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1 Theta Functions

We’ve previously seen connections between modular forms and Ramanujan’s work
by verifying that Eisenstein series are indeed modular forms, and showing that the
Discriminant function ∆ is a weight 12 cusp form with a product expansion in q.
As we said then, the extent to which we can express modular forms in terms of
products and quotients of the η function begin to explain many of the q-series iden-
tities given in Berndt. Using facts like the additivity of weights of modular forms
under multiplication, we can even begin to predict where to look for such impressive
identities.

Many of the identities we used for solving the problem of representations by
sums of squares could be boiled down to identities about the theta function, a q-
series supported on powers n2. In this section, we’ll begin a study of theta functions
and their connection to quadratic forms.

2 Poisson Summation for Lattices

The theory of the Fourier transform is often stated for functions of a real variable,
but is really no different for a real vector space. Given a function f on R that is
sufficiently well-behaved (For example f is piece-wise continuous with only finitely
many discontinuities, of bounded total variation, satisfying

f(a) =
1

2

[
lim
x→a−

f(x) + lim
x→a+

f(x)

]
for all a,

and
|f(x)| < c1 min(1, x−c2) for some c1 > 0, c2 > 1.

One can fuss with these conditions some, but these will be more than sufficient for
us.)

Now for such a function, define the Fourier transform

f̂(x) =

∫ ∞
−∞

f(y)e2πixydy.
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Proposition 1 (Poisson Summation for R) Given a function f as above with
Fourier transform f̂ , then

∞∑
n=−∞

f(n) =
∞∑

n=−∞

f̂(n)

Remember that we’re working with functions on R here, which is non-compact.
The theory is somewhat different from, say R/Z, a compact domain for which we
can express sufficiently nice functions as a Fourier series. We don’t have such a series
here, but we can regard the above formula as a partial analogue of this property.

Proof Consider the function

F (x) =
∞∑

n=−∞

f(x+ n),

which is sufficiently nice (in the above sense) if f is sufficiently nice, and is periodic
of period 1. That is, we can consider F as a function on the compact domain R/Z,
so it has a Fourier expansion such that

F (x) =
∞∑

n=−∞

ame
2πimx,

where, as usual,

am =

∫ 1

0

F (x)e−2πimxdx =

∫ 1

0

∞∑
n=−∞

f(x+ n)e−2πimxdx

Since e2πimx = e2πim(x+n), we may interchange the order of summation and integra-
tion, giving

am =
∞∑

n=−∞

∫ 1

0

f(x+ n)e−2πim(x+n)dx =

∫ ∞
−∞

f(x)e−2πimxdx = f̂(−m).

Thus taking x = 0, we have

∞∑
n=−∞

f(n) = F (0) =
∞∑

n=−∞

an =
∞∑

n=−∞

f̂(n),

as required. �
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More generally, to a real vector space V of dimension n with a translation invari-
ant measure µ, we may define (again for a rapidly decreasing smooth function f) the
Fourier transform

f̂(x) =

∫
V

e−2πi〈y,x〉f(y)µ(y).

(Note that comparing with V = R indeed reduces to our earlier definition.) Then f̂
is a sufficiently nice function on V ∗, the dual vector space of V consisting of linear
functions V → R. If Γ is a lattice in V , then the dual lattice Γ′ in V ∗ is defined as
the set of x ∈ V ∗ such that 〈y, x〉 ∈ Z for all y ∈ Γ.

Proposition 2 (Poisson Summation for Lattices) The volume of the lattice Γ
in V is µ(V/Γ). For f sufficiently nice as above, we have∑

y∈Γ

f(y) =
1

µ(V/Γ)

∑
x∈Γ′

f̂(x)

Proof We just want to reduce to the usual Poisson summation over Rn, whose proof
is essentially identical to the one we gave above for R. We can rescale the measure
by the volume, so we may assume µ(V/Γ) = 1. Let e1, . . . , en be a basis of Γ. Then
we may identify V with Rn according to the coefficients of these basis vectors, Γ may
be identified with Zn, and µ with dx1 . . . dxn. The space of linear maps may also be
identified with Rn and Γ′ with Zn, so we reduce to Poisson summation for Rn. �

3 Functional Equations for Theta Functions

Suppose that V has a symmetric, bilinear form B(x, y) = x · y which is positive and
non-degenerate (x · x > 0 if x 6= 0). This simplifies the situation above, as V ∗ can
be identified with V using the form, and Γ′ is now a lattice in V . To any lattice Γ,
define

ΘΓ(t) =
∑
x∈Γ

e−πtx·x, where t > 0, t ∈ R.

Taking V = R,Γ = Z, q = e2πiz, and z = iy for y > 0 (or actually, somewhat
annoyingly, z = iy/2) recovers the theta function ϕ defined in Berndt’s book.

