
1 Introduction

In this unit on elliptic functions, we’ll see how two very natural lines of questions
interact. The first, as we have met several times in Berndt’s book, involves ellip-
tic integrals. In particular, we seek complex functions which are solutions to the
indefinite integral ∫

dz√
Az3 +Bz + C

called an elliptic integral of the first kind. The second concerns periodic functions.
For functions of a real variable, the trigonometric functions cos(2πnx) and sin(2πnx)
are basic examples of periodic functions with period 1/n, that is, functions for which

f(x+ 1/n) = f(x) ∀x ∈ R.

By Fourier theory, any suitably nice function of period 1/n (e.g. piece-wise differen-
tiable functions with finitely many discontinuities over any period) can be expressed
in terms of these elementary functions. For functions of a complex variable, we can
again ask about periodic functions with period ω ∈ C, where again we mean:

f(z + ω) = f(z) ∀z ∈ C.

Once again, there is a Fourier theory for complex functions, described in terms of
the elementary periodic functions e2πiz/ω with period ω.

Let’s try to do this somewhat rigorously. Suppose we are given a (non-empty)
connected, open domain D with the property that z ∈ D implies z+ω and z−ω are
in D. Then let D′ be the image of D under z 7→ ζ = e2πiz/ω. (Convince yourself that
D′ is still open and connected under this map.) For example, if D is the complex
plane (our most common example) then D′ is the punctured plane C− {0}. If f(z)
is a meromorphic function in D with period ω, then let F be the unique function on
D′ defined by

F (ζ) = F (e2πiz/ω) = f(z).

Note F is well-defined as f has period ω, and is meromorphic since f was assumed
meromorphic. Then if D′ contains an annulus r1 < |ζ| < r2 for which F has no poles,
then in this region F has a Laurent expansion

F (ζ) =
∞∑

n=−∞

cnζ
n

or equivalently

f(z) =
∞∑

n=−∞

cne
2πinz/ω,
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valid in the horizontal strip in C which is the preimage of our annulus under the
exponential. The coefficients cn are given by

cn =
1

2πi

∫
|ζ|=r

F (ζ)ζ−(n+1)dζ

where the region of integration may be any circle with radius r with r1 < r < r2. (If
you’ve seen complex integration and Cauchy’s theorem before, then you know that
the integral is independent of our choice of r owing to the assumption that there are
no poles in the annulus.) Translating back via change of variables, we may write

cn =
1

ω

∫ a+ω

a

f(z)e−2πinz/ωdz

where we may take a to be any point in the horizontal strip and the integration over
any path from a to a + ω within the strip. In particular, if the initial function f(z)
was analytic in the whole complex plane, then this Fourier series description is valid
for all points z ∈ C.

But why settle for the simple periodicity property? Let’s demand that our func-
tions be periodic with respect to an arbitrary set of periods S. This set has structure,
since if ω1, ω2 ∈ S then by definition of a period, mω1 + nω2 ∈ S for any m,n ∈ Z
(for algebra lovers, this means S is a Z-module).

Exercise 1: Determine what happens when you allow arbitrary sets of periods
for functions of a real variable. (Hint: You might want to consider cases according to
the difference of any two periods in your set S, and you’ll probably want to assume
your functions are “sufficiently nice” as in the assumptions for real variable Fourier
theory above.)

For functions of a complex variable, the extra dimension gives a new collection of
periodic functions we haven’t yet mentioned. Meromorphic functions of a complex
variable are quite restricted, and in particular, any such function which is constant
on a sequence of complex numbers converging to a limit point must be the constant
function. Thus, the set of periods S must not contain such an accumulation point, or
else the only such periodic function will be constant. We call such a module without
an accumulation point “discrete.”

Theorem 1 A discrete Z-module M consists of either 0 alone, integer multiples of
a single non-zero complex number ω, or all linear combinations {mω1 + nω2} for a
pair of complex numbers ω1, ω2 with ω2/ω1 6∈ R.
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Proof If M 6= {0}, then we may choose an element ω1 ∈ M with smallest positive
absolute value (there may be several with the same norm, and in fact you can show
the only possibilities are 2,4, or 6, but no matter). Then {nω1 | n ∈ Z} is contained
in M .

