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Abstract

The quadrinomial coefficient is defined as the coefficient of xk in the polynomial
expansion of

(
1 + x+ x2 + x3

)n
, where n and k are nonnegative integers. In the

present paper, we derive some congruences involving the quadrinomial coefficients.
For instance, we establish two congruences that are analogous to those of Morley
and Wolstenholme.

1. Introduction

Let s ≥ 1, n ≥ 0 and k be integers. The bisnomial coefficient denoted by
(
n
k

)
s

is

defined as (
n

k

)
s

:=

{[
tk
]

(1 + t+ · · ·+ ts)
n
, for 0 ≤ k ≤ sn,

0, for k < 0 or k > sn,
(1)

where
[
tk
]
f (t) denotes the coefficient of tk in the formal power series f (t); see

Belbachir et al. [3] and Comtet [6, p. 77]. The study of bisnomial coefficients dates

back to de Moivre [7] and Euler [9]. Combinatorially, the bisnomial coefficient
(
n
k

)
s

counts the number of different ways of distributing k objects among n cells where

each cell contains at most s objects [10]. For s = 1, one obtains the binomial

coefficient
(
n
k

)
1

=
(
n
k

)
. Some known properties of the bisnomial coefficients are as

follows:
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• Symmetry relation (
n

k

)
s

=

(
n

sn− k

)
s

;

• De Moivre alternating summation(
n

k

)
s

=

s∑
i=0

(
n− 1

k − i

)
s

;

• The explicit form of the bisnomial coefficient in term of the binomial coeffi-

cients (
n

k

)
s

=
∑

j1+j2+···+js=k

(
n

j1

)(
j1
j2

)
· · ·
(
js−1
js

)
.

Throughout the paper we consider p as an odd prime number.

In 1819, Babbage [2] established that

1

2

(
2p

p

)
=

(
2p− 1

p− 1

)
≡ 1 (mod p2),

and in 1862 Wolstenholme [24] showed the same result modulo p3, for p ≥ 5.

In 1895, Morley [18] showed that, for p ≥ 5, it holds that(
p− 1

(p− 1) /2

)
≡ (−1)

(p−1)/2
4p−1 (mod p3). (2)

In 1900, Glaisher [11] proved that(
np− 1

p− 1

)
≡ 1− p3n (n− 1)

3
Bp−3 (mod p4), (3)

where n ≥ 1 is an integer, and Bn is the n-th Bernoulli number given by the

following generating function:

t

exp (t)− 1
=
∞∑
k=0

Bk
tk

k!
, 0 < |t| < 2π.

In 1949, Ljunggren [5] extended the Wolstenholme congruence to the following:(
np

mp

)
≡
(
n

m

)
(mod p3), (4)

where n and m are positive integers.

When we set s = 2 in (1), we obtain the trinomial coefficients (A027907, OEIS

[21]). The study of congruence properties of trinomial coefficients has recently been

expanding. Apagodu and Liu [1, Theorem 1] demonstrated that(
2p

p

)
2

≡ 2 +
2p2

3

(p
3

)
Bp−2

(
1

3

)
(mod p3),
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where

Bm (t) =

m∑
k=0

(
m

k

)
Bm−kt

k

is the Bernoulli polynomial, and (n
q ) is the Legendre symbol with q an odd prime

number and n an integer, given by

(
n

q

)
:=


0, if q divides n,

1, if n is a quadratic residue modulo q,

−1, if n is a quadratic nonresidue modulo q.

Mao [16, Theorem 1.5] proved the following supercongruence:(
npr

mpr

)
2

≡
(
npr−1

mpr−1

)
2

(mod pr+1),

where n,m, r are nonnegative integers with r ≥ 1. Elkhiri and Mihoubi [8] showed

that (
np− 1

p− 1

)
2

≡

{
1 + npqp (3) (mod p2), if p ≡ 1 (mod 3),

−1− npqp (3) (mod p2), if p ≡ 2 (mod 3),

and

(
np− 1

(p− 1) /2

)
2

≡


1 + np

(
2qp (2) +

1

2
qp (3)

)
(mod p2), if p ≡ 1 (mod 6),

−1

2
pnqp (3) (mod p2), if p ≡ 5 (mod 6),

where qp (x) :=
xp−1 − 1

p
is called the Fermat quotient and x is coprime with p. For

more congruences involving the trinomial coefficients we refer the reader to Ömür

et al. [19] and Sun [23]. Other congruences involving the bisnomial coefficients can

be found in the work of Belbachir and Igueroufa [4].