Theorem 1 The function ΘΓ satisfies the functional equation

ΘΓ(t) = t−n/2
1

µ(V/Γ)
ΘΓ′(t

−1).
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In particular, if Γ = Γ′ = Z ⊂ R, we have

Θ(t) =
1√
t
Θ(

1

t
).

Proof We will apply Poisson summation to the function f(x) = e−πx·x, a rapidly
decreasing smooth function on V . To determine the Fourier transform of f , choose
an orthonormal basis for V to identify the vector space with Rn so that the measure
becomes dx = dx1 · · · dxn and the inner product simplifies to give f = e−π(x2

1+···+x2
n).

Hence the Fourier coefficient

f̂(x) =

∫
Rn

e−2πi(x1y1+···+xnyn)e−π(y21+···+y2n)dy

can be realized as an iterated integral which is identical in each coordinate. Choose
one such integral, complete the square in the exponent and evaluate. We find the
Fourier transform of e−πx

2
is again e−πx

2
, so f is equal to f̂ .

Our theta function has summands e−πtx·x. Again, use the function f defined
above, now for the lattice t1/2Γ, all translates of elements of Γ by t1/2. It’s volume in
V is tn/2µ(V/Γ) where n is the dimension of V , and its dual is t−1/2Γ′ according to
the definition of the dual. Applying Poisson summation for lattices gives the desired
result. �

4 Matrix Description of Theta Functions

Note that in our theorem, we need not take e1, . . . , en to be an orthonormal basis
of Γ. More generally, to obtain a symmetric bilinear form which is positive and
non-degenerate, then setting aij = ei · ej, the matrix A = (aij) must be positive,
non-degenerate, and symmetric. With this choice of basis and bilinear form,

x · x =
∑

aijxixj for x = x1e1 + · · ·+ xnen

and the corresponding theta function is

ΘΓ(t) =
∑
x∈Zn

e−πt
P
aijxixj .

By comparing the basis e1, . . . , en chosen above to an orthonormal basis, we see that
the volume of our lattice Γ is det(A)1/2 (see Serre, p. 108 for a slick proof using
wedge products). Further if B = (bij) is the inverse matrix to A, then B plays the
same role as A but now for the dual basis. That is, setting e′i =

∑
bijei, then the e′i

are a dual basis whose inner products recover B, and whose volume is 1/ det(A)1/2.
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5 Theta Functions as Modular Forms

First we analyze convergence of the theta functions. Given any integer m ≥ 0, let
rΓ(m) denote the number of elements x ∈ Γ such that x · x = 2m. Then rΓ(m) is
bounded by a polynomial in m. This is clear since we’re counting lattice points on the
surface of a sphere of radius 2m in n dimensions. Serre quotes the bound O(mn/2).
What’s the best you can prove? For our purposes, we just need polynomial growth
for convergence since the terms in our theta functions have exponential decay. This
implies that the q-series

∞∑
m=0

rΓ(m)qm

converges for |q| < 1. So letting q = e2πiz as usual, for z ∈ H defines a holomorphic
function

θΓ(z) =
∞∑
m=0

rΓ(m)qm =
∑
x∈Γ

eπiz(x·x) =
∑
x∈Γ

q(x·x)/2.

Because we want integral powers of q only in our q expansion, we see now that we
need to require an additional condition on our lattice Γ: x · x ≡ 0 (mod 2) for all
x ∈ Γ. In matrix terms, this implies A = (ei · ej) has even entries along the diagonal.

Note further the intentional use of the lower case θ, as this function is slightly
different from the functions defined in the previous sections. In those sections, we
made careful study of theta functions with real parameter t, which we now see
recovered by setting z = it. In fact, we’d like to use the symmetry property of the
real-valued theta function as t 7→ 1/t to conclude a similar property for z 7→ −1/z
for θ(z).

Using our new lower-case notation, we have

ΘΓ(t) = θΓ(it), ΘΓ(t−1) = θΓ(−1/it)

We’d like to apply Poisson summation for lattices, to obtain a relation for θ. To
do this, we require the dual lattice Γ′ to be equal to Γ – in terms of the definition
of the dual lattice, this means that x · y ∈ Z for all x, y ∈ Z so that x · y defines
an isomorphism between Γ and its dual. In matrix terms, A = (aij) = (ei · ej) has
integer coefficients with determinant equal to 1. Given this assumption, we may
apply Theorem 1 to give

θΓ(−1/it) = tn/2θΓ(it).

Because both θΓ(−1/z) and (iz)n/2θΓ(z) are analytic functions in z, and we have
just proved they are equal for z on the positive imaginary axis, then by analytic
continuation, it is true for all z ∈ H. We record this result as:
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Proposition 3 Given Γ a self-dual lattice with notation as above, for any z ∈ H,

θΓ(−1/z) = (iz)n/2θΓ(z).

