show that if

d e (y 1 ,y 2 ) = 0, then y 1 and y 2 have between them an odd number of coordinates equal to 3.

This will show that at least one of y 1 and y 2 isn’t in # + .

So suppose d e (y 1 ,y 2 ) = 0, and partition I 1 = R 1 < R 3 , I 2 = R 2 < R 3 , where

R 3 = I 1 > I 2 . It is easy to see that d e (y 1 ,y 2 ) = 0 implies that

w R 1 < R 2
: =

i∈R 1 < R 2

Σ v i

must contain no 2 in any coordinate position.

This motivates the study of sets R such that
i∈R
Σ v i contains no 2’s, which we now

characterize. Given R, let χ R be its characteristic function, i.e. the zero-one vector having 1’s

corresponding exactly to i ∈ R. In the following lemma we regard χ R as specified by a string of

zeros and ones. Also in what follows {A 1 , . . . , A n }∗ denotes the set of all words formed by

concatenation from the finite strings A 1 , . . . , A n of zeros and ones, as in the theory of regular

expressions, cf. Hopcroft and Ullman [4] and Lewis and Papadimitriou [7].

Lemma 5.1. For odd n, the set

6 : = {χ R :
i∈R
Σ v i contains no 2 ′s}

consists exactly of the words of length n in the language
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+ = { 0 }∗ < 1 { 11 , 0011 , 100001 , 00100001 }∗ .

Proof. Certainly ∅ ∈ 6 n , corresponding to the vector 0n . So suppose R ∈ 6 n is nonempty. If

1 /∈ R, then the first nonzero coordinate in

w R : =
i∈R
Σ v i

is 2, a contradiction showing 1 ∈ R. Next, if 3 ∈ R then 2 ∈ R, otherwise the second coordinate

of w R is 2. If 2 ∈ R and 3 /∈ R, then we must have 4,5,6 /∈ R and 7 ∈ R in order to not have any

2’s in positions 1 through 6. If 2 /∈ R and 3 /∈ R then we are similarly forced to have 4 ∈ R, and

then either 5 ∈ R or else 5,6,7,8 /∈ R and 9 ∈ R. Thus always 1 ∈ R and χ R begins with one of

the patterns 1 { 11 , 0011 , 100001 , 00100001 }.

Consider the first case 111. We have

v 1 + v 2 + v 3 = 331022 . . .2 .

Deleting the first two coordinates of this gives the first row of A n − 2 , while if we delete the first

two columns and three rows of A n we get the remaining rows of A n − 2 . Since all vectors

v 4 , . . . , v n in A n are zero in their first two coordinates, the problem of extending 111 . . . to an

element of 6 n is equivalent to the problem of extending 1. . . to an element of 6 n − 2 .

Consider the second case 10011. We have

v 1 + v 4 + v 5 = 10011022 . . .2 .

Deleting the first four coordinates of this gives row 1 of A n − 4 , while deleting the first four

columns and five rows of A n gives the rest of A n − 4 . The problem of extending 10011 . . . to an

element of 6 n is thus equivalent to the problem of extending 1. . . to an element of 6 n − 4 .

Similarly the third and fourth cases 1100001 and 100100001 reduce to 6 n − 6 and 6 n − 8 ,

respectively.



- 24 -

Now the lemma follows by induction on odd n, after an easy check of the base cases

n = 1 , 3 , 5 and 7.

Lemma 5.1 implies in particular that, except for the empty set, all elements of 6 n contain the

first and last rows v 1 and v n .

We now continue the proof of Theorem 5.1 for # + . It proceeds in three steps.

(a) For nonempty R ∈ 6 n , w R : =
i∈R
Σ v i contains an odd number of 3’s.

(b) If R 1 < R 2 ∈ 6 n and R 1 > R 2 = ∅, then

w 1 =
i∈R 1

Σ v i , w 2 =
i∈R 2

Σ v i ,

contain an odd number of 3’s between them.

(c) If R 1 < R 2 ∈6 n , and R 1 ,R 2 ,R 3 are pairwise disjoint, then

y 1 =
i∈R 1 < R 3

Σ v i , y 2 =
i∈R 2 < R 3

Σ v i ,

contain an odd number of 3’s between them.