For s = 3 in (1), we get the quadrinomial coefficients (A008287, OEIS [21]). For

a nonnegative integer n, the central quadrinomial coefficient κn is the coefficient of

x3n in the expansion of
(
1 + x+ x2 + x3

)2n
(A005721, OEIS [21]).

Motivated by the previous results, we study some congruence properties of quadri-

nomial coefficients. Our focus lies on those involving central quadrinomial coeffi-

cients.

We introduce our first congruence which is similar to the Wolstenholme congru-

ence.
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Theorem 1. Let p ≥ 5. Then

κp ≡ 4 + 8p2
(
−1

p

)
Ep−3 (mod p3), (5)

where En is the n-th Euler number (A122045, OEIS [21]).

The second congruence is an analogue to the Morley congruence (2) modulo

squares of primes.

Theorem 2. Let p ≥ 5. Then

κ(p−1)/2 ≡
(
−2

p

)
+ p

(
qp (2)

(
7

2

(
−2

p

)
− 3

(
−1

p

))
− 2

(
2

p

)
Ap

)
(mod p2),

(6)

where

Ap :=
(−1)

(p−1)/2
Pp − (−8)

(p−1)/2

p
,

in which (Pn)n is the Pell sequence (A000129, OEIS [21]).

The next congruence is inspired by the Glaisher congruence (3).

Theorem 3. Let p ≥ 5 and n be a positive integer. Then(
np− 1

p− 1

)
3

≡ 1

2

((
−1

p

)
+ 1

)
+ pqp (2)

n

4

(
5

(
−1

p

)
+ 3

)
(mod p2).

The rest of the paper is devoted to the proofs of the theorems stated above.

2. Proof of Theorem 1

The following lemmas are needed to prove Theorem 1.

Lemma 1. Let n and k be nonnegative integers. Then(
n

k

)
3

=

min(n,k)∑
j=0

(
n

j

)(
3n− 2j

k − j

)
(−2)

j
. (7)

Proof. Let g (t) := 1 + t+ t2 + t3. One observes that

g (t) = (1 + t)
3 − 2t (1 + t) ,
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and consequently (
n

k

)
3

=
[
tk
] (

(1 + t)
3 − 2t (1 + t)

)n
=

n∑
j=0

(
n

j

)
(−2)

j [
tk−j

]
(1 + t)

3(n−j)+j

=

n∑
j=0

(
n

j

)
(−2)

j

(
3n− 2j

k − j

)
.

Lemma 2. If s and k be integers, where 0 ≤ k ≤ p− 1, then(
sp− 1

k

)
≡ (−1)

k
(1− spHk) (mod p2),

where Hn is the n-th harmonic number given by Hn :=
∑n

j=1 1/j for n ≥ 1 and

H0 = 0.

Proof. We have (
sp− 1

k

)
=

k∏
j=1

sp− j
j

= (−1)
k

k∏
j=1

(
1− sp

j

)
,

and thus (
sp− 1

k

)
≡ (−1)

k
(1− spHk) (mod p2),

as claimed.

Lemma 3. Let 0 ≤ k ≤ p− 2 be an integer. Then

Hp−1−k ≡ Hk (mod p). (8)

Proof. We have

Hp−1−k =

p−1−k∑
j=1

1

j
=

p−1∑
j=1

1

j
−

k∑
j=1

1

p− k − 1 + j
.

For any integer x coprime with p, we have 1/ (p+ x) ≡ 1/x (mod p). Then

Hp−1−k ≡ Hp−1 +

k∑
j=1

1

k + 1− j
(mod p).