Suppose there exists a complex number ω ∈ M which is not an integer multiple
of ω1. Again, take ω2 to be the complex number of smallest absolute value with this
property. If ω2/ω1 real, then there exists an integer n such that

n < ω2/ω1 < n+ 1 ⇒ 0 < |nω1 − ω2| < |ω1|
which contradicts the fact that ω1 was chosen to have smallest positive absolute value.
So it just remains to show that, assuming such an ω2 exists, M = {nω1+mω2 | m,n ∈
Z}.

First, we show any complex number ω can be written in the form ω = λ1ω1+λ2ω2

with λ1, λ2 real. Equivalently, we seek a solution (λ1, λ2) to the system of equations

ω = λ1ω1 + λ2ω2ω̄ = λ1ω̄1 + λ2ω̄2

Because ω2/ω1 is not real, this system is non-singular (as functions of the two complex
variables λ1, λ2). That is, the determinant ω1ω̄2 − ω2ω̄1 6= 0. So there is a unique
solution in complex numbers λ1, λ2. On the other hand, both pairs (λ1, λ2) and
(λ̄1, λ̄2) are visibly solutions, so λ1 and λ2 must be real.

Given any ω ∈M , we finally show that we can find k, n ∈ Z with ω−kω1−nω2 =
0. Given any ω = λ1ω1 + λ2ω2, with λi real, we can find m,n with

|λ1 −m| ≤ 1/2, |λ2 − n| ≤ 1/2

Consider
ω′ = ω −mω1 − nω2.

Then |ω′| < 1
2
|ω1|+ 1

2
|ω2| ≤ |ω2|, where importantly the first inequality is strict, since

ω2 is not a real multiple of ω1 (giving a degenerate version of the triangle inequality,
as the quotient being real means they lie on a line in the complex plane). This
inequality implies ω′ is an integral multiple of ω1 since we chose ω2 as above. �

We now begin our study of doubly periodic complex functions – functions whose
period module is a two-dimensional integer lattice.

2 Relations among Period Lattices

We’re assuming that our period module is generated by a pair of complex numbers
{ω1, ω2}, so that any period ω ∈ M can be uniquely written in the form ω =
mω1 + nω2 for some m,n ∈ Z, i.e. ω1, ω2 form a basis for our Z-module.
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Given another basis (ω′1, ω
′
2), then since (ω1, ω2) is a basis, we may write:

ω′2 = aω2 + bω1

ω′1 = cω2 + dω1

for some integers a, b, c, d. Note the same relations apply upon taking complex con-
jugates of both sides, and this allows us to formulate an identity entirely in terms of
2× 2 matrices: (

ω′2 ω̄′2
ω′1 ω̄′1

)
=

(
a b
c d

)(
ω2 ω̄2

ω1 ω̄1

)
We can similarly express ω1 and ω2 in terms of the new basis (ω′1, ω

′
2) to obtain:(

ω2 ω̄2

ω1 ω̄1

)
=

(
a′ b′

c′ d′

)(
ω′2 ω̄′2
ω′1 ω̄′1

)
for some integers a′, b′, c′, d′. Thus, substituting,(

ω2 ω̄2

ω1 ω̄1

)
=

(
a′ b′

c′ d′

)(
a b
c d

)(
ω2 ω̄2

ω1 ω̄1

)
.

Just as in the proof of the above theorem, knowing that the ratio ω2/ω1 is not real
implies that the determinant ω2ω̄1 − ω̄2ω1 is non-zero, and thus the matrix on the
left-hand side above is invertible. Multiplying on the right by the inverse yields:(

a′ b′

c′ d′

)(
a b
c d

)
=

(
1 0
0 1

)
Because determinants are multiplicative, our matrices above must have determinant
±1. We call such matrices “unimodular” since, as you may recall from linear algebra,
the determinant’s absolute value measures the factor by which volume increases under
the associated linear transformation. In terms of the period lattice, it means that the
parallelogram formed by {0, ω1, ω2, ω1 + ω2} has the same area for any basis ω1, ω2.