We introduce some notation. Given R ⊆ { 1 , . . . , n}, let B R be the square submatrix of A n

given by

B R = [b i j : i , j ∈ R] : = [ (A n ) i, j : i , j ∈ R] (5.4)

To prove (a), observe that, for any R, w R has an odd number of 3’s if and only if B R contains

an odd number of 2’s. (The sum of all rows of B R (mod 4) gives the set of coordinates of w R

that are odd.) Now suppose R ∈ 6 n is nonempty, so 1 ∈ R and n ∈ R by Lemma 3.1. Divide up

B R into all the sets E i = {b i j : j > i} < {b j i : j > i} for i ∈ R, plus its diagonal. The

diagonal is all 1’s, and contributes no 2’s. We will show that E 1 and E n each contain an even

number of 2’s, while all other E i each contain an odd number of 2’s. Since R has odd cardinality



- 25 -

by Lemma 3.1, B R will contain an odd number of 2’s and (a) will follow.

The number of 2’s in E i is even or odd according as the sum σ i of all elements in E i is 0 or 2

(mod 4). We have

b i j + b j i ≡ b i j ⊕ b j i = (v i ⊕ vi
∗ ) j ( mod 4 )

because each element in E i is 0 or 2, hence

σ i =

j > i
j∈R
Σ (v i ⊕vi

∗ ) j .

The set E 1 has all (v i ⊕vi
∗ ) j = 2 by (5.2), and the set R − { 1 } has even cardinality, so contains

an even number of 2’s. The set E n is empty. To analyze the other sets E i , we use Lemma 5.1.

Now R ∈1 { 11 , 0011 , 100001 , 001000001 }∗ . Each i > 1 in R lies in a block of two coordinates

{ j 1 , j 2 } with j 1 < j 2 , according to the decomposition of R into blocks in the language + . One

always has for i = j 1 within a block

(v j 1
⊕ vj 1

∗ ) j 2
= 0 , (5.5a)

except for the last block ( j 2 = n), where

(v j 1
⊕vj 1

∗ ) j 2
= 2 . (5.5b)

For i > 1 in R and a block { j 1 , j 2 }, with i < j 1 , we have

(v i ⊕vi
∗ ) j 1

≡ (v i ⊕vi
∗ ) j 2

( mod 4 ) , (5.5c)

except for the last block ( j 2 = n), where

(v i ⊕vi
∗ ) j 1

≡ (v i ⊕vi
∗ ) j 2

+ 2 ( mod 4 ) . (5.5d)

These facts are proved by induction on n, by the method of Lemma 3.1. They imply

σ i ≡ 2 ( mod 4 )

for all i ∈ R such that 1 < i < n, completing (a).
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To prove (b), we proceed by induction on the size R 2of R 2 . The base case R 1 = R,

R 2 = ∅ is already established by (a). We analyze the effect of shifting a single element v i from

R 1 to R 2 . Set R1′ = R 1 − {v i }, R2′ = R 2 < {v i } and R = R 1 < R 2 = R1′ < R2′ . Now

w R1′ = w R 1
− v i

w R2′ = w R 2
+ v i .

If π R 1 ,R 2
denotes the parity of the total number of 3’s in w R 1

and w R 2
, then we claim that

π R1′ ,R2′ ≡ π R 1 ,R 2
+ #( 2 ′s in i- th row of B R ) + #( 2 ′s in i -th column of B R ) ( mod 2 ) . (5.6)

To see this, note that if j ∈ R with j ≠ i then exactly one of w R 1
and w R 2

has an odd coordinate

value, and if v i has value 2 in its j-th coordinate, this value switches from 1 to 3 or vice-versa.

For the i-th coordinate

(w R1′ ) i ≡ w R 1
− 1 ( mod 4 )

(w R2′ ) i ≡ w R 2
+ 1 ( mod 4 ) ,

where (w R 1
) i and (w R2′ ) i are odd, and

(w R 1
) i − (w R2′ ) i ≡ (w R 1

) i − (w R 2
) i − 1 ( mod 4 )

≡ 2.#( 2 ′s in i- th column of B R ) ( mod 4 ) .