Knowing that Hp−1 ≡ 0 (mod p2) (see [24]), we obtain (8).
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Lemma 4. Let n,m, k, i be nonnegative integers with 0 ≤ k, i ≤ p− 1. We have(
np+ 2k

mp+ k

)
≡
(
n

m

)(
2k

k

)
(1 + np (H2k −Hk)) (mod p2). (9)

If i > k, then (
np+ k

mp+ i

)
≡ (n−m) p

(
n

m

)
(−1)

i−k−1(
i
k

)
(i− k)

(mod p2). (10)

Proof. We have(
np+ 2k

mp+ k

)
=

(
np

mp

)
(np+ 1) (np+ 2) · · · (np+ 2k)

(mp+ 1) · · · (mp+ k) ((n−m) p+ 1) · · · ((n−m) p+ k)
.

Set

f(x) :=
(nx+ 1) (nx+ 2) · · · (nx+ 2k)

(mx+ 1) · · · (mx+ k) ((n−m)x+ 1) · · · ((n−m)x+ k)
.

Note that

f(0) =

(
2k

k

)
.

Also, we have

log(f(x)) =

2k∑
j=1

log(nx+ j)−
k∑

j=1

log(mx+ j)−
k∑

j=1

log((n−m)x+ j),

by deriving both sides with respect to x we get

f ′(x)

f(x)
=

2k∑
j=1

n

nx+ j
−

k∑
j=1

m

mx+ j
−

k∑
j=1

n−m
(n−m)x+ j

,

and thus

f ′(0) =

(
2k

k

)
n (H2k −Hk) .

The Ljunggren congruence (4) and the taylor expansion of f(p) yields (9). Similarly,

we obtain (10).

Lemma 5 ([20]). Let p ≥ 5. Then(
p−1∑
k=1

(
2k

k

)
1

2kk

)2

≡ 4

p−1∑
k=1

(
2k

k

)
1

2kk
(H2k−1 −Hk) (mod p), (11)
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p−1∑
k=1

(
2k

k

)
1

2kk
≡ qp (2) (mod p), (12)

p−1∑
k=1

(
2k

k

)
1

2kk2
≡
(
−1

p

)
Ep−3 −

q2p (2)

2
(mod p), (13)

p−1∑
k=1

(
2k

k

)
Hk

2kk
≡
(
−1

p

)
Ep−3 (mod p). (14)

Lemma 6. Let p ≥ 5. Then

p−1∑
k=1

(
2k

k

)
1

2kk
(H2k −Hk) ≡ 1

2

(
−1

p

)
Ep−3 (mod p) (15)

and
p−1∑
k=1

(
2k

k

)
1

2kk
Hk−1 ≡

1

2
q2p (2) (mod p). (16)

Proof. We have

p−1∑
k=1

(
2k

k

)
1

2kk
(H2k −Hk) =

p−1∑
k=1

(
2k

k

)
1

2kk
(H2k−1 −Hk) +

1

2

p−1∑
k=1

(
2k

k

)
1

2kk2
.

Applying (11), (12) and (13), we get the desired (15). From (14) and (13) one

obtains (16).

Proof of Theorem 1. Let p ≥ 5. From (7) set n = 2p and k = 3p, as κp is the

coefficient of x3p in the expansion of
(
1 + x+ x2 + x3

)2p
, we have

κp =

2p∑
j=0

(
2p

j

)(
6p− 2j

3p− j

)
(−2)

j
.

Suppose that k = 3p− j, then

κp =

3p∑
k=p

(
2p

3p− k

)(
2k

k

)
(−2)

3p−k

=

2p−1∑
k=p

(
2p

3p− k

)(
2k

k

)
(−2)

3p−k
+

3p−1∑
k=2p

(
2p

3p− k

)(
2k

k

)
(−2)

3p−k
+

(
6p

3p

)

=

p−1∑
k=1

(
2p

k

)(
2k + 2p

k + p

)
(−2)

2p−k
+

p−1∑
k=1

(
2p

p− k

)(
2k + 4p

k + 2p

)
(−2)

p−k

+

(
2p

p

)(
4p

2p

)
(−2)

p
+

(
2p

p

)
(−2)

2p
+

(
6p

3p

)
.
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Now, let

Σ1 : =

p−1∑
k=1

(
2p

k

)(
2k + 2p

k + p

)
(−2)

2p−k

and

Σ2 : =

p−1∑
k=1

(
2p

p− k

)(
2k + 4p

k + 2p

)
(−2)

p−k
.

