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1 Introduction

The study of modular forms is typically reserved for graduate students, because the
amount of background needed to fully appreciate many of the constructions and
methods is rather large. However, it is possible to get a first look at modular forms
without relying too heavily on the theory of complex analysis, harmonic analysis,
or differential geometry. In some sense, we’ve been doing this all semester – using
identities which can be understood more generally in the language of modular forms
to prove classic problems in number theory that were only completely resolved after
years of work beyond Ramanujan by a host of talented mathematicians.

In the remainder of this course, we’ll be exploring the theory of modular forms
equipped with a large number of examples coming from the generating functions
we’ve been analyzing all semester.

2 The Modular Group

In our recent study of elliptic functions, we were led to consider the set of matrices

GL(2,Z) =

{(
a b
c d

)
| a, b, c, d ∈ Z, ad− bc = ±1

}
which related any two pairs of complex numbers (ω1, ω2) generating the period mod-
ule M . Furthermore, we learned that to any lattice, we may choose a basis 〈ω1, ω2〉
with τ = ω2

ω1
∈ C uniquely determined by the criteria

τ : Im(τ) > 0, |τ | ≥ 1,
−1

2
< Re(τ) ≤ 1

2

(which, in turn, almost uniquely determined the pair ω1, ω2).
In reviewing the definition for modular forms, we typically state definitions with

respect to the group

SL(2,R) =

{(
a b
c d

)
| a, b, c, d ∈ R, ad− bc = 1

}
.

There is an action of SL(2,R) on C given by

γ =

(
a b
c d

)
∈ SL(2,R) : γ(z) =

az + b

cz + d
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It is sometimes convenient to extend this action to the set C ∪ {∞} by letting
γ(∞) = a

c
and γ(d

c
) =∞. Moreover, one checks (EXERCISE, if you haven’t tried it

before) that with notation for γ as above,

Im(γ(z)) =
Im(z)

|cz + d|2
.

Hence, we see that the action takes R∪∞ to itself, and stabilizes the upper and
lower half planes. Let H denote the upper half plane {z ∈ C | Im(z) > 0}. Moreover

the matrix −I =

(
−1 0
0 −1

)
acts trivially on H, i.e. fixes all elements.

Proposition 1 The group PSL(2,R) := SL(2,R)/{±I} acts faithfully on H.

Recall that a faithful group action is one for which no non-indentity element of
the group fixes all elements of the set. We leave the proof of this proposition as an
EXERCISE.

The “modular group” G is the subgroup SL(2,Z)/{±I} in PSL(2,R), consisting
of matrices with coefficients in Z up to equivalence by ±I. Technically, we should
denote elements of this quotient group as cosets, but typically no confusion will arise

by continuing to use the matrix representation of γ =

(
a b
c d

)
in SL(2,R) to denote

elements of G. (It is important that SL(2,Z) is a discrete subgroup of SL(2,R),
that is a topological group with the discrete topology. The theory of modular forms
can be presented for arbitrary discrete groups of SL(2,R) with some additional
complications. For more facts about discrete subgroups of SL(2,R), see Shimura’s
book.

3 The Fundamental Domain for G

In this section, we show that the domain D = {z ∈ H | |z| ≥ 1, |Re(z)| ≤ 1/2} is a
fundamental domain for the action of G on H (and explain what is meant by this
term “fundamental domain”). To this end, consider the matrices

S =

(
0 1
−1 0

)
: S(z) =

−1

z
T =

(
1 1
0 1

)
: T (z) = z + 1

which satisfy the relations
S2 = I, (ST )3 = I.

We will prove the following two main results in this section:
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Theorem 1 D is a fundamental domain for the action of G on H. That is, by way
of definition,

1. For every z ∈ H there exists γ ∈ G such that γ(z) ∈ D.

2. Given two points z, z′ ∈ D with z = γ(z′), then either Re(z) = ±1
2

and z = z′±1
OR |z| = 1 and z = −1

z′ .