3 Canonical Bases

We can use the action of unimodular integer matrices to try to obtain canonical
representatives for our period lattice. The next theorem says that we can almost do
this uniquely.

Theorem 2 There exists a basis (ω1, ω2) with ratio τ = ω2/ω1 satisfying the follow-
ing conditions:
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1. Im(τ) > 0

2. −1
2
< Re(τ) ≤ 1

2

3. |τ | ≥ 1

4. Re(τ) ≥ 0 if |τ | = 1

This determines τ uniquely, which in turn, determines either 2, 4, or 6 possibilities
for (ω1, ω2).

Note this domain for τ is essentially the one we defined earlier as a fundamental
domain for the action of SL(2,Z) on the upper half plane, and we’ve made a choice
in condition (4) according to equivalent points in this domain. However, strictly
speaking, the group we’re working with here is GL(2,Z), remembering that the
determinant of these integer matrices must be ±1 in order that the inverse matrix
remains integral.

Proof Choosing ω1 and ω2 as in the proof of Theorem 1, we have

|ω1| ≤ |ω2|, |ω2| ≤ |ω1 + ω2|, |ω2| ≤ |ω1 − ω2|

which in turn implies that |τ | ≥ 1 and |Re(τ)| ≤ 1
2
. By choice of (−ω1, ω2) or

(ω1, ω2), we may guarantee that Im(τ) > 0. Finally, if Re(τ) = −1
2
, replace (ω1, ω2)

by (ω1, ω1 + ω2) and if |τ | = 1 with Re(τ) < 0 then replace (ω1, ω2) by (−ω2, ω1).
Thus τ will have all required properties of the theorem. (Note, in particular, that
none of these subsequent changes to the basis mess up earlier desired properties of
τ .)

It remains to show that these conditions uniquely determine τ (and hence finitely
many choices of basis as indicated). Indeed, given any other basis (ω′1, ω

′
2), then one

readily checks τ ′ = ω′2/ω
′
1 satisfies

τ ′ =
aτ + b

cτ + d
, ad− bc = ±1.

This gives

Im(τ ′) =
±Im(τ)

|cτ + d|2
with sign in the numerator matching ad− bc.

It suffices to show that if τ and τ ′ satisfy the four conditions, then they must be equal.
Condition (1) implies that the sign in the numerator is positive, so ad − bc = 1.
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Without loss of generality, we may assume Im(τ ′) ≥ Im(τ) since τ and τ ′ play
symmetric roles in the above equation. This implies |cτ + d| ≤ 1 and this greatly
reduces the possible integer c, d.

Exercise: Work out the remaining possible choices of c, d for which τ and τ ′ are
in the fundamental domain and show that each implies τ = τ ′. You should be able to
reduce to the two cases c = 0 and |c| = 1 first, and then treat these cases separately.

To finish, note we can always replace (ω1, ω2) by (−ω1,−ω2) without changing τ .
This gives at least two choices of basis for any value of τ .

Exercise: Using your work in the previous exercise, determine the values of τ
for which there are 2,4, or 6 possible choices of basis and explain your answer.

These two exercises complete the proof of the theorem.
�

4 Properties of Complex Elliptic Functions

In this section, we use basic results from a first course in complex analysis to elucidate
properties of elliptic functions. As complex analysis is not a prerequisite for the
course, the reader may happily take results in this section on faith, or consult any
standard reference on the subject.

Let f(z) be a meromorphic function with period lattice M generated by (ω1, ω2).
We will write z1 ∼ z2 for two complex numbers z1, z2 if z1 − z2 ∈ M . In particular,
the value of f is constant on equivalence classes defined by this relation. Note that
any such elliptic f(z) is completely determined by its values in any parallelogram
P (z0) with vertices {z0, z0 + ω1, z0 + ω2, z0 + ω1 + ω2} for any complex number z0.

Proposition 1 An elliptic function without poles is constant.