Thus the parity of the change in the number of 3’s in coordinate i is equal to #(2’s in i-th column

of B R) (mod 2).

It will suffice to show that

#( 2 ′s in i- th row of B R ) ≡ #( 2 ′s in i- th column of B R ) ( mod 2 ) , (5.7)

since (5.6) then yields

π R1′ ,R2′ ≡ π R 1 ,R 2
( mod 2 ) , (5.8)

which will complete the induction step for (b). Note that (5.7) says that corresponding row sums
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and column sums in B R are congruent (mod 4). Now (5.7) reduces to showing that

(v i ⊕vi
∗ ) . χ R ≡ 0 ( mod 4 ) , (5.9)

since the parity of the difference is equal to the left side of (5.9). The congruence (5.9) holds

because, using Lemma 3.1, the decomposition of R into blocks using + shows that v i ⊕vi
∗ has an

even number of 2’s in each block, except the first and last, where it always has an odd number of

2’s, see (5.5). In fact this argument shows that (5.9) holds for all rows 1 ≤ i ≤ n. Thus (5.7)

holds and (b) follows.

To prove (c), we proceed by induction on the size of R 3 . The base case R 3 = ∅ holds by

(b). We consider the effect of adding a new vector v i to R 3 . Set R = R 1 < R 2 , S 1 = R 1 < R 3 ,

S 2 = R 2 < R 3 , S1′ = S 1 < {v i } and S2′ = S 2 < {v i }. Then

π S1′ ,S2′ ≡ π S 1 ,S 2
+ #{ 2 ′s in v i lying in R}

+ #{ 2 ′s in vi
∗ lying in R} ( mod 2 ) , (5.10)

similarly to case (b). Note that the last term in (5.10) occurs because both wS 1
′ and wS 2

′ have an

odd i-th coordinate, and these agree (mod 4) if and only if #{ 2’s in vi
∗ lying in R} is even.

Finally we claim that

#{ 2 ′s in v i lying in R} ≡ #{ 2 ′s in vi
∗ lying in R} ( mod 2 ) , (5.11)

which with (5.10) yields

π S1′ ,S2′ ≡ π S 1 ,S 2
( mod 2 ) ,

completing the induction step. The claim (5.11) is proved by reducing it to (5.9), which is valid

for all i, so (c) follows.

This proves that w ,w′ ∈ # + differ by 2 in some coordinate. It remains to do the same for

w ,w′ ∈ # − . This has a similar proof. The set 6 n
∗ of sets of columns of A n that sum to a vector

containing no 2 is exactly the same as 6 n , and is proved by a similar induction. All the
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subsequent arguments for # + depended on conditions which are symmetric with respect to rows

and columns of A n , so carry over identically to the # − case.

A crucial feature of the Construction B codes is that vectors with w ≡ w′ (mod 2) in # B
n are

either close or widely separated in e-distance.

Theorem 5.2. Suppose that n is odd, and that w ,w′ are distinct vectors in the cube-tiling code

# B
n with

w ≡ w′ ( mod 2 ) . (5.12)

Then

(i) d e (w ,w′ ) is 1,
2

n − 3_ ____ ,
2

n + 1_ ____ or n if n ≡ 1 (mod 4), and is 1,
2

n − 1_ ____ , or n if

n ≡ 3 ( mod 4 ).

(ii) If d e (w ,w′ ) = 1 then w and w′ disagree in their first coordinate, and this coordinate is

odd.

Proof. The condition w ≡ w′ (mod 2) puts w and w′ in opposite complements, say w ∈ # + and

w′ ∈ # − . Write

w =
i∈I
Σ v i (5.13a)

where I is a subset of the rows of A n . Then (5.12) forces

w′ = 2e +
i∈I
Σ vi

∗ . (5.13b)

To prove (i), we use the fact that (5.12) also implies that

w − w′ ≡ w⊕w′ ( mod 4 ) . (5.14)

Since ⊕ is commutative and associative,
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w − w′ ≡ ( 2e) ⊕(
i∈I
⊕ (v i ⊕vi

∗ ) ) ( mod 4 ) . (5.15)

Now, assuming n ≡ 3 (mod 4), (5.2b) gives

i∈I
⊕ (v i ⊕vi

∗ ) ≡ 0n or 0 ( 2 ) n − 1 or 2 ( 0022 ) 4
n − 3_ ____

02 or 2 ( 2200 ) 4
n − 3_ ____

20 .