From Lemma 2, for 1 ≤ k ≤ p− 1, we have(
2p

k

)
=

2p

k

(
2p− 1

k − 1

)
≡ 2p

k
(−1)

k−1
(1− 2pHk−1) (mod p3), (17)

and applying (9) and (17), we get

Σ1 ≡ 4p

p−1∑
k=1

(
2k

k

)
(−2)

2p−k

k
(−1)

k−1
+ 8p2

p−1∑
k=1

(
2k

k

)
(−2)

2p−k

k
(−1)

k−1
(H2k −Hk)

− 8p2
p−1∑
k=1

(
2k

k

)
(−2)

2p−k

k
(−1)

k−1
Hk−1 (mod p3)

≡− 22p+2p

p−1∑
k=1

(
2k

k

)
1

2kk
− 22p+3p2

p−1∑
k=1

(
2k

k

)
1

2kk
(H2k −Hk)

+ 22p+3p2
p−1∑
k=1

(
2k

k

)
1

2kk
Hk−1 (mod p3).

In view of the Lehmer congruence [14],

H(p−1)/2 ≡ −2qp (2) + pqp (2)
2

(mod p2), (18)

and Mao [15, Theorem 1.1], we have

p−1∑
k=1

(
2k

k

)
1

2kk
≡ qp (2)− pqp (2)

2

2
(mod p2). (19)

Fermat’s Little Theorem states that bp−1 ≡ 1 (mod p) for all integer b coprime with

p. Using this fact, and in view of Lemma 6 and (19), we conclude that

Σ1 ≡ −22p+2pqp (2) + p2
(

24qp (2)
2 − 16

(
−1

p

)
Ep−3

)
(mod p3). (20)
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Again, by (9) and (17), we find that

Σ2 ≡− 2p

(
4

2

) p−1∑
k=1

(
2k

k

)
2p−k (1− 2pHp−k−1) (1 + 4p (H2k −Hk))

p− k
(mod p3)

≡− 12p

p−1∑
k=1

(
2k

k

)
2p−k

p− k
− 48p2

p−1∑
k=1

(
2k

k

)
2p−k

p− k
(H2k −Hk)

+ 24p2
p−1∑
k=1

(
2k

k

)
2p−k

p− k
Hp−k−1 (mod p3).

Since, for k = 1, 2, . . . , p− 1, we have

1

p− k
≡ −1

k
− p 1

k2
(mod p2).

It follows that

p−1∑
k=1

(
2k

k

)
2p−k

p− k
≡ −

p−1∑
k=1

(
2k

k

)
2p−k

(
1

k
+ p

1

k2

)
(mod p2)

= −
p−1∑
k=1

(
2k

k

)
2p−k

k
− p

p−1∑
k=1

(
2k

k

)
2p−k

k2
(mod p2).

Now, using (19) and (13), we obtain

p−1∑
k=1

(
2k

k

)
2p−k

p− k
≡− 2pqp (2)− 2p

((
−1

p

)
Ep−3 − qp (2)

2

)
(mod p2).

Furthermore, by (15), we find

p−1∑
k=1

(
2k

k

)
2p−k

p− k
(H2k −Hk) ≡−

p−1∑
k=1

(
2k

k

)
2p−k

k
(H2k −Hk) (mod p)

≡−
(
−1

p

)
Ep−3 (mod p).

Applying (8) and by (14), we get

p−1∑
k=1

(
2k

k

)
2p−k

p− k
Hp−k−1 ≡− 2

p−1∑
k=1

(
2k

k

)
2−k

k
Hk (mod p)

≡− 2

(
−1

p

)
Ep−3 (mod p).
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Therefore,

Σ2 ≡ p12 · 2pqp (2) + 24p2
((
−1

p

)
Ep−3 − qp (2)

2

)
(mod p3). (21)

Using the Ljunggren congruence (4) and combining (20) and (21), yields that

κp ≡ 22p+1 − 3 · 2p+2 + 20 + pqp (2)
(
12 · 2p − 22p+2

)
+ 8p2

(
−1

p

)
Ep−3 (mod p3).

Finally, using the fact that 2p−1 = 1 + pqp (2), we complete the proof of (5).

3. Proof of Theorem 2

Let us start with the following lemma.