Proof If f(z) has no poles, it is bounded on the closed, compact domain P (z0)
for any z0, and hence bounded on the entire complex plane. Then we may apply
Liouville’s theorem (cf. Ahlfors, Ch. 4, sect. 2.3), a consequence of complex inte-
gration theory, which states that any analytic function bounded on the entire plane
is constant. �

Proposition 2 The sum of residues of an elliptic function is 0.
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Here, we mean the sum of residues at a complete set of representatives for in-
equivalent poles of f(z). Note that to any fundamental parallelogram P (z0), there
can be at most finitely many poles (otherwise the poles would necessarily have an
accumulation point in this compact region, hence f would not be meromorphic), so
this set is finite.

Proof Since the number of poles in P (z0) is finite for any z0, we may choose z0 so
that P (z0) has no poles lying on the boundary. Let ∂P denote this boundary. Then
Cauchy’s integral theorem states that the sum of the residues at poles is given by

1

2πi

∫
∂P

f(z)dz

where we travel along the boundary with respect to a choice of positive orientation.
But then we travel in opposite directions on parallel edges of the boundary, while
the value of the function is identical on parallel edges, so their integrals along each
pair of edges cancel, giving 0. �

Corollary 1 There are no elliptic functions with a single simple pole.

Proposition 3 A non-constant elliptic functions has equally many inequivalent poles
as inequivalent zeros.

Proof This is a common trick in complex function theory – to consider zeros and
poles of a function, with multiplicity, consider the same integral as in the proof above,
but replace the integrand f(z) by the logarithmic derivative d

dz
log(f(z)) = f ′(z)

f(z)
. The

same argument as above shows this integral is 0 over ∂P as well. �

Interestingly, since f(z) and f(z)− c have the same poles for any value of c (and
yet the zero sets change), the above result implies that the number of incongruent
solutions to f(z) = c is a constant independent of c. This is sometimes called the
“order” of the elliptic function. (Is this true for periodic functions of a real variable?)

Proposition 4 Let {p1, . . . , pn} be the poles of an elliptic function f(z) and let
{z1, . . . , zn} be the zeros of f(z). Then

p1 + · · ·+ pn ∼ z1 + · · ·+ zn

Proof We consider the same contour integral as in the previous proofs, choosing
P so that it doesn’t contain poles on the boundary. But now we consider a third
option for the integrand:

1

2πi

∫
∂P

zf ′(z)

f(z)
dz
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Again, remembering that the Cauchy integral theorem says the value of this integral
is the sum of the poles of this integrand, then this integral will be

z1 + · · ·+ zn − p1 − · · · − pn

provided we choose the representatives to lie inside P . It remains to show this
integral evaluates to a member of M . Consider the integral over a pair of parallel
edges:

1

2πi

[∫ z0+ω1

z0

zf ′(z)

f(z)
dz −

∫ z0+ω1+ω2

z0+ω2

zf ′(z)

f(z)
dz

]
.

Setting z 7→ z + ω2 in the second integral (remembering f(z) = f(z + ω2)) this
simplifies to

− ω2

2πi

∫ z0+ω1

z0

zf ′(z)

f(z)
dz.

But upon factoring out the ω2, the remaining integral is just the same integral we
examined before, which counts the numbers of zeros and poles in P , and so is in
particular an integer. Hence, this pair of parallel edge integrals evaluated to mω2 for
some m ∈ Z. A similar calculation for the other two parallel edge integrals yields
nω1 for some n ∈ Z, thereby completing the proof. �

5 The Weierstrass ℘ Function

In Latex, the ℘ in the Weierstrass function can be typeset by \wp. It’s the name
we give to the simplest non-trivial elliptic function. As we saw in the previous
section, there are no non-trivial elliptic functions of order 0 (no poles, so constant)
or order 1 (single simple pole, contradicting Corollary 1 of the previous section). So
we seek an elliptic function of order 2, which can have either a double pole inside
any parallelogram P (z0) with residue 0, or two simple poles with residues cancelling.
(Again, we know the residues sum to 0 by Proposition 2.)