Hence

w − w′ = 2n or 2 ( 0 ) n − 1 or 0 ( 2200 ) 4
n − 3_ ____

20 or 0 ( 0022 ) 4
n − 3_ ____

02 .

so

d e (w ,w′ ) = 1 ,
2

n − 1_ ____ or n .

The result for n ≡ 1 (mod 4) follows similarly from (5.2a), and (i) is proved.

To prove (ii), we observe that (5.15) gives

(w − w′ ) ⊕2e =
i∈I
⊕ (v i ⊕vi

∗ ) ,

and the right side takes only four possible values, by (5.2). The only one of these allowing

d e (w ,w′ ) = 1 is

i∈I
⊕ (v i ⊕vi

∗ ) = 0 ( 2 ) n − 1 . (5.16)

Thus w and w′ must differ on their first coordinate.

Now divide the set { 2 , 3 , . . . , n} into two subsets P and Q according as

v i ⊕vi
∗ = 22200 . . . for i∈P

v i ⊕vi
∗ = 20022 . . . for i∈Q .

(Then P is all i ≡ 0 or 1 (mod 4) and Q is all i ≡ 2 or 3 (mod 4), except that n goes in the

opposite subset from what its congruence class (mod 4) indicates.)
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Suppose that w =
i∈I
Σ v i satisfies (5.16). There are two possibilities.

Case (a.) 1∈I and I> P ≡ I> Q ≡ 0 (mod 2).

Case (b.) 1 /∈I and I> P ≡ I> Q ≡ 1 (mod 2).

These cases correspond to the first coordinate of w being odd or even, respectively. We prove (ii)

by showing that if w falls in Case (b), then w contains an odd number of 3’s, contradicting

w∈# + .

Consider the square submatrix B I = [b i j : i , j∈I] of A n consisting of the rows and columns

of I. Then w has an odd number of 3’s if and only if B I contains an odd number of 2’s, i.e. if and

only if

π I : =

i ≠ j
i, j∈I
Σ b i j ≡ 2 ( mod 4 ) . (5.17)

Now (5.2) yields, for 2 ≤ i < j ≤ n, that

b i j + b j i ≡


2 ( mod 4 )

0 ( mod 4 )

if i∈P , j∈Q or i∈Q , j∈P ,

if i , j∈P or i , j∈Q ,
(5.17)

In Case (b), 1 /∈I, and

π I =

2≤i < j
i, j∈I
Σ (b i j + b j i ) ≡ 2 ( mod 4 )

using (5.17), because

{ (i , j) : i < j and i∈P , j∈Q or i∈Q , j∈P} = { (i , j) : i∈P and j∈Q}

has odd cardinality, since I> P = I> Q ≡ 1 (mod 2).

6. Cube-Tilings Without High-Dimensional Common Faces

We now construct cube-tilings of R n having no two cubes with a common face of dimension

exceeding n −
3
1_ _ √ n . The construction uses the block-substitution method of Lagarias and
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Shor (1992).

Theorem 6.1. For each integer k ≥ 1, and n = 8k 2 + 24k + 10 there exists a tiling of R n by

unit cubes such that:

(1) The centers of all cubes are in
4
1_ _ Z n .

(2) The tiling is periodic with period lattice 2Z n .

(3) No two cubes have a complete d-dimensional face in common, for

d > n − ( 2k + 1 ).

Proof of Theorem 6.1. Let k ≥ 0 be a fixed integer. We start with a Construction A cube-tiling

# A
m with m = 2k + 5. Then # A

m is 2-extremal, and has complements # m
+ , # m

− , with

# m
+  = # m

−  = 2m − 1 . Now form a new set #̂ A
m

: = #̂ m
+

< #̂ m
−

, where #̂ m
+

= # m
+ and #̂ m

−

consists of the vectors in # m
− with each 0 coordinate replaced by a new symbol 0′ .