Lemma 7. Let p ≥ 5 with 1 ≤ k ≤ (p− 1) /2 be an integer. Then(
p− 1 + 2k

(p− 1) /2 + k

)
≡ p42k (−1)

(p−1)/2

2k
(
2k
k

) (mod p2).

Proof. We have(
p− 1 + 2k

(p− 1) /2 + k

)
=

(
p− 1

(p− 1) /2

) ∏2k
i=1 (p− 1 + i)∏k

i=1 ((p− 1) /2 + i)
2

= p

(
p− 1

(p− 1) /2

)
22k
∏2k−1

i=1 (p+ i)∏k
i=1 (p+ 2i− 1)

2
.

We can readily get ∏2k−1
i=1 (p+ i)∏k

i=1 (p+ 2i− 1)
2
≡ 22k

2k
(
2k
k

) (mod p).

Finally, by the Morley congruence (2), the result is obtained.

Lemma 8. Let a be an integer coprime with p. Then

a(p−1)/2 ≡
(
a

p

)(
1 +

1

2
pqp (a)− 1

8
p2qp (a)

2

)
(mod p3). (22)

Proof. See, [17, Lemma 4.1].

Remark 1. It is well-known that the Legendre symbol satisfies:(
a

p

)
≡ a(p−1)/2 (mod p).
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Lemma 9. If 0 ≤ k ≤ (p− 1) /2 be an integer, then(
(p− 1) /2 + k

2k

)
≡ 1

(−16)
k

(
2k

k

)
(mod p2).

Proof. We have(
(p− 1) /2 + k

2k

)
=

∏k
j=1

(
p2 − (2j − 1)

2
)

4k (2k)!

≡

∏k
j=1

(
− (2j − 1)

2
)

4k (2k)!
(mod p2)

=
1

(−16)
k

(
2k

k

)
(mod p2).

Lemma 10. Let 0 ≤ k ≤ (p− 3) /2 be an integer. Then

H(p+1)/2+k ≡ −2qp (2) + 2H2k+1 −Hk (mod p).

Proof. We have

H(p+1)/2+k = H(p−1)/2 +

(p+1)/2+k∑
j=(p+1)/2

1

j
= H(p−1)/2 +

k∑
j=0

1

j + (p+ 1) /2
.

By (18), we get

H(p+1)/2+k ≡ −2qp (2) + 2

k∑
j=0

1

2j + 1
(mod p)

= −2qp (2) + 2H2k+1 −Hk (mod p),

as claimed.

Lemma 11. We have

(p−1)/2∑
k=0

(
2k

k

)
2−k ≡ (−1)

(p−1)/2
(1 + 2pχp) (mod p2),

in which χp := Pp−( 2
p )/p is known as the Pell quotient.

Proof. From Lemma 9, we get

(p−1)/2∑
k=0

(
2k

k

)
2−k ≡

(p−1)/2∑
k=0

(
(p− 1) /2 + k

2k

)
(−8)

k
(mod p2)

=

(p−1)/2∑
k=0

(
p− 1− k

k

)
(−8)

(p−1)/2−k
(mod p2).
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Set

an := (−1)
n

n∑
k=0

(
2n− k
k

)
(−8)

n−k
,

where n is a nonnegative integer. One can observe that (an)n is A002315 in OEIS

[21], which satisfies

an =

n∑
k=0

(
2n+ 1

2k

)
2k.

Set n = (p− 1) /2, we obtain

(p−1)/2∑
k=0

(
2k

k

)
2−k ≡ (−1)

(p−1)/2
(p−1)/2∑

k=0

(
p

2k

)
2k (mod p2)

= (−1)
(p−1)/2

1 + p

(p−1)/2∑
k=1

(
p− 1

2k − 1

)
2k

2k

 (mod p2).

Applying Lemma 2, we arrive at

(p−1)/2∑
k=0

(
2k

k

)
2−k ≡ (−1)

(p−1)/2

1− p
(p−1)/2∑

k=1

2k

2k

 (mod p2).

Using the following congruence [22, Corollary 1]:

(p−1)/2∑
k=1

2k

k
≡ −4

Pp−( 2
p )

p
(mod p),

the proof is done.