3. To each z ∈ D, let Stab(z) = {γ ∈ G | γ(z) = z}. Then Stab(z) = {I} for all
z ∈ D UNLESS

• z = i, then Stab(z) = 〈S〉 of order 2.

• z = e2πi/3, then Stab(z) = 〈ST 〉 of order 3.

• z = eπi/3, then Stab(z) = 〈TS〉 of order 3.

Theorem 2 The group G is generated by S and T , i.e. every element γ ∈ G can be
written as a word in S and T of form

γ = T n1ST n2S · · ·ST nk

for some choice of integers ni (though the representation is clearly not unique ac-
cording to the relations mentioned above).

We will use Serre’s proof of these facts, which proves both theorems at the same
time. Before launching into the proof, a simple example will serve to illustrate an
alternate proof of Theorem 2. Given any matrix, say

γ =

(
4 9
11 25

)
we seek to represent γ in terms of S and T . Note

γT n =

(
4 9
11 25

)(
1 n
0 1

)
=

(
4 4n+ 9
11 11n+ 25

)
, γS =

(
4 9
11 25

)(
0 −1
1 0

)
=

(
9 −4
25 −11

)
.

Hence, we may choose n to reduce the size of coefficients in the matrix γT n. In
particular, noting the way in which S switches the columns of the matrix, we may
choose n (say n = −2 in our case) so that |d| < |c|. Then

γT−2 =

(
4 1
11 3

)
. Now γT−2S =

(
4 1
11 3

)
=

(
4 1
11 3

)(
0 −1
1 0

)
=

(
1 −4
3 −11

)
.
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And we may continue this process, now reducing 11 mod 3 by multiplying by say T 4

(though T 3 would work as well). Carrying this example to the bitter end, we may
obtain γ = ST−3ST−4ST 2.

EXERCISE: Turn the ideas used in this example into a rigorous general proof of
Theorem 2.

Proof (of Theorems 1 and 2): Let G′ be the subgroup of G generated by S and T .
We will first show part 1 of Theorem 1 by demonstrating an element of γ′ ∈ G′ such
that γ′(z) ∈ D.

There exists a γ ∈ G′ such that Im(γ(z)) is maximal, because the number of pairs
of integers (c, d) with |cz + d| < k for any given number k is finite, and

Im(γ(z)) =
Im(z)

|cz + d|2
. (1)

Now choose an n so that T n(γ(z)) is shifted into the vertical strip between −1/2 and
1/2. But then z′ = T n(γ(z)) ∈ D, since if |z′| < 1, then S(z′) = −1/z′ would have
a larger imaginary part than z′, contradicting the maximality of the imaginary part
of γ(z).

For parts 2 and 3 of Theorem 1, suppose that given γ ∈ G and z ∈ D, γ(z) ∈
D as well. As the pairs (z, γ) and (γ(z), γ−1) play symmetric roles here, we may
assume without loss of generality that Im(γ(z)) ≥ Im(z), which implies from (1)
that |cz+ d| ≤ 1. Remembering that z ∈ D, then |cz+ d| ≤ 1 for very few choices of
c and d, in particular only if c = 0, 1,−1 and we separate into three cases accordingly.

If c = 0, then d = ±1 so γ =

(
±1 b
0 ±1

)
, i.e. γ(z) = z ± b. But if γ(z) is also

assumed in D which has width 1, then either b = 0 so γ = ±I or b = ±1, and then
Re(z),Re(γ(z)) are −1/2 and 1/2 (or vice versa). The cases c = ±1 follow similarly.

EXERCISE: Finish the remaining cases c = ±1 in the above proof to complete
the proof of theorem 1. (Note: so far, the c = 0 case provided no non-identity
matrices that stabilized a point in D. As written in the theorem, there are points
with non-trivial stabilizers, so they must occur for c = ±1.)