Corollary 1 If V is a self-dual lattice with x ·x ≡ 0 (2) for all x ∈ Γ and dimV = n
is a multiple of 8, then θΓ(z) is a modular form of weight n/2.

Proof Indeed, the modular group G is generated by two matrices S and T and the
q-series expansion (with the ≡ 0 mod 2 assumption) shows invariance under T , while
the proposition shows invariance under S provided we get rid of the power of i. �

In fact, we can show that any lattice V under these assumptions (self-dual, x ·x ≡
0 (2)) must have dimension divisible by 8. We may assume that n ≡ 4 (8) (else
consider Γ⊕Γ or Γ⊕Γ⊕Γ⊕Γ and we’ll arrive at a similar contradiction). Then, by
Proposition 3, the differential form ω(z) = θΓ(z)dzn/4 is acted on by S as S(ω) = −ω
and T (ω) = ω hence (ST )2(ω) = ω. But the order of ST in G is 3, giving a
contradiction.

This is all well and good, except that we haven’t actually shown that any such
vector spaces V exist. Translated into conditions on matrices, we seek n×n invertible
integer matrices with 8|n which are symmetric, even along the diagonal, and of
determinant 1.

6 Lattices in n = 8k Dimensions

The most natural lattice to consider is L = Zn in the vector space V = Qn equipped
with the usual “dot product” bilinear form, where Q denotes the rational numbers.
It has all the necessary properties, except for the condition that x · x ≡ 0 (2) for all
x. If we consider the submodule L2 of L of elements satisfying this condition, this
has index 2 in L, so since L has volume 1 as a lattice in Rn, then L2 has volume 2.
To fix this, we add the vector e = (1/2, · · · , 1/2) ∈ V and consider Γn = 〈L2, e〉, the
submodule of V generated by L2 and e. Then

x · e =
1

2

∑
xi ∈ Z for all x ∈ L2, and e · e = 2k

so Γn satisfies the mod 2 property. Moreover, L2 has index 2 in Γn since 2e ∈ L2, so
Γn has finite volume equal to 1 as desired, and defines a lattice in Rn.

Let’s analyze n = 8, the first example of such a lattice. How many elements
x ∈ Γ8 have x · x = 2? We can use modular forms to obtain the answer. Indeed,
the lattice satisfies all the necessary properties for θΓ8 to define a modular form of
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weight 4. Analyzing its q-series, the coefficient of q0 is rΓ(0), the number of lattice
points with inner product 0. Our form is non-degenerate so the only such element
of Γ is the origin. That is, rΓ(0) = 1.

Previously, we asserted (but have yet to prove) the space of modular forms of
weight 4 has dimension 1, so θΓ8 = cG2 (where G2 is the Eisenstein series of weight
4), for some constant c which is determined by normalizing the constant term of G2

to be 1. This implies that the coefficient of qm: rΓ(m) = 240σ3(m) for all m ≥ 1.
In particular, there are 240 elements x of Γ8 with x · x = 2. They can be listed as
follows (with ei the standard basis in Qn):

±ei ± ek (i 6= k) and
1

2

8∑
i=1

δiei where δi = ±1,
8∏
i=1

δi = 1.

Remark 1 This lattice is extraordinarily important in the theory of Lie groups. The
mutual scalar products of these vectors are integers which form a root system of type
E8, where E has nothing to do with Eisenstein series, but rather the Cartan classifi-
cation of simple Lie groups. Roughly, any simple Lie group is of type An, Bn, Cn or
Dn for n ≥ 1 or an exceptional type E6, E7, E8, F4, or G2 (again unfortunate nota-
tion, as there’s no connection to Eisenstein series here). Of these exceptional groups,
E8 is by far the most complex. A discussion of E8 as providing a so-called “theory of
everything” uniting fundamental forces in physics has recently been revived by Gar-
rett Lisi and others, for which our own Prof. Bert Kostant has delivered expository
lectures. Check the web for such references.

To finish our discussion, the lattice Γ8 can be given basis

1

2
(e1 + e8)− 1

2
(e2 + · · ·+ e7), e1 + e2, and ei − ei−1 (for 2 ≤ i ≤ 7)

with corresponding matrix (!)

2 0 −1 0 0 0 0 0
0 2 0 −1 0 0 0 0
−1 0 2 −1 0 0 0 0
0 −1 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 −1 2


.

For k > 1 (so n at least 16), then the vectors in x ∈ Γ8k with x · x = 2 are just
±ei ± ek with i 6= k, which no longer generate Γ8k. In particular, Γ8 ⊕ Γ8 is not
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isomorphic to Γ16. Serre deals with the structure theory for lattices satisfying the
required properties of this section in Chapter V of his book. See those pages for
more detail. To quote just one result, the space of such lattices has dimensions 1, 2,
and 24 for k equal to 1, 2, or 3, respectively.
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