Lemma 12. We have

(p−3)/2∑
k=0

(
2k

k

)
2(p−1)/2−kHk ≡ qp (2)

(
2 (−1)

(p−1)/2 − (−2)
(p−1)/2

)
(mod p). (23)

Proof. Since
(
2k
k

)
≡ 0 (mod p), for k = (p+ 1) /2, . . . , p− 1, we get

(p−3)/2∑
k=0

(
2k

k

)
2(p−1)/2−kHk ≡ 2(p−1)/2

p−1∑
k=0

(
2k

k

)
2−kHk

−
(

p− 1

(p− 1) /2

)
H(p−1)/2 (mod p).
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From [20, Theorem 1], for x = 1/2, we have

p−1∑
k=0

(
2k

k

)
2−kHk ≡ −qp (2) (−1)

(p−1)/2
(mod p),

and by the Morley congruence (2) and (18), this yields the desired (23).

Proof of Theorem 2. Let p ≥ 5. From (7), we have

κ(p−1)/2 =

p−1∑
j=0

(
p− 1

j

)(
3 (p− 1)− 2j

3 (p− 1) /2− j

)
(−2)

j
.

Letting k = 3 (p− 1) /2− j, we get

κ(p−1)/2 =

3(p−1)/2∑
k=(p−1)/2

(
p− 1

3 (p− 1) /2− k

)(
2k

k

)
(−2)

3(p−1)/2−k

=

p−1∑
k=1

(
p− 1

k

)(
p− 1 + 2k

(p− 1) /2 + k

)
(−2)

p−1−k
+

(
p− 1

(p− 1) /2

)
(−2)

p−1
.

Set

Ω1 :=

(p−1)/2∑
k=1

(
p− 1

k

)(
p− 1 + 2k

(p− 1) /2 + k

)
(−2)

p−1−k

and

Ω2 :=

(p−3)/2∑
k=0

(
p− 1

(p+ 1) /2 + k

)(
2k + 2p

k + p

)
(−2)

(p−3)/2−k
.

Applying Lemma 7 and Lemma 2, we obtain

Ω1 ≡ p (−1)
(p−1)/2

(p−1)/2∑
k=1

(−1)
k 42k

2k
(
2k
k

) (−2)
p−1−k

(mod p2)

= p (−1)
(p−1)/2

(p−1)/2∑
k=1

23k

2k
(
2k
k

) (mod p2).

For k = 0, 1, . . . , (p− 1) /2, we have(
(p− 1) /2

k

)
≡
(
−1/2

k

)
=

1

(−4)
k

(
2k

k

)
(mod p).



INTEGERS: 23 (2023) 14

It follows that

(p−1)/2∑
k=1

23k

2k
(
2k
k

) ≡ (p−1)/2∑
k=1

(−2)
k

2k
(
(p−1)/2

k

) (mod p).

Note that k
(
n
k

)
= n

(
n−1
k−1
)

and by [12, (2.4)], we get

(p−1)/2∑
k=1

23k

2k
(
2k
k

) ≡ 2(p−1)/2

(p−1)/2∑
k=1

1

2kk
+

(p−1)/2∑
k=1

(−1)
k

k

 (mod p).

Considering the following two congruences (see [22]):

(p−1)/2∑
k=1

1

2kk
≡ −2χp + qp (2) (mod p)

and

(p−1)/2∑
k=1

(−1)
k

k
≡ −qp (2) (mod p),

we obtain
(p−1)/2∑

k=1

23k

2k
(
2k
k

) ≡ −2(p+1)/2χp (mod p). (24)

Thus,

Ω1 ≡ p (−2)
(p+1)/2

χp (mod p2). (25)

Now, by (9) and Lemma 2, we obtain

Ω2 ≡ 2

(p−3)/2∑
k=0

(
2k

k

)
(−1)

(p+1)/2+k (
1− pH(p+1)/2+k

)
×

(1 + 2p (H2k −Hk)) (−2)
(p−3)/2−k

(mod p2)

≡
(p−3)/2∑

k=0

(
2k

k

)
2(p−1)/2−k + 2p

(p−3)/2∑
k=0

(
2k

k

)
2(p−1)/2−k (H2k −Hk)

− p
(p−3)/2∑

k=0

(
2k

k

)
2(p−1)/2−kH(p+1)/2+k (mod p2).
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From Lemma 10, we find