Finally, it remains to prove that G′, our group generated by S and T , is G. Pick
any point z0 in the interior of D. For any γ ∈ G, we must show γ ∈ G′. If z = γ(z0),
then there exists a γ′ ∈ G′ such that γ′(z) = γ′γ(z0) ∈ D (by our above argument
for Theorem 1, part 1). But since z0 was chosen in the interior of D, and z0, γ

′γ(z0)
are both in D, then part 2 of Theorem 1 implies that γ′γ = I and hence γ ∈ G′. �
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Serre also notes that one can prove the slightly stronger statement that the only
relations on elements in G are those generated by S2 = 1 and (ST )3 = 1.

4 Modular Functions, Modular Forms

Definition 1 For a given integer k, we say a function f is weakly modular of weight
2k if f(z) is meromorphic on H and satisfies

f(z) = (cz + d)−2kf

(
az + b

cz + d

)
for all

(
a b
c d

)
∈ SL(2,Z)

Note that weakly modular functions of odd weight are all 0, since taking γ = −I
in the above definition would give f(z) = (−1)2k+1f(z). Equivalently, we could have
required the transformation property to be well-defined for G = SL(2,Z)/{±I}.

The definition is natural because d(γ(z))/dz = (cz+ d)−2, so we may rewrite the
transformation property as

f(γ(z))

f(z)
=

(
d(γ(z))

dz

)−k
, i.e. f(γ(z))d(γ(z))k = f(z)dzk.

In the language of differential forms, this means the k-form f(z)dzk is invariant under
the action of G.

Finally, we remark that since G is generated by S and T , it suffices to check that
f is invariant under these two transformations. That is, a meromorphic function f
is weakly modular of weight 2k if and only if

f(z + 1) = f(z) and f(−1/z) = z2kf(z).

In particular, if f(z+1) = f(z), then our function is simply periodic and has a Fourier
expansion in terms of powers of q = e2πiz which is meromorphic in the punctured
disk 0 < |q| < 1. If this can be extended to a meromorphic function at the origin,
then we say that f is “meromorphic at infinity.” This term comes from the theory
of Riemann surfaces where we think of e2πiz as a change of coordinates taking the
point i∞ to the origin. For us, we simply note that this means, practically speaking,
that the Fourier expansion can be given as a Laurent series in q. If this Laurent
expansion has no negative powers, we say f is “holomorphic at infinity.”

Definition 2 A weakly modular function f which is holomorphic everywhere (in-
cluding ∞) is called a “modular form.” If the function is 0 at infinity (that is, the
Laurent expansion in q has a0 = 0) then we say f is a “cusp form.”
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5 Examples: Eisenstein Series

We’ve seen Eisenstein series defined in several ways so far this semester. Most re-
cently, they were associated to lattices, but typically in the theory of modular forms
they are associated to a complex variable in the upper half plane. We first clarify
the translation between the two types of functions.

In our unit on elliptic functions, we identified the set of lattices in C as a real
vector space spanned by pairs of complex numbers ω1, ω2 with say Im(ω1/ω2) > 0.
Then the set of all lattices R may be identified with the set of all such pairs

L = {(ω1, ω2) | Im(ω1/ω2) > 0}

where we quotient out by the action of SL(2,Z), which accounts for all possible
changes of basis. Moreover, λ ∈ C× = C−{0} acts on L by λ : (ω1, ω2) 7→ (λω1, λω2),
so we may identify L/C× with H by the map (ω1, ω2) 7→ z = ω1/ω2. Note that the
action of SL(2,Z) on L translates to the usual action of G = SL(2,Z)/{±I} on H.
So we have

Proposition 2 The map (ω1, ω2) 7→ ω1/ω2 gives (after passing to the quotient by
SL(2,Z)) a bijection between R/C× and H/G.

Let F be a complex-valued function on R, the space of lattices. We say F is of
weight 2k if

F (λΓ) = λ−2kF (Γ) for all lattices Γ ∈ R, all λ ∈ C×.

