
April 14, 2:00 pm

1 First Facts About Spaces of Modular Forms

The set of modular forms of weight k for SL(2,Z) form a complex vector space, as
is clear from the definition of a modular form. We’ll let M2k(SL(2,Z)) denote the
space of modular forms of weight 2k. For brevity, when no confusion can arise, we
may just write M2k. Further, let S2k = S2k(SL(2,Z)) denote the subspace of M2k

consisting of cusp forms (those forms whose q-series expansion have constant term
0, which is clearly preserved under addition and scalar multiplication).

Note there is a natural homomorphism π :M2k → C given by

π : f 7→ f(∞), f(∞) := c0 , the constant term in the q-series expansion at infinity

whose kernel is S2k. Moreover, for 2k ≥ 4, we have an Eisenstein series Gk in M2k

whose constant term Gk(∞) = 2ζ(2k) 6= 0. Since the map π is linear, then π is
surjective for 2k ≥ 4, so we may write

M2k = S2k ⊕ CGk,

a direct sum of vector spaces. In a subsequent section, we’ll prove the following
result:

Theorem 1 The vector space M2k has the following basis

M2k(SL(2,Z)) = 〈Ga
2G

b
3 | 4a+ 6b = k〉,

where G2, G3 are Eisenstein series of weights 4 and 6, respectively.

This shows, in particular, that the dimension of these vector spaces is finite.
We’ve seen throughout the semester that Eisenstein series of low weight (Berndt

labels them P,Q,R) played a role in Ramanujan’s solutions to representations by
sums of squares. As we noted then, those questions were easier when they related
to modular forms of low weight because (as this theorem shows) modular forms of
weight 4, 6, and 8 are one dimensional vector spaces. When the dimension of the
space is larger than 1, how can we select modular forms with interesting coefficients?
After all, since any complex-valued linear combination of basis elements is allowed,
you’d like to somehow select a canonical basis. There are many ways to do this –
the basis above in terms of Eisenstein series is one such way – but by far the most
important for number theoretic applications is via the use of Hecke operators.
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2 Hecke Operators: The Basic Idea

We’ll again rely on Serre’s exposition of this topic. We start by defining a natural map
(technically a “correspondence” – an action on the free abelian group generated by
a set) denoted T (n) for any integer n ≥ 1. For us, the set is the space of all complex
lattices R, so the free abelian group contains a basis element for each lattice. T(n)
takes any lattice Γ ∈ R to a sum over all sublattices of index n. Formally, we write

T (n)Γ =
∑

[Γ:Γ′]=n

Γ′ for any Γ ∈ R.

Recall that a sublattice Γ′ ⊆ Γ has index n if the quotient group Γ/Γ′ has order
n. In particular, all the lattices Γ′ must contain nΓ, the lattice of all n multiples of
elements in Γ. This implies that the number of sublattices of index n is equal to the
number of subgroups of order n in Γ/nΓ = (Z/nZ)2. For those who know a bit of
group theory, it is fairly elementary to check that if n is prime, the number of such
lattices is n+ 1.

It is also useful to define “homothety operators” Rλ for λ ∈ C× by

Rλ(Γ) = λΓ.

Regarded as an endomorphism of the free abelian group of R, we may compose them
with the T (n).

Proposition 1 We have the following identities among the correspondences T (n)
and Rλ:

1. RλRµ = Rλµ for all λ, µ ∈ C×.

2. RλT (n) = T (n)Rλ for any n ≥ 1, λ ∈ C×.

3. T (m)T (n) = T (mn) for gcd(m,n) = 1.

4. T (pn)T (p) = T (pn+1) + pT (pn−1)Rp, for p prime, n ≥ 1.

Proof The first two properties follow immediately from the definitions above. As
for (3), if m,n are relatively prime, it suffices to show that to each sublattice Γ′′ of Γ
of index mn, there exists a unique sublattice Γ′ with Γ′′ ⊆ Γ′ ⊆ Γ with [Γ : Γ′] = n
and [Γ′ : Γ′′] = m. This, in turn, follows from the fact that the group Γ/Γ′′, of
order mn decomposes uniquely into a direct sum of a group of order m and a group
of order n. (Serre calls this “Bezout’s Theorem” which is a statement about how
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two algebraic curves of degree m and n intersect in at most mn points (counting
correctly), where his curves are now defined over finite fields. My initial reaction is
to use the structure theorem for finite abelian groups.)