The desired cube-tiling is a collection of vectors 7 k ⊆{ 0 ,
2
1_ _ , 1 ,

2
3_ _ , 2 ,

2
5_ _ , 3 ,

2
7_ _ }n where

n = ( 2k + 5 ) ( 4k + 2 ) = 8k 2 + 24k + 10. 7 k consists of all possible substitutions for each

of the symbols 0 , 0′ , 1 , 2 , 3 in all vectors in #̂ A
m

with vectors from certain corresponding sets

S 0 , S0′ , S 1 , S 2 , S 3 contained in { 0 ,
2
1_ _ , 1 ,

2
3_ _ , 2 ,

2
5_ _ , 3 ,

2
7_ _ }4k + 2 . These sets are produced from

the Construction B cube-tiling code # B
4k + 3 , as follows. Partition the vectors in # B

4k + 3 according

to the value of their first coordinate

# B
4k + 3 = # 0 < # 1 < # 2 < # 3 ,

and write, symbolically,

# 0 = 0X , # 1 = 1Y , # 2 = 2Z , # 3 = 3W , (6.1)

where X , Y , Z , W are sets of ( 4k + 2 )-vectors. Lemma 3.1 gives the information that

X = Z , Y = W , (6.2)
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see (3.6). Then take

S 2 = Y ,

S0′ = Z ,

S 0 = X ,

S 3 = Y +
2
1_ _ e ( mod 4 ) ,

S1′ = Z +
2
1_ _ e ( mod 4 ) ,

S 1 = X +
2
1_ _ e ( mod 4 ) ,

(6.3)

where e = ( 1 , 1 , . . . , 1 ). Note that S 0 < S0′ < S 2 is disjoint from S 1 < S1′ < S 3 because all

vectors in the first set have all integer coordinates, while those in the second set have all half-

integer coordinates.

To prove the theorem it suffices to establish the following three facts.

(a) 7 k consists of 2n distinct vectors.

(b)
2
1_ _ 7 k + 2Z n is a tiling of R n by unit cubes, with centers in

4
1_ _ Z n .

(c) For distinct w , w′ in 7 k with w ≡ w′ (mod 2), one has

d e (w , w′ ) ≥ 2k + 1 .

Fact (c) asserts that if two cubes from
2
1_ _ 7 k + 2Z n have a common face, then it has dimension

at most n − ( 2k + 1 ).

To prove (a), we begin by showing that X , Y, and Z are pairwise disjoint. Indeed

X> Y = Z> Y = ∅ because # B
4k + 3 is a cube-tiling (hence these elements differ by 2 in some

coordinate), while X> Z = ∅ follows from Theorem 5.2 (ii), because any common vector x

would produce 0x and 2x in # B
4kk + 3 .

In consequence S 0 , S0′ , S 1 , S1′ , S 2 , S 3 are all pairwise disjoint, hence all vectors produced

by the block-substitution construction are distinct. To count these, observe that
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S 0 = S0′  = S 1 = S1′  = X ,

S 2 = S 3 = Y .

Now, an element w = (w 1 , . . . , w m ) ∈ # A
m yields X

n 0 Y
n 1 vectors in 7 k , where n 0 and n 1

are determined using the mapping φ:Z /4Z → Z /2Z with φ( 0 ) = φ( 1 ) = 0,

φ( 2 ) = φ( 3 ) = 1, namely n 0 = #{w i : φ(w i ) = 0 } and n 1 = #{w i : φ(w i ) = 1 }.

Applying Lemma 3.1 to # A
m , the total number of such elements in

7 k =
j = 0
Σ
m 

 j
m

XjYm − j = (X + Y) m .

However Lemma 3.1 also implies for # B
4k + 3 that

X + Y = 24k + 2 ,

by (3.5). Thus 7 k = 2( 2k + 5 ) ( 4k + 2 ) , proving (a).