In particular if Γ = Γ(ω1, ω2), the lattice generated by ω1, ω2, we may write F as a
function of the basis elements and

F (λω1, λω2) = λ−2kF (ω1, ω2)

and setting λ = ω−1
2 shows that ω2k

2 F (ω1, ω2) depends only on z = ω1/ω2, so we may
rewrite

F (ω1, ω2) = ω−2k
2 f(ω1/ω2) for some f : H → C

and then f(z) will be a modular function of weight 2k in terms of z ∈ H.
In this vein, we may begin with an Eisenstein series associated to any lattice:

Gk(Γ) =
∑

v 6=(0,0)∈Γ

1

v2k
, k > 1
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where we have taken k > 1 to guarantee the absolute convergence of the series. In
terms of a basis ω1, ω2 for the lattice we may rewrite this as

Gk(ω1, ω2) =
∑

(m,n) 6=(0,0)

1

(mω1 + nω2)2k

which is then related by a power of ω2k
2 to

Gk(z) =
∑

(m,n) 6=(0,0)

1

(mz + n)2k

Proposition 3 For k > 1, the Eisenstein series Gk(z) is a modular form of weight
2k. Moreover, this function can be extended to H ∪ {∞} with Gk(∞) = 2ζ(2k),
where ζ is the usual Riemann zeta function.

Proof It is clear that the series is a weakly modular function of weight 2k, as the
series converges absolutely for k > 1 and hence the modularity property reduces to a
simple change of variables in the sum, together with a rearrangement of summands.
So it is left to show that the Eisenstein series defines a holomorphic function on
H ∪ {∞}.

Suppose z ∈ D. Then

|mz + n|2 = m2zz̄ + 2mnRe(z) + n2

≥ m2 −mn+ n2 = |mρ− n|2 where ρ = e2πi/3

But
∑

(m,n)6=(0,0) 1/|mρ − n|2k converges, so Gk(z) converges uniformly in D. Per-

forming the same calculation for Gk(γ
−1z) with γ ∈ G shows the same is true on

each of the sets γ(D) which cover the entire upper half-plane H. It remains to show
that Gk is holomorphic at infinity, i.e. that Gk has a limit as Im(z)→∞. We may
take a limit running over z ∈ D (according to the modularity property of Gk) and
by uniform convergence in D, we can take the limit term by term in the sum. For
m 6= 0, these terms give 0, for m = 0, we get 1/n2k. Hence the limit exists for Gk(z)
and is equal to 2ζ(2k) upon summing over all integers n. �

We now turn to the Fourier expansions of the Eisenstein series. Our proof is moti-
vated by the construction of a Laurent expansion in z for the Weierstrass ℘ function.
That expansion was in z, while this will be a Fourier expansion in q = e2πiz, but
the principle is the same: use term by term differentiation of a uniformly convergent
series after expressing an initial function as a (Laurent or Fourier) expansion.
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We know we want this term by term differentiation to result in something of the

form 1
nz+m

2k
. The nz can be simplified by change of variable z 7→ z/n, so we want

a function expressed as a sum of 1
z+m

, and whose Fourier expansion is known to us.
Searching among trig functions, we find

π cot(πz) =
1

z
+
∞∑
m=1

(
1

z +m
+

1

z −m

)
One way to see this is via logarithmic differentiation of the product formula for sin z:

sin z = z

∞∏
n=1

(
1− z2

n2π2

)
.

On the other hand, we may write

π cot(πz) = π
cos(πz)

sin(πz)
= iπ

q + 1

q − 1
= iπ − 2πi

1− q
= iπ − 2πi

∞∑
n=0

qn.

Combining the two expressions for π cot(πz) and differentiating both sides 2k times
with respect to z, we obtain the following expression (valid for k ≥ 1):∑

m∈Z

1

(m+ z)2k
=

1

(2k − 1)!
(−2πi)2k

∞∑
n=1

n2k−1qn (2)

Now we are prepared to assert:

Proposition 4 For every integer k ≥ 2,

Gk(z) = 2ζ(2k) + 2
(2πi)2k

(2k − 1)!