Finally, to prove (4), we note that all three correspondences in the identity –
T (pn)T (p), T (pn+1), and T (pn−1)Rp produce sums of lattices of index pn+1 in Γ.
Suppose Γ′′ is a lattice appearing in these correspondences for Γ. Then it appears
for T (pn)T (p) with integer coefficient a, with coefficient 1 in T (pn+1) (which is just
the sum of ALL lattices of index pn+1) and coefficient c in T (pn−1)Rp. So to prove
the relation, we must show that for any such lattice Γ′′, a = 1 + pc. We consider two
cases (and drawing a picture of these cases can be quite helpful as their just lattices
in C):

First, suppose Γ′′ 6⊆ pΓ. Then it will not appear in Rp and hence c = 0. Further,
a is the number of lattices between Γ and Γ′′ of index p in Γ. Any such lattice Γ′ (as
we remarked earlier) must contain pΓ and is characterized by its image as a subgroup
of index p in Γ/pΓ. Since Γ′ must contain the image of Γ′′ which must be of order p
(and hence index p) in the quotient group, this uniquely characterizes Γ′, so a = 1
as desired.

Finally, if Γ′′ ⊆ pΓ, then c = 1. In this case, the intermediate lattices Γ′ of index
p in Γ will again contain pΓ and thus automatically Γ′′. As remarked above, there
are p+ 1 such subgroups of index p in pΓ, so a = p+ 1, again satisfying the relation
a = 1 + pc. �

Corollary 1 The correspondences T (pn), n ≥ 1 can be expressed as polynomials in
T (p) and Rp.

This follows by induction using part (4) of the proposition repeatedly to reduce
the powers of p.

Corollary 2 The algebra generated by the correspondences Rλ and T (p) for p prime
is commutative and contains all the T (n).

This is clear from (1), (2), (3) and the above corollary.
These correspondences can also be extended to functions F on the space of lat-

tices, by
Rλ(F (Γ)) = F (Rλ(Γ)), T (n)(F (Γ)) = F (T (n)Γ).

In particular, if F is a function on R of weight 2k, then

Rλ(F ) = λ−2kF for all λ ∈ C×.
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Since the T (n) commute with the Rλ,

Rλ(T (n)F ) = T (n)(RλF ) = λ−2kT (n)F

which shows that T (n)F is again a weight 2k function. Moreover, the actions in the
above proposition can be rewritten for weight 2k functions as

T (m)T (n)F = T (mn)F, gcd(m,n) = 1

T (p)T (pn)F = T (pn+1)F + p1−2kT (pn−1)F, for p prime, n ≥ 1

This can be translated into an action on the space of modular forms of weight
2k. In the next section, we will translate the action of Hecke operators T (n) into
the language of matrices, which give a much more concrete and computationally
beneficial way of understanding the correspondences. Then we’ll use some facts from
linear algebra, including the spectral theorem, to show that the space of cusp forms
(which has an inner product to be defined) has an orthonormal basis which can be
simultaneously diagonalized by the T (p) with p prime. As we might expect, these
so-called Hecke eigenforms are quite special, and are conjectured (and in some cases
proven) to have deep connections with number theory and arithmetic geometry.

3 Using matrices to define Hecke operators

Given a lattice Γ with basis {ω1, ω2} and an integer n ≥ 1, the following result
explains how to obtain all sublattices of Γ of index n.