To prove (b), observe that all centers of
2
1_ _ 7 k + 2Z n lie in

4
1_ _ Z n . To prove that it’s a cube-

tiling, it suffices to show no two cubes overlap∗ , which is equivalent to showing that any distinct

vectors z, z′ ∈ 7 k differ by 2 (mod 4) in some coordinate position. Suppose first that z, z′ were

produced from the same vector w in # A
m . Then they differ in some block coming from the i-th

coordinate position w i of w, say. Thus they have different blocks z i , zi′ ∈ S w i
. But any two

vectors in S w i
differ by 2 (mod 4) in some coordinate, using the fact that # B

4k + 3 is a cube-tiling

code, so all vectors in it have e-distance at least 1. Now suppose z, z′ were produced from

different vectors w , w′ in # A
m . Since # A

m is a cube-tiling code, w , w′ differ by 2 in some

position, say w i ≡ wi′ + 2 (mod 4). Then all blocks z i in S w i
differ from all blocks zi′ in S w i′ by

2 (mod 4) in some coordinate, again from the cube-tiling code property of # B
4k + 3 . This proves

________________

* If no cubes overlap, a volume-argument shows that the density of space covered by cubes is 1. If there were any
uncovered space, it would be 2Z n-periodic, hence have positive density.
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(b).

To prove (c), we treat three cases. The first case is that z, z′ ∈ 7 k with z ≡ z′ (mod 2) were

produced from the same vector w ∈ # A
m . Then there is some coordinate w i , where z and z′ have

distinct blocks z i , zi′ ∈ S w i
. Since z i ≡ zi′ (mod 2), Theorem 5.2 implies that

d e (z,z′ ) ≥ d e (z i , zi′ ) ≥ 2k + 1 .

Next suppose that z, z′ arise from distinct vectors w , w′ ∈ # A
m . The condition z ≡ z′ (mod 2)

requires w ≡ w′ (mod 2), by (6.3). The second case is when d e (w , w′ ) ≥ 2k + 1. Then

d e (z, z′ ) ≥ 2k + 1, because the sets S i are pairwise disjoint. The third case is when

d e (w , w′ ) ≤ 2k. Then w and w′ must agree in at least 5 coordinates, hence Theorem 4.2

guarantees that w and w′ have at least two matching coordinates that take the values 0 or 1. Now

w ≡ w′ (mod 2) implies they are in opposite complements of # A
m , hence for matching 0

coordinates, one of these has the value 0 and the other the value 0′ , and for matching 1

coordinates one has the value 1 and the other 1′ . But, using Theorem 5.2(ii), any z i ∈S 0 and

zi′ ∈ S0′ have

d e (z i , zi′ ) ≥ 2k ,

because they come from vectors 0z i ∈ # 0 and 2zi′ ∈ # 2 in # B
4k + 3 with z i ≡ zi′ (mod 2), and

similarly for any z i ∈ S 1 and zi′ ∈ S1′ . Hence

d e (z,z′ ) ≥ 4k ≥ 2k + 1 , (6.4)

proving (c).

Theorem 6.1 used 2Z n-periodic cube-tilings with centers in
4
1_ _ Z n , rather than in

2
1_ _ Z n , in

order to conveniently construct sets of blocks S 1 , S1′ , S 3 disjoint from S 0 < S0′ < S 2 . It should be

possible to construct similar tilings with all cube-centers in
2
1_ _ Z n , by instead finding S 1 , S1′ , S 3
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in { 0 , 1 , 2 , 3 }n disjoint from S 0 < S0′ < S 2 , using the large group of automorphisms of

(Z /4Z ) n , as was done in the constructions in Lagarias and Shor (1992).

Corollary 6.1a. For all n there exists a tiling of R n by unit cubes such that no two cubes have a

common face of dimension exceeding n −
3
1_ _ √ n .

Proof. Suppose that m k ≤ n < m k + 1 , where m k = 8k 2 + 24k + 10. Theorem 6.1 together

with K n + 1 ≤ K n + 1 gives

K n ≤ (n − m k ) + K m k
≤ n − ( 2k + 1 ) . (6.5)

The example in Appendix A gives K n ≤ n − 3 for n ≥ 10. Next one has K n ≤ n − 4 for

n ≥ 50, using the case k = 2 of a construction n = ( 2k + 1 ) ( 4k + 2 ) which has no (n − 2k)-

dimensional face, proved exactly as in Theorem 6.1, except that the bound (6.4) is weakened to

d e (z, z′ ) ≥ 2k. This covers all n ≤ 90.

Finally the corollary holds for all n ≥ 90 using (6.5) and the fact that

3
1_ _ √ m k + 1 < 2k + 1

holds for all k ≥ 2.