∞∑
n=1

σ2k−1(n)qn

Proof Recalling the definition,

Gk(z) =
∑

(m,n)6=(0,0)

1

(nz +m)2k
= 2ζ(2k) + 2

∞∑
n=1

∑
m∈Z

1

(nz +m)2k

where we’ve taken the sum over integers n and split up the terms n = 0 and n 6= 0
into the pieces above. Now applying (2) with nz instead of z, we get

Gk(z) = 2ζ(2k) +
2(2πi)2k

(2k − 1)!

∞∑
d=1

∞∑
a=1

d2k−1qad = 2ζ(2k) +
2(2πi)2k

(2k − 1)!

∞∑
n=1

σ2k−1(n)qn,
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as desired. �

Sometimes it is convenient to normalize the constant term to be 1. Letting
Ek(z) = Gk(z)/2ζ(2k), gives

Ek(z) = 1 + γk

∞∑
n=1

σ2k−1(n)qn

with

γk = (−1)k
4k

Bk

, Bk the kth Bernoulli number:
x

ex − 1
= 1− x

2
+
∞∑
k=1

(−1)k+1Bk
x2k

(2k)!

To achieve this expression, we used Euler’s result on the special values of the zeta
function at even integers:

ζ(2k) =
22k−1

(2k)!
Bkπ

2k,

noting that all factors other than Bk in this formula nicely cancel with factors in
front of the Fourier coefficients of Gk, leaving γk as a rather simple expression.

6 Product Identities and the Dedekind Eta Func-

tion

Defined by Dedekind in 1877, as usual we take τ ∈ H and define the function

η(τ) = e2πiτ/24

∞∏
n=1

(1− e2πinτ )

Substituting in q = e2πiτ , then τ ∈ H implies |q| < 1 and

η(q) = q1/24

∞∏
n=1

(1− qn) = q1/24(q; q)∞

which is non-zero and converges absolutely for |q| < 1.
As we will subsequently prove, the η function is related to the discriminant func-

tion by ∆(τ) = (2π)12η24(τ). (We’ve mentioned both the infinite product definition
of ∆(τ) and it’s description as cusp form (i.e. a0 = 0 in the Fourier expansion)
defined as a combination of Eisenstein series of weights 4 and 6. But we’ve never
PROVED that the two definitions are consistent.)
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Let’s examine the effect of the basic transformations S and T that generate
SL(2,Z). For T : τ 7→ τ + 1, we have

η(τ + 1) = e2πi(τ+1)/24

∞∏
n=1

(1− e2πin(τ+1)) = eπi/12η(τ)

Modular forms are supposed to be completely invariant under translation, according
to the definition. In particular, η24(τ) will have period 1. It is slightly trickier to
determine the effect of S : τ 7→ −1

τ
.

Theorem 3 For τ ∈ H,

η

(
−1

τ

)
= (−iτ)1/2η(τ)

In Apostol’s book, he offers several proofs of this fact. We start with a proof due
to Siegel using a bit of complex analysis. We prove the result for τ = iy, i.e. τ along
the positive imaginary axis in H and then extend the result to the entire complex
plane via a theorem on analytic continuation.
Proof For τ = iy, the transformation formula becomes

η(i/y) = y1/2η(iy).