Suppose our elliptic function has a double pole, which we may take to be at the
origin. Further normalize so that the Laurent series at the origin begins 1

z2
+ c0 +

c1z + · · · by dividing by a constant if necessary. As we noted in the last section,
if f(z) is elliptic, so is f(z) + c, so we may further assume that c0 = 0. Lastly,
supposing that our function ℘(z) has a double pole at the origin and is otherwise
analytic, then ℘(z)−℘(−z) is a holomorphic function with the same period module
M , and is therefore a constant by Proposition 1. To determine this constant, pick
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for example z0 = ω1/2, then z0 ∼ −z0 and ℘(z0)− ℘(−z0) = 0, so ℘(z) = ℘(−z) for
all z ∈ C. That is, ℘(z) is an even function.

So far, we know that if such an order 2 function exists, with double pole at the
origin, then its Laurent expansion about the origin has form

℘(z) =
1

z2
+ a2z

2 + a4z
4 + a6z

6 + · · ·

We will show the following formula:

℘(z) =
1

z2
+

∑
ω∈M,ω 6=0

(
1

(z − ω)2
− 1

ω2

)
In other words, given any period module M , we may associate an elliptic function
℘(z) of order 2 to M as above (though we suppress the dependence on M in the
notation). Note this is not a Laurent expansion, but just an alternate representation
for the function. It’s also the simplest one we can imagine, given that each point in
the lattice of periods M must be a pole of order 2. The subtraction of each 1

ω2 plays
two roles: it will give convergence of the series (convince yourself the series diverges
otherwise) and gives the right limiting behavior as z approaches 0 according to our
Laurent series above.

Lemma 1 The Weierstrass ℘ function defined above converges uniformly on any
compact set.

Proof Indeed ∣∣∣∣ 1

(z − ω)2
− 1

ω2

∣∣∣∣ =

∣∣∣∣ z(2ω − z)

ω2(z − ω)2

∣∣∣∣
and to demonstrate convergence, we want to bound this summand when |ω| is suffi-
ciently large. A nifty way to do this is to assume that for a given z, |ω| > 2|z|. This
implies by reverse triangle inequality that |z − ω| > 1

2
|ω|. Hence,∣∣∣∣ z(2ω − z)

ω2(z − ω)2

∣∣∣∣ ≤ ∣∣∣∣ zω

ω2(z − ω)2

∣∣∣∣+

∣∣∣∣ z(ω − z)

ω2(z − ω)2

∣∣∣∣ < 6|z|
|ω|3

.

This implies that if z is restricted to any compact set, then the series will converge
uniformly, provided we can show that∑

ω∈M,ω 6=0

1

|ω|3
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converges. To do this, we use the form of the period lattice to compare this sum to
special values of the zeta function. That is, since ω2/ω1 is not real, so there exists a
constant k > 0 for which

|mω1 + nω2| ≥ k(|m|+ |n|) for all real pairs (m,n).

But there are precisely 4N pairs (m,n) with |m|+ |n| = N . Hence,∑
ω∈M,ω 6=0

1

|ω|3
≤ 4k−3

∞∑
N=1

1

N2
< 8k−3.

�

We still have not shown that ℘(z) is periodic with respect to M . An elegant way
to show this is to note that, because ℘(z) converges uniformly, we are permitted to
do term-wise differentiation to conclude

℘′(z) = − 2

z3
−
∑
ω 6=0

2

(z − ω)3
= −2

∑
ω∈M

1

(z − ω)3
.

This shows ℘′(z) is doubly periodic, as the sum is clearly invariant under translation
by points in M (again, uniform convergence ensures we may rearrange our sum).
This implies that the derivative of the functions F1(z) = (℘(z + ω1) − ℘(z)) and
F2(z) = (℘(z+ω2)−℘(z)) are 0 and hence F1 and F2 are constant. Taking z = −ω1

in F1 and z = −ω2 in F2 shows these constants are in fact 0.
Note that in the process of verifying that ℘(z) has period module M , we also

proved that ℘′(z) is an odd elliptic function of order 3.

6 The Antiderivative of ℘(z)

The anti-derivative of 1
z

is log(z), which is a multi-valued function. This basic ex-
ample illustrates that care must be taken in interpreting anti-derivatives. However,
in our case, ℘(z) has residue 0 at each of its double poles, so by general theorem of
complex analysis, its antiderivative is a single-valued function.