Proposition 2 Let Bn be the set of integer matrices of form(
a b
0 d

)
ad = n, a ≥ 1, 0 ≤ b < d

To each matrix b ∈ Bn, let Γb be the sublattice of Γ having basis

ω′1 = aω1 + bω2, ω2 = dω′2.

Then the map b 7→ Γb is a bijection of Bn with the set of sublattices Γ(n) of index n
in Γ.

Proof First, note Γb belongs to Γ(n) since det(b) = n. Given any Γ′ ∈ Γ(n), let

Y1 = Γ/(Γ′ + Zω2), Y2 = Zω2/(Γ
′ ∩ Zω2).
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These are finite cyclic groups generated by the images of ω1 and ω2, respectively, in
the quotient group Γ/Γ′. Let their orders be a and d. The exact sequence

0→ Y2 → Γ/Γ′ → Y1 → 0

implies that ad = n (counting cardinalities). If ω′2 = dω2 then ω′2 ∈ Γ′. Moreover,
there exists an ω′1 ∈ Γ′ such that ω′1 ≡ aω1 (Zω2). (That is, the two elements differ
by an element of Zω2.) Then ω′1 and ω′2 give a basis of Γ′ and

ω′1 = aω1 + bω2 for some b ∈ Z

with b uniquely determined mod d. Thus, picking b such that 0 ≤ b < d uniquely
determines b. Of course, the map we have just constructed is the inverse of that
described in the proposition, giving the bijection. �

As an example, let p be a prime. Then the elements of Bp, in bijection with Γ(p)
are the p+ 1 matrices: (

p 0
0 1

)
∪
{(

1 b
0 p

)
| 0 ≤ b < p

}

4 Hecke operators acting on modular functions

Recall that weakly modular functions f of weight 2k are associated to functions F
of weight 2k on the space of lattices R by the equality

F (Γ(ω1, ω2)) = ω−2k
2 f(ω1/ω2).

So we can immediately give an action of T (n) on f via this equality. Let T (n)f
be the function on H associated to the function n2k−1T (n)F . (The coefficient n2k−1

ends up giving a convenient normalization, but is otherwise inconsequential.) More
precisely,

T (n)f(z) = n2k−1T (n)F (Γ(z, 1)).

Using the result of proposition in the last section, describing sublattices according
to change of basis matrices with determinant n, we have

T (n)f(z) = n2k−1
∑

a≥1,ad=n,0≤b<d

d−2kf

(
az + b

d

)
. (1)
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Proposition 3 If f is a weakly modular function of weight 2k, so is T (n)f . If f is
holomorphic, so is T (n)f . Additionally,

T (m)T (n)f = T (mn)f gcd(m,n) = 1

T (p)T (pn)f = T (pn+1)f + p2k−1T (pn−1)f, for p prime, n ≥ 1

This follows immediately from the explicit definition of T (n)f in terms of matrices
above, which verifies that T (n)f is meromorphic or holomorphic if f is meromorphic
or holomorphic. The transformation formulas follow from our normalized definition
for T (n)f using n2k−1 and are based on similar transformation formulas given above
for T (n)F .

Finally, we want to describe the effect of Hecke operators on f as a q-series
expansion at infinity.

Theorem 2 Given a modular function

f(z) =
∑
m∈Z

c(m)qm q = e2πiz,

then the modular function T (n)f has q-series

T (n)f(z) =
∑
m∈Z

γ(m)qm with γ(m) =
∑

a| gcd(m,n),a≥1

a2k−1c
(mn
a2

)
Proof By the matrix action given in (1) above,

T (n)f(z) = n2k−1
∑

a≥1,ad=n,0≤b<d

d−2k
∑
m∈Z

c(m) e

(
m(az + b)

d

)
where we’ve used the usual convention that e(z) := e2πiz. This double sum simplifies
by noting that ∑

0≤b<d

e(mb/d) =

{
d d|m
0 otherwise.