Now taking logs to convert the product expansion to a sum, we must show

log η(i/y)− log η(iy) =
1

2
log y. (3)

But then

log η(iy) = −πy
12

+
∞∑
n=1

log(1− e−2πny) = −πy
12
−
∞∑
n=1

∞∑
m=1

e−2πmny

m

= −πy
12
−
∞∑
m=1

1

m

e−2πmy

1− e2πmy
= −πy

12
+
∞∑
m=1

1

m

1

1− e2πmy

Substituting this back into (3), we must show that

∞∑
m=1

1

m

1

1− e2πmy
−
∞∑
m=1

1

m

1

1− e2πm/y
− π

12

(
y − 1

y

)
= −1

2
log y. (4)

For fixed real y > 0 and integer n ≥ 1, define

Fn(z) = − 1

8z
cot(πi(n+ 1/2)z) cot

(
π(n+ 1/2)z

y

)
.
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We will study the contour integral of Fn(z) around the parallelogram formed with
vertices y, i,−y,−i, traversed from starting point y (drawing a quick picture might
help here). By Cauchy’s Integral Theorem, we must determine the location of the
poles in z lying inside this contour, and then the residue of the function Fn(z) at
each of these points.

The non-zero poles coming from the first cot function are at z = ik/(n+ 1/2) for
k = ±1, · · · ,±n, those from the second cot in the product are at z = ky/(n + 1/2)
for k = ±1, · · · ,±n. Finally, there’s a triple pole at the origin z = 0 with residue
i(y − 1

y
)/24. The residue at z = ik/(n+ 1/2) for each k is

1

8πk
cotπiky

which is an even function of k. So summing over the 2n non-zero residues gives:

n∑
k=−n, k 6=0

Resz=ik/(n+1/2)Fn(z) = 2
n∑
k=1

1

8πk
cot πiky.

Recalling that

cot iθ =
cos iθ

sin iθ
= i

e−θ + eθ

e−θ − eθ
= −ie

2θ + 1

e2θ − 1
=

1

i

(
1− 2

1− e2θ

)
,

we may rewrite the above sum using θ = πk/y to get

n∑
k=−n, k 6=0

Resz=ik/(n+1/2)Fn(z) =
1

4πi

n∑
k=1

1

k
− 1

2πi

n∑
k=1

1

k

1

1− e2πk/y
.

By identical methods for the other set of non-zero residues, we have

n∑
k=−n, k 6=0

Resz=ky/(n+1/2)Fn(z) =
i

4π

n∑
k=1

1

k
− i

2π

n∑
k=1

1

k

1

1− e2πky
.

In other words, taking 2πi times the sum of ALL residues inside C gives an expression
which, upon taking the limit as n→∞ (which does not alter the contour C), agrees
with the left hand side of (4). By Cauchy’s integral theorem, this should equal the
contour integral, so it remains to show that:

lim
n→∞

∫
C

Fn(z)dz = −1

2
log y
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Because Fn is uniformly bounded on C for all n (we chose a fixed y > 0), we can apply
a bounded convergence theorem to change the order of the limit and the integration.
Moreover,

lim
n→∞

Fn(z) = − 1

8z
lim
n→∞

cot(πi(n+ 1/2)z) cot

(
π(n+ 1/2)z

y

)
Remembering that cot z = i e

2iz+1
e2iz−1

, then this limit will be ±1 according to whether
the real and imaginary parts of z have the same sign. In conclusion, limFn(z) = 1/8z
for points z on C in the first and third quadrant, and −1/8z for points in the second
and fourth quadrant on C. Putting it all together, we have

lim
n→∞

∫
C

Fn(z)dz =

∫
C

lim
n→∞

Fn(z)dz

=
1

8

(∫ i

y

dz

z
−
∫ −y
i

dz

z
+

∫ −i
−y

dz

z
−
∫
−iy dz

z

)
=

1

4

(∫ i

y

dz

z
−
∫ y

−i

dz

z

)
= −1

2
log y.

�

7 Product Expansion for ∆(τ )

Let us take, as our definition of ∆(τ),

∆(τ) = g3
2(τ)− 27g2

3(τ)

where g2 and g3 are the weight 4 and 6 Eisenstein series, appropriately normalized:

g2(τ) = 60
∑

(m,n) 6=(0,0)

1

(mτ + n)4
, g3(τ) = 140

∑
(m,n)6=(0,0)

1

(mτ + n)6
.