Following historical tradition, we let −ζ(z) denote the anti-derivative of ℘(z),
where

ζ(z) =
1

z
+

∑
ω∈M,ω 6=0

(
1

z − ω
+

1

ω
+

z

ω2

)
(1)

which we may regard as obtained (for all but the 1
z

term) by term-by-term integration
from 0 to z along any path not containing poles, and hence converges.
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Just as we remarked above, the periodicity of ℘(z) implies ζ(z + ω1)− ζ(z) = η1

and ζ(z + ω2) − ζ(z) = η2 for some complex constants η1, η2. Note that ζ(z) is an
order 1 function, so

1

2πi

∫
∂P

ζ(z)dz = 1.

Evaluating this integral explicitly using pairs of parallel sides of P , we find

η1ω2 − η2ω1 = 2πi

so ζ(z) is not a periodic function, but nearly so. If we try to take another anti-
derivative, we see that the 1

z
in ζ(z) will lead to a multi-valued function. But we can

remove this indeterminacy by composing the result with the exponential function.

Exercise: Show that the result of this process of taking an antiderivative of ζ(z)
and composing with ez results in the function:

σ(z) = z
∏
ω 6=0

(
1− z

ω

)
ez/ω+ 1

2
(z/ω)2

Further show that σ(z) is an entire function (i.e. analytic everywhere) satisfying

σ′(z)/σ(z) = ζ(z).

Use this result to prove relationships between σ(z+ω1) and σ(z) and between σ(z+
ω2) and σ(z).

7 A differential equation for ℘(z)

The expression for ζ(z) in (1) is useful to us because unlike that for ℘(z), it can be
easily translated into a Laurent expansion for ζ(z) at 0. Each summand

1

z − ω
+

1

ω
+

z

ω2
= − z

2

ω3
− z3

ω4
− · · ·

after expanding the first term on the right-hand side in a geometric series. After
recollecting terms in ζ(z), we may write:

ζ(z) =
1

z
−
∞∑
k=2

( ∑
ω∈M,ω 6=0

1

ω2k

)
z2k−1. (2)
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Note that the terms z2k have cancelled out in the sum over M . Let’s define

Gk =
∑

ω∈M,ω 6=0

1

ω2k
=

∑
(m,n) 6=(0,0)

1

(mω1 + nω2)2k
=

1

(ω1)2k

∑
(m,n)6=(0,0)

1

(m+ nτ)2k
,

which realizes (up to a constant factor) an earlier definition we had for Eisenstein
series of weight 2k. Note our change in perspective, though: previously, we were
considering these Eisenstein series as functions on the upper half plane in the variable
τ . Here, we want to think of the period lattice M as being fixed, so that Gk is just
a complex number.

Differentiating term-wise in (2) then gives a Laurent expansion for ℘(z) and ℘′(z)
(remembering that ℘(z) = −ζ ′(z)) of form:

℘(z) =
1

z2
+
∞∑
k=2

(2k − 1)Gkz
2k−2 (3)

℘′(z) = − 2

z3
+
∞∑
k=2

(2k − 1)(2k − 2)Gkz
2k−3 (4)

Since both ℘(z) and ℘′(z) are elliptic, so are all polynomial expressions in the
two functions. Coupled with the fact that any entire elliptic function is constant,
then any polynomial in ℘(z) and ℘′(z) whose Laurent expansion has only positive
powers of z must, in fact, be 0.

We begin by cancelling off the largest negative powers in ℘(z) and ℘′(z):

℘′(z)2 − 4℘(z)3 = −60
G2

z2
− 140G3 +O(z).

Hence,
℘′(z)2 − 4℘(z)3 + 60G2℘(z) + 140G3 = 0.

In particular, w = ℘(z) is the solution to the above first-order differential equation

(w′)2 = 4w3 − 60G2w − 140G3.

This differential equation can also be solved explicitly by the indefinite integral

z =

∫
dw√

4w3 − 60G2w − 140G3

,

and so ℘(z) may be realized as the inverse to this elliptic integral.
Moreover, considering y = ℘′(z) and x = ℘(z) as complex variables, we see how

our period lattice M may be associated to the elliptic curve:

y2 = 4x3 − 60G2x− 140G3.
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