Theorem 6.1 gives, for any ε > 0, that

K n ≤ n −
(√ 2 + ε)

1_ ________ √ n

for all sufficiently large n.

7. Upper Bounds for the Cube-Tiling Constant K n

To what extend can the block-substitution construction of §6 be improved? One possibility is

to find a better block-substitution construction.
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A special tiling is a 2-extremal cube-tiling 7 = 0X < 1Y < 2Z < 3W of R n such that:

(i) X , Y , Z and W each consist of distinct elements (mod 2),

(ii) X > Z = ∅.

It is unknown whether or not any special tilings exist. The relevance of special tilings to K n

is that their existence would give a nontrivial linear upper bound for K n .

Theorem 7.1. If there exists a special tiling in R d , then

K n ≤ ( 1 −
3d
1_ __ ) n ,

for all n ≥ 12d 3 .

Proof. Any special tiling 7 in R d must have

X = Y = Z = W = 2d − 2 . (7.1)

This holds since X + Y + Z + W = 2d , and if any set, say X, had X > 2d − 2 , then by

(i) it would contain two complementary (d − 1 )-vectors x and x
_

≡ x + e (mod 2), whence 0x and

0x
_

would not differ by 2 in any coordinate, contradicting 7 being a cube-tiling.

Now we imitate the block-substitution construction of Theorem 6.1, but use the special tiling

7 to construct the blocks.

Choose a Construction A tiling # A
m with m = 4k + 1, and replace all values 0 and 1 in the

complement # − by 0′ and 1′ , respectively. Then make the block-substitution

S 2 = Y ,

S0′ = Z ,

S 0 = X ,

S 3 = Y +
2
1_ _ e ( mod 4 ) .

S1′ = Z +
2
1_ _ e ( mod 4 ) ,

S 1 = X +
2
1_ _ e ( mod 4 ) ,

The set 7 k
∗ resulting from this block-substitution lies in R n , where n = ( 4k + 1 ) (d − 1 ). It has
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cardinality 2n , as can be proved using (7.1). Also
2
1_ _ 7 k

∗ + 2Z n is a tiling of R n by unit cubes,

having all cube centers in
4
1_ _ Z n , by a similar proof to that of Theorem 6.1.

We show that if z ≡ z′ (mod 2) in 7 k
∗ , then

d e (z,z′ ) ≥
3
4_ _ k . (7.2)

The key role of a special tiling is that property (i) guarantees that any two distinct z, z′ ∈ 7 k
∗

arising from the same vector w ∈ # A
m have z ≡/ z′ (mod 2). Thus any z, z′ ∈ 7 k

∗ with z ≡ z′

(mod 2) arise from w , w′ ∈ # A
m with w ≡ w′ (mod 2) and w ≠ w′ . There are two cases. First,

if

d e (w , w′ ) ≥
3
4_ _ k

then (7.2) is inherited, because the e-distance between elements in different S i , S j with i ≡/ j

(mod 2) is at least one. Second, if

d e (w , w′ ) <
3
4_ _ k

then w , w′ agree on at least
3
8_ _ k + 1 coordinates, so by Theorem 4.2 they have at least

3
4_ _ k

matching coordinates that are 0 or 1. Since w , w′ are in opposite complements of # A
m , all their 0

and 1 coordinates are labelled 0 and 0′ , and 1 and 1′ , respectively. Again (7.2) holds since every

element in S 0 is at e-distance at least 1 from every element of S0′ , and similarly for S 1 and S1′ .

Thus, for n k = ( 4k + 1 ) (d − 1 ), we have

K n k
≤ n k −

3
4_ _ k ,

and this implies that
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K n k
≤ n k −

3d

n k_ __ − 4d

holds for all k ≥ 3d 2 + d. Since these n k are spaced at intervals of 4 (d − 1 ), one gets

K n ≤



1 −

3d
1_ __





n

valid for all n ≥ 12d 3 ≥ n 3d 2 + d .

We doubt the existence of special tilings. In this regard, we formulate:

Rigidity Conjecture for 2-Extremal Cube Tilings. In any 2-extremal cube tiling # of R n ,

knowledge of one vector of # in each (mod 2) equivalence class determines # uniquely.