since the exponential is trivial if d|m and otherwise we’re summing over a complete
set of roots of unity modulo a divisor of d. Hence we may assume d|m and make the
change of variables m = dm′ in the above sum, giving

T (n)f(z) = n2k−1
∑

a≥1,ad=n,m′∈Z

d−2k+1c(dm′) qam
′
.
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Collecting powers of q by taking am′ = µ, we have

T (n)f(z) =
∑
µ∈Z

qµ
∑

a≥1,a| gcd(n,µ)

a2k−1c

(
µd

a

)
.

Note that since f is meromorphic at infinity, so by definition there is an N ≥ 0 such
that c(m) = 0 for all mleq − N , then c(µd/a) must be 0 for µ ≤ −nN , and hence
T (n)f is likewise meromorphic at infinity. Recalling that ad = n, the above formula
gives the desired result as well. �

As a consequence, we have

γ(0) = σ2k−1(n)c(0), γ(1) = c(n)

Moreover, if n = p, p prime, then

γ(m) =

{
c(pm), m 6≡ 0 (mod p)

c(pm) + p2k−1c(m/p) m ≡ 0 (mod p)

Corollary 3 If f ∈ M2k, then T (n)f ∈ M2k. If f ∈ S2k, then T (n)f ∈ S2k. (I.e.
the operators T (n) act on these spaces.)

This follows immediately from our formula for the q-series at infinity for T (n)f ,
which shows that if c(m) = 0 for m negative, then γ(m) = 0 for these integers as
well. The constant term computation verifies the T (n) act on S2k.

5 Eigenfunctions of the T (n)

Given two cusp forms f, g ∈ S2k, then we may define a measure on S2k by

µ(f, g) = f(z)g(z)y2k dxdy

y2
, z = x+ iy.

One can check that this measure is invariant under action of G (Try it!) and that it
is a bounded measure on the quotient space H/G (because f, g are cusp forms, and
with regard to the q-expansion, q →∞ very quickly as z → i∞). Hence,

〈f, g〉 =

∫
H/G

µ(f, g) =

∫
D

f(z)g(z)y2k−2dxdy
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defines a positive definite Hermitian inner product on S2k. By Hermitian (or “self-
adjoint”) we mean that

〈T (n)f, g〉 = 〈f, T (n)g〉.
Then, because the T (n) commute with each other, by the spectral theorem (as-

suming the finite dimensionality of the space S2k yet to be proved), there exists an
orthogonal basis of S2k consisting of simultaneous eigenvectors of T (n). Further, the
eigenvalues of the T (n) are real numbers.

As we will show later, S12 has dimension 1, and contains the cusp form ∆(z).
Hence ∆(z) must be an eigenfunction of the Hecke operators T (n) of weight 12 for
all n. In what follows, suppose that

f(z) =
∞∑
n=0

c(n)qn

is a non-zero modular form of weight 2k (not necessarily a cusp form) and that f
is an eigenfunction of all the T (n). That is, there exist complex numbers λ(n) such
that

T (n)f = λ(n)f for all n ≥ 1.

(So far, we have only asserted the existence of such eigenforms for S2k but we’ll see
other examples in M2k shortly.)

Proposition 4 Given f as above, the coefficient c(1) of q1 is non-zero. Moreover,
if we normalize f by multiplying by a constant so that c(1) = 1, then

c(n) = λ(n) for all n > 1.

Proof In the previous section we saw that γ(1), the coefficient of q1 in T (n)f is c(n).
On the other hand, by assuming f is an eigenfunction, we have that T (n)f = λ(n)f
so γ(1) = λ(n)c(1). Putting these together, we have c(n) = λ(n)c(1). If c(1) = 0,
then the equality implies that c(n) is zero for all n, hence f is a constant, which is
a contradiction. The second statement of the proposition now follows immediately
from the previous equality upon normalizing. �

Corollary 4 Two modular forms of weight 2k, k > 0, which are eigenfunctions of
the T (n) with matching eigenvalues λ(n) for all n and which are normalized, are in
fact equal.