We chose this relation for ∆(τ) because we wanted to exhibit the first example of
a cusp form for SL(2,Z), a modular form whose expansion at infinity has constant
term 0. It is clear that we can do this, provided we can find two distinct modular
forms of the same weight. Both g3

2 and g2
3 have weight 12, so ∆(τ) is a modular form

of weight 12 as well.
You might be wondering at this point whether cusp forms of smaller weight exist

for SL(2,Z) and whether modular forms of weight less than 4 exist for SL(2,Z). Or
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whether we can form modular forms for other groups. We’ll get to these questions
in subsequent sections. In this section, we finally prove a product expansion for ∆
as defined above.

Theorem 4 Let τ ∈ H, the complex upper half plane. Let q = e2πiτ . Then

∆(τ) = (2π)12η24(τ) = (2π)12q

∞∏
n=1

(1− qn)24.

From our investigations in the last section, we see that η24(τ) will be a cusp form
of weight 12 on SL(2,Z) according to the transformation properties under S and T .
So if we knew that the space of cusp forms of weight 12 was one dimensional (as a
complex vector space), then we would only need to determine the constant relating
∆(τ) and η24(τ). The proof we will give has similar techniques in common to certain
proofs of the dimension of the spaces of modular forms and cusp forms.

Proof Consider the function f(τ) = ∆(τ)/η24(τ). Because both the numerator and
denominator are weight 12 modular forms, f(τ) = f(γ(τ)) for all γ ∈ G. Moreover,
f is analytic and non-zero in H because, as shown in our unit on elliptic functions,
∆ is non-zero and analytic on H and the product expansion for η (together with
logarithmic differentiation) shows that η never vanishes on H. It remains to analyze
the behavior of f at ∞. Note

η24(τ) = q
∞∏
n=1

(1− qn)24 = q(1 + I(q))

where I(q) is some power series in q with integer coefficients. In particular, η24 has
a first order zero at q = 0 (i.e. at infinity). Using the q-expansions for g2 and g3

presented in an earlier section, we find

∆(τ) = (2π)12

∞∑
n=1

τ(n)qn = (2π)12q(1 + I ′(q)),

where I ′(q) is another integral power series in q. Hence

f(τ) =
∆(τ)

η24(τ)
=

(2π)12q(1 + I ′(q))

q(1 + I(q))
= (2π)12(1 + I ′′(q))

for some I ′′(q), and hence f is analytic and non-zero at infinity. But then f(τ) is a
modular function of weight 0 which never takes the value 0, hence must be constant.
Our calculation at infinity shows this constant must be (2π)12. �
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8 The Eisenstein series G1

Previously, we had noted that Gk(z) defined by

Gk(z) =
∑

(m,n) 6=(0,0)

1

(nz +m)2k

defines an absolutely convergent function on H with expansion at infinity

2ζ(2k) +
2(2πi)2k

(2k − 1)!

∞∑
n=1

σ2k−1(n)qn.

The series defined as a sum over pairs of integers fails to converge absolutely for
k = 1, so we didn’t see a way to define an Eisenstein series of weight 2. However,
the Fourier expansion for Gk(z) does make sense for k = 1. Thus, we define

G1(z) := 2ζ(2) + 2(2πi)2

∞∑
n=1

σ1(n)qn,

where as usual, q = e2πiz. (Check that the definition above gives an absolutely
convergent power series for |q| < 1, and hence defines an analytic function on the
upper half plane H.) Moreover, by taking as our definition a series expansion in
e2πiz, we immediately have that G1(z + 1) = G1(z). As for the other generator S of
SL(2,Z), we’d like to show

G1

(
−1

z

)
= z2G1(z)

and hence G1 is a weight 2 modular form. (Note, we can’t just rearrange the series
in acting by S because the double sum is not absolutely convergent.) In fact, what
turns out to be true is that

G1

(
−1

z

)
= z2G1(z)− 2πiz,

so G1 is not a modular form of weight 2. However, these rather nice transformation
properties often make G1 useful for proofs involving modular forms. We can also use
it to derive a second proof of the transformation property of η under S.