(p−3)/2∑
k=0

(
2k

k

)
2(p−1)/2−kH(p+1)/2+k

≡− 2qp (2)

(p−3)/2∑
k=0

(
2k

k

)
2(p−1)/2−k +

(p−3)/2∑
k=0

(
2k

k

)
2(p−1)/2−k (H2k −Hk)

+

(p−3)/2∑
k=0

(
2k

k

)
2(p−1)/2−k

(
H2k +

2

2k + 1

)
(mod p),

and hence

Ω2 ≡
(p−3)/2∑

k=0

(
2k

k

)
2(p−1)/2−k − p

(p−3)/2∑
k=0

(
2k

k

)
2(p−1)/2−kHk

+ 2pqp (2)

(p−3)/2∑
k=0

(
2k

k

)
2(p−1)/2−k − 2p

(p−3)/2∑
k=0

(
2k

k

)
2(p−1)/2−k

2k + 1
(mod p2).

From Lemma 11 and by the Morley congruence (2), we get

(p−3)/2∑
k=0

(
2k

k

)
2(p−1)/2−k ≡ (−2)

(p−1)/2
(1 + 2pχp)− (−1)

(p−1)/2
4p−1 (mod p2),

which implies that

(p−3)/2∑
k=0

(
2k

k

)
2(p−1)/2−k ≡ (−2)

(p−1)/2 − (−1)
(p−1)/2

(mod p).

From [13, Theorem 2], we have

(p−3)/2∑
k=0

(
2k

k

)
2(p−1)/2−k

2k + 1
≡ 2(p−1)/2Ap (mod p),

and by (23), we get

Ω2 ≡ (−2)
(p−1)/2 − (−1)

(p−1)/2
4p−1 + p

(
qp (2)

(
3 (−2)

(p−1)/2 − 4 (−1)
(p−1)/2

)
− (−2)

(p+1)/2
χp − 2(p+1)/2Ap

)
(mod p2). (26)

Combining (25) and (26) and using the Morley congruence (2), we conclude that

κ(p−1)/2 ≡ (−2)
(p−1)/2 − (−1)

(p−1)/2
4p−1

(
1− 2p−1

)
+ p

(
qp (2)

(
3 (−2)

(p−1)/2 − 4 (−1)
(p−1)/2

)
− 2(p+1)/2Ap

)
(mod p2).

Knowing that 1− 2p−1 = −pqp (2), and by (22), we finally obtain (6).
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4. Proof of Theorem 3

In order to prove Theorem 3, the following lemma is needed.

Lemma 13. We have

(p−1)/2∑
k=0

(
2k

k

)
H2k

2k
≡
(
−1

p

)(
2χp −

1

2
qp (2)

)
(mod p). (27)

Proof. From Lemma 2, we have

p

(p−1)/2∑
k=0

(
2k

k

)
2−kH2k ≡

(p−1)/2∑
k=0

(
2k

k

)
2−k −

(p−1)/2∑
k=0

(
p− 1

2k

)(
2k

k

)
2−k (mod p2).

Set

b :=

(p−1)/2∑
k=0

(
p− 1

2k

)(
2k

k

)
2−k =

(p−1)/2∑
k=0

(
p− 1

k

)(
p− 1− k

k

)
2−k.

Again, by Lemma 2, we get

b ≡
(p−1)/2∑

k=0

(
p− 1− k

k

)
(−2)

−k − p
(p−1)/2∑

k=0

(
p− 1− k

k

)
(−2)

−k
Hk (mod p2).

We have (
p− 1− k

k

)
≡
(
−1− k
k

)
≡
(

2k

k

)
(−1)

k
(mod p),

which gives

(p−1)/2∑
k=0

(
p− 1− k

k

)
(−1)

k
Hk2−k ≡

(p−1)/2∑
k=0

(
2k

k

)
Hk2−k (mod p),

and from Lemma 12, we get

(p−1)/2∑
k=0

(
p− 1− k

k

)
(−1)

k
Hk2−k ≡ −

(
−1

p

)
qp (2) (mod p).