Use the same proof as the proposition, applied to the difference of the two modular
forms.
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Corollary 5 Given a normalized eigenform f as above, with q-series coefficients
c(m), then

c(m)c(n) = c(mn) gcd(m,n) = 1

c(p)c(pn) = c(pn+1) + p2k−1c(pn−1)

This follows because the eigenvalues λ(n) (which equal c(n) for a normalized
form) satisfy the same identities as the T (n) presented in Proposition 3. In short,
the coefficients of an eigenfunction of Hecke operators are multiplicative (on relatively
prime pairs of integers – this is typically what is meant by “multiplicative” in the
analytic number theory literature).

6 Dirichlet series made from modular forms

A Dirichlet series is an infinite series of the form

∞∑
n=1

a(n)

ns

where the coefficients a(n) should be bounded as a function of n, say O(nm−1) for
some positive integer m. (This notation means that a(n) < Cnm−1 for some constant
C.) In this case, the Dirichlet series converges for Re(s) > m. Our prototype example
is the Riemann zeta function, where a(n) = 1 for all n, so we may take m = 1, as is
well known. The zeta function possesses a functional equation as s→ 1− s and has
connections to number theory owing to its product representation as a product over
primes – an “Euler product”:

ζ(s) =
∏
p

(
1− p−s

)−1
, Re(s) > 1

This allows one to prove, for example, the prime number theorem (which counts
the number of primes up to x asymptotically as x → ∞) via analytic properties of
the Dirichlet series, like location of poles. You may have seen other variants of zeta
function, where a(n) = χd(n), where

χd : Z→ (Z/dZ)× → C.

That is, χd is a homomorphism from the multiplicative group (Z/dZ)× extended to
the integers. To be a homomorphism, it’s image in C× must be a finite multiplicative
group, and hence lie on the complex unit circle. Again, a Dirichlet series made with
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χd(n) will converge for Re(s) > 1, and since χd(n) is multiplicative, we again have
an Euler product

∞∑
n=1

χd(n)

ns
=
∏
p

(
1− χd(p)p−s

)−1
, Re(s) > 1.

Analytic properties of this series (namely that it’s value at 1 upon analytic continu-
ation is non-zero) were used to show there are infinitely many primes congruent to c
mod d for any c relatively prime to d.

Here, we construct a Dirichlet series from the Fourier coefficients (i.e. q-series
coefficients) of a modular form:

f(z) =
∞∑
n=0

c(n)qn 7→ Φ(s, f) =
∞∑
n=1

c(n)

ns

Note that we omit the constant term in passing to the Dirichlet series. Again, we’ll
need growth estimates on the size of the Fourier coefficients to conclude that the
Dirichlet series converges in a right half plane of the complex plane. We’ll obtain
these very shortly, but first we note an important property.

Proposition 5 Let f ∈M2k be an eigenfunction of the Hecke operators T (n). Then
Φ(s, f) has an Euler product (for s in the region of absolute convergence):

Φ(s, f) =
∏

p:prime

(
1− c(p)p−s + p2k−1−2s

)−1

Proof The coefficients c(n) are multiplicative, since f is an eigenfunction of the
Hecke operators. In the region of absolute convergence, we may thus write

∞∑
n=1

c(n)

ns
=
∏

p:prime

(
∞∑
m=0

c(pm)p−ms

)
.

Typically, this is rigorously justified by taking S to be a finite set of primes, and thus
asserting the equality between the sum over n ∈ N(S) (N(S) are integers with prime
factors in S) and the product over p ∈ S. We then take the limit as S increases, and
note the sum tends to the left-hand side above. Hence the infinite product converges
and equals the left-hand side.