The rigidity conjecture implies that no special tilings exist. Given a special tiling 7 , the set

7 ′ = 0X< 1Y< 2X< 3Y is easily checked to also be a 2-extremal cube-tiling. By the Rigidity

Conjecture, 0X< 1Y uniquely specifies 7 , hence 7 = 7 ′ , so X = Z, a contradiction.
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Appendix A: A 10-Dimensional Cube Tiling With No Common Faces of Dimension

Exceeding 7

We use a construction similar to one in Lagarias and Shor [6]. Consider the sets of vectors

S 0 , S0′ , S 1 , S1′ , S 2 , S 3 in { 0 , 1 , 2 , 3 }4 , given in Table A.1. The sets S 0 , S0′ , S 2 are the same as

in Lagarias and Shor [6], but the sets S 1 , S1′ , S 3 are derived from them by adding the vector

(1,1,1,1) to S 0 , S0′ , and S 2 , respectively, instead of by adding (1,0,0,0), as in the earlier

construction.

_________________________________________
S 0 S0′ S 2 S 1 S1′ S 3_________________________________________

0000 0303 0211 1111 1010 1322
0012 1011 1132 1123 2122 2203
0213 1113 2303 1320 2220 3010
0230 1130 3020 1301 2201 0131
0332 1323 1003 2030
1020 1331 2131 2002
2100 2211 3211 3322
2112 3001 3223 0112
2220 3022 3331 0133
2301 3103 3012 0210
2322 3223 3033 0330
3132 3231 0203 0302_________________________________________ 


































Table A.1. Blocks used in construction.

The construction uses partial block-substitution into the set 6 = S 0 < S2
∗ , where S2

∗ is

obtained from S 2 by replacing 0 and 1 in the middle two coordinates by 0′ and 1′ , i.e.

S2
∗ =








3

2

1

0

0′
3

1′
2

2

0′
3

1′

0

3

2

1

.

Make the block substitutions 0 → S 0 , 0′ → S0′ , 1 → S 1 , 1′ → S1′ , 2 → S 2 , and 3 → S 3 , for

all elements in just the second and third coordinates of 6 . This gives a cube-tiling code
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7 ⊂ { 0 , 1 , 2 , 3 }10 . The proof that 7 is a cube-tiling code is the same as in Lagarias and

Shor (1992).

It remains to show that if z, z′ ∈ 7 satisfy

z ≡ z′ ( mod 2 ) ,

then

d e (z, z′ ) ≥ 3 .

The sets (S 0 < S 2 ) (mod 2) and (S 1 < S 3 ) (mod 2) are easily seen to be disjoint, so if

z, z′ ∈ 7 satisfy z ≡ z′ (mod 2), then the vectors w , w′ ∈ 6 that they derive from must also

satisfy

w ≡ w′ ( mod 2 ) , (A.1)

where we consider 0 ≡ 0′ (mod 2) and 1 ≡ 1′ (mod 2). Since S 0 , S0′ , S 1 , S1′ , S 2 , S 3 are

pairwise disjoint, if

d e (z, z′ ) ≤ 2 ,

then

d e (w , w′ ) ≤ 2 , (A.2)

where 0 and 1 are regarded as at e-distance 1 from 0′ and 1′ , respectively. This gives two

conditions on the pair (w , w′ ), namely (A.1) and (A.2), that must be satisfied in order to give rise

to a bad pair (z, z′ ). It is easy to check that these conditions leave only four possible pairs for

(w , w′ ), namely ( 0213 , 021′ 1 ), ( 1020 , 30′ 20 ), ( 2301 , 230′ 3 ) and ( 3132 , 11′ 32 ). It now

suffices to verify that there is no pair of vectors x ∈S 0 , x′ ∈ S0′ (or x ∈ S 1 , x′ ∈ S1′ ) such that

x ≡ x′ ( mod 2 ) and d e (x , x′ ) ≤ 1. This is easily checked for x ∈ S 0 , x′ ∈ S0′ , and then

follows for x ∈ S 1 , x′ ∈ S1′ , because S 1 = S 0 + e and S1′ = S0′ + e.
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