In view of Lemma 9, we find

(p−1)/2∑
k=0

(
p− 1− k

k

)
(−1)

k
2−k =

(p−1)/2∑
k=0

(
(p− 1) /2 + k

2k

)
(−2)

(p−1)/2+k

≡ (−2)
(p−1)/2

(p−1)/2∑
k=0

(
2k

k

)
1

8k
(mod p2).
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Using [13, Theorem 2], for t = 1/8, we get

(p−1)/2∑
k=0

(
2k

k

)
1

8k
≡
(

2

p

)
(mod p2),

and hence

(p−1)/2∑
k=0

(
p− 1− k

k

)
(−1)

k
2−k ≡ (−2)

(p−1)/2
(

2

p

)
(mod p2).

By (22), we obtain

(p−1)/2∑
k=0

(
p− 1− k

k

)
(−1)

k
2−k ≡

(
−1

p

)(
1− 1

2
pqp (2)

)
(mod p2).

Thus,

b ≡
(
−1

p

)(
1 +

1

2
pqp (2)

)
(mod p2).

Finally, using Lemma 11, we arrive at (27).

Proof of Theorem 3. From (7), we have(
np− 1

p− 1

)
3

=

p−1∑
j=0

(
np− 1

j

)(
3(np− 1)− 2j

p− 1− j

)
(−2)

j

=

p−1∑
j=0

(
np− 1

p− 1− j

)(
(3n− 1) p+ 2j − 1

j

)
(−2)

p−1−j

=

(p−1)/2∑
j=1

(
np− 1

p− 1− j

)(
(3n− 1) p+ 2j − 1

j

)
(−2)

p−1−j

+

p−1∑
j=(p+1)/2

(
np− 1

p− 1− j

)(
(3n− 1) p+ 2j − 1

j

)
(−2)

p−1−j

+

(
np− 1

p− 1

)
(−2)

p−1
.

Set

Θ1 :=

(p−1)/2∑
j=1

(
np− 1

p− 1− j

)(
(3n− 2) p+ 2j − 1

j

)
(−2)

p−1−j
.
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Observe that(
(3n− 2) p+ 2j − 1

j

)
=

(3n− 2) p+ 2j

(3n− 2) p+ j

(
(3n− 2) p+ 2j

j

)
.

In view of (9), we have(
(3n− 2) p+ 2j − 1

j

)
≡ 1

2

(
2j

j

)
(1 + (3n− 2) p (H2j−1 −Hj−1)) (mod p2).

Applying Lemma 2 and (8), we get(
np− 1

p− 1− j

)
≡ (−1)

p−1−j
(1− npHp−1−j) (mod p2)

≡ (−1)
j

(1− npHj) (mod p2).

Which implies that

Θ1 ≡ 2p−2
(p−1)/2∑

j=1

(
2j

j

)
1

2j
+

1

2
p

(3n− 2)

(p−1)/2∑
j=1

(
2j

j

)
(H2j−1 −Hj−1)

2j

−n
(p−1)/2∑

j=1

(
2j

j

)
Hj

2j

 (mod p2). (28)

In view of Lemma 12 and (12), we find

(p−1)/2∑
j=1

(
2j

j

)
Hj−1

2j
=

(p−1)/2∑
j=1

(
2j

j

)
Hj

2j
−

(p−1)/2∑
j=1

(
2j

j

)
1

j2j

≡ −qp (2)

((
−1

p

)
+ 1

)
(mod p).

Also, by (27) and (12), we obtain

(p−1)/2∑
j=1

(
2j

j

)
H2j−1

2j
=

(p−1)/2∑
j=1

(
2j

j

)
H2j

2j
− 1

2

(p−1)/2∑
j=1

(
2j

j

)
1

j2j

≡
(
−1

p

)(
2χp −

1

2
qp (2)

)
− 1

2
qp (2) (mod p).

Hence,

(p−1)/2∑
j=1

(
2j

j

)
(H2j−1 −Hj−1)

2j
≡
(
−1

p

)(
2χp +

1

2
qp (2)

)
+

1

2
qp (2) (mod p).
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Putting the above result into (28) and using Lemma 11 and Lemma 12 with some

simplifications, we conclude that

Θ1 ≡
1

2

((
−1

p

)
− 1

)
+ p

(
5n

4

(
−1

p

)
qp (2) + (3n− 1)

(
−1

p

)
χp

+
3n− 4

4
qp (2)

)
(mod p2). (29)

Set

Θ2 :