Hence, to finish the proposition, it suffices to prove a generating function identity:

∞∑
m=0

c(pm)Tm =
1

1− c(p)T + p2k−1T 2
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This follows immediately from the recursion asserted in corollary 5:

c(p)c(pn) = c(pn+1) + p2k−1c(pn−1)

by standard generating function techniques. Or, simpler but less motivated, we may
consider

ψ(T ) =

(
∞∑
m=0

c(pm)Tm

)
(1− c(p)T + p2k−1T 2)

and try to prove ψ(T ) = 1. We verify the coefficient of Tm is 0 for m > 0 by again
resorting to the recursion for prime powers, leaving only the constant term as desired.

�

Note, we’ve talked about products a lot in class, and even used the letter q, often
used to denote primes. But there, q was the parameter in the Fourier series, q = e2πiz,
and here we’re taking a product over primes. At this point, it is not at all clear how
we’ll use the Euler product to any effect.

7 Examples of L-functions

Series that satisfy nice analytic properties like those of the Riemann zeta function,
Dirichlet L-functions, and Dirichlet series associated to modular forms are typically
all referred to as L-series, after Dirichlet. (It’s not clear what L is meant to stand
for. Some believe Dirichlet was paying tribute in his notation to Legendre, but
maybe sometimes an L is just an L.) More specifically, L-functions should possess
the following properties:

• They are initially defined for complex s sufficiently large, and possess analytic
continuation to a meromorphic function on C.

• They satisfy an “Euler product” – a product over an infinite set of primes

• They satisfy a functional equation (akin to that of the Riemann zeta function,
which relates ζ(s) to ζ(1− s) up to Gamma factors)

In this section, we’ll discuss these properties for Φ(s, f), thus asserting it is an
L-function associated to a modular form f .

Proposition 6 Let Gk be the weight 2k Eisenstein series with Fourier coefficients
a(n). There exist positive constants A,B such that

An2k−1 ≤ |a(n)| ≤ Bn2k−1
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We leave the proof as an exercise to the reader. (Hint: use the explicit Fourier
expansion derived earlier in terms of the divisor function.)

Corollary 6 The Dirichlet series Φ(s,Gk) formed with the Fourier coefficients of
Gk converges for Re(s) > 2k.

This follows immediately from the previous proposition and the well-known con-
vergence of

∑
n n
−α for α > 1. Similar facts will follow for all modular forms, once

we prove they’re generated by Eisenstein series. For cusp forms, however, we can do
much better.

Theorem 3 (Hecke) If f ∈ S2k, the space of cusp forms of weight 2k, then

a(n) = O(nk).

That is, the quotient a(n)/nk remains bounded as n→∞.

Proof Consider the function φ(z) = |f(z)|yk where z = x+ iy. Remembering how
the imaginary part y transforms under action by G, we see φ is invariant under G.
Since φ is continuous on the fundamental domain, and |f(z)| = O(q) = O(e−2πy)
implies φ→ 0 as y →∞, then φ is bounded on H. That is, there exists an M such
that

|f(z)| ≤My−k for all z ∈ H. (2)

How can we use this information to extract info about the Fourier coefficients? Now
the sneaky idea: For fixed y, letting x vary from 0 to 1 gives q = e2πi(x+iy) running
along a circle of radius e−2πy centered at the origin. Call this circle Cy and consider
the contour integral:

1

2πi

∫
Cy

f(z)q−n−1dq =

∫ 1

0

f(x+ iy)q−ndx.