Theorem 5 For any z ∈ H,

G1

(
−1

z

)
= z2G1(z)− 2πiz

14



The typical way of proving this is to use what’s known as “Hecke’s trick” as it is
a clever trick used by Hecke. He considered the series

G∗1(z) =
−1

8z
lim
ε→0

∑
(m,n)6=(0,0)

1

(nz +m)2|nz +m|ε

which converges absolutely, and satisfies the same transformation properties as a
weight two modular form (as can be shown by acting by S and T and rearranging
the absolutely convergent series). But then it still remains to relate G1 and G∗1,
which is done via a Fourier expansion for G∗1 using Poisson summation (a rather
robust technique from harmonic analysis that can also be used to obtain the Fourier
expansion of Gk for k ≥ 1.) Instead of employing Poisson summation, we present
Apostol’s proof, which is somewhat more elementary, but less well motivated:

Proof Recopying (2), we have (for k ≥ 1)

∑
m∈Z

1

(m+ z)2k
=

1

(2k − 1)!
(−2πi)2k

∞∑
t=1

t2k−1qt.

Note this series converges absolutely for k ≥ 1 as it is a single sum over integers, not
a double sum. Now, with k = 1, replace z by nz and sum over positive integers n to
obtain:

∞∑
n=1

∑
m∈Z

1

(m+ nz)2
= (2πi)2

∞∑
n=1

∞∑
t=1

tqnt = (2πi)2

∞∑
`=1

σ(`)q`

since the middle sum above is absolutely convergent. Hence,

G2(z) = 2ζ(2) +
∑
n6=0∈Z

∑
m∈Z

1

(m+ nz)2
,

but we’re not allowed to rearrange this sum.

Exercise: Use the above expression to show that

z−2G1

(
−1

z

)
= 2ζ(2) +

∑
m∈Z

∑
n6=0∈Z

1

(m+ nz)2
,

that is, the same as above with summation order reversed.
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Thus, to prove our claim, we must show that reversing the order of summation
has the effect: ∑

m∈Z

∑
n6=0∈Z

1

(m+ nz)2
=
∑
n6=0∈Z

∑
m∈Z

1

(m+ nz)2
− 2πi

z

To prove this, we need an alternate expression of the left-hand side. For this, we can
use the Gamma function

Γ(u) =

∫ ∞
0

e−ttu−1dt⇒ α−uΓ(u) =

∫ ∞
0

e−αttu−1dt,

for any real α > 0. This relation can be extended by analytic continuation to any
complex α with Re(α) > 0. Setting u = 2 and α = −2πi(m+nz) and summing over
all n ≥ 1 gives ∑

n6=0∈Z

1

(nz +m)2
= −8π2

∫ ∞
0

cos(2πmu)gz(u)du

where

gt(u) = u
∞∑
n=1

e2πinzu, u > 0 gt(0) = lim
u→0+

gz(u) =
−1

2πiz
.

Now we finally arrive at (after summing over m and making a change of variables)

∑
m∈Z

∑
n6=0∈Z

1

(m+ nz)2
= −8π2

∞∑
m=−∞

∫ 1

0

f(t) cos(2πmt)dt

where

f(t) =
∞∑
k=0

gz(t+ k).

The series expression above is a Fourier expansion which converges to the value
1/2(f(0+)−f(1−)), that is, the average approaching 0 from the right and 1 from the
left.

Exercise: Show that

f(0+) =
−1

2πiz
+
∞∑
k=1

gz(k)
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and

f(1−) =
∞∑
k=1

gz(k) =
∞∑
n=1

σ(n)e2πinz

and conclude the theorem. �

Exercise: Compute the logarithmic derivative of the product defining η(z), relate
it to G1(z), and thus obtain a second proof of the transformation property of η under
S.
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