By residue theorem, this is just a(n). On the other hand, using (2), this integral is
bounded above by My−ke−2πny, valid for any y > 0. Choosing y = 1/n gives the
desired bound. �

In fact, one can do a bit better than this result. Deligne has shown that for cusp
forms that

a(n) = O(nk−1/2σ0(n)) = O(nk−1/2+ε) for any ε > 0.

where σ0(n) is just the sum of positive divisors of n. So we basically save 1/2. This
might not seem like a big deal, but it is extremely deep and follows from what is
known as the “Riemann hypothesis for curves” which Deligne won a Fields Medal
for proving in the early ‘70’s.
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Proposition 7 The Eisenstein series Gk is an eigenfunction of the T (n). The cor-
responding eigenvalue is σ2k−1(n) and the normalized eigenfunction then has q-series

(−1)k
Bk

4k
Ek := (−1)k

Bk

4k
+
∞∑
n=1

σ2k−1(n)qn

where we’ve normalized so that T (1) = 1. Hence, the corresponding Dirichlet series
is ζ(s)ζ(s− 2k + 1), a product of Riemann zeta functions.

Proof To prove Gk is an eigenfunction, it suffices to prove this on a generating
set T (p), p prime. Recalling the lattice definition, we have (as a function on R, the
space of lattices)

Gk(Γ) =
∑

γ 6=(0,0)∈Γ

1

γ2k

and hence

T (p)Gk(Γ) =
∑

[Γ:Γ′]=p

∑
γ 6=(0,0)∈Γ′

1

γ2k

Given γ ∈ Γ, if γ ∈ pΓ then it lies in all (p + 1) sublattices of index p, and thus
contributes (p+ 1)/γ2k to T (p)Gk. If γ ∈ Γ\pΓ, then as we saw before, γ belongs to
a unique sublattice of index p, so contributes 1/γ2k. Hence,

T (p)Gk(Γ) = Gk(Γ) + p
∑

γ 6=(0,0)∈pΓ

1

γ2k
= Gk(Γ) + pGk(pΓ) = (1 + p1−2k)Gk(Γ).

This says Gk, as a function on the space of lattices, is an eigenfunction of the T (p)
with eigenvalue 1 + p1−2k. Recalling how to translate to modular forms, this implies
Gk(z) is an eigenfunction with eigenvalue p2k−1(1 + p1−2k) = σ2k−1(p) as desired.
Hence, it is an eigenfunction of all the T (n), and recalling that a(n) = T (n) for a
normalized form, we have T (n) = σ2k−1(n) for general n from our earlier formulas
for the q-series. We leave the final identity for the Dirichlet series as a product of
zeta functions as an exercise to the reader. �

Even if we hadn’t known the description in terms of zeta functions, which in-
stantly gives an Euler product, we would obtain one from results in the last section
which give such a product for any Hecke eigenform. (Check that the Euler product
from the two zeta functions matches the form of the one given for Hecke eigenfunc-
tions in the previous section.)

We’ve now addressed many of the bullet points. It remains to say something
about analytic continuation and functional equations. Just like in the proof of the
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continuation and functional equation for the Riemann zeta function, we often handle
both properties in one fell swoop. Let

Φ∗(s, f) = (2π)−sΓ(s)Φ(s, f)

(almost exactly the same as we do for ζ(s). Can you see what is different?) Then
Hecke proved that

Φ∗(s, f) = (−1)kΦ∗(2k − s, f)

using the Mellin transform of f defined by∫ ∞
0

(f(iy)− f(∞))ys
dy

y
= Φ∗(s, f).

One checks this equality simply by expanding f as a q-series, reversing the order of
summation and integration, and performing a change of variables in the resulting
integral. To prove a functional equation, we simply note that f(−1/z) = z2kf(z).
Substituting this into the integral gives the functional equation. (Noting that the
integral gives a meromorphic function on C provides the analytic continuation.)

So we have obtained L-functions from modular forms, including the examples Gk,
k ≥ 2, and ∆, the cusp form of weight 12. We don’t exactly know what they’re good
for yet, but here’s a hint that they’re important. Suppose that you have a Dirichlet
series formed from a q-series for a function f with good growth properties and a
functional equation as s 7→ 2k − s. Then Hecke proves your function is a modular
form of weight 2k – a sort of converse theorem to this set of analytic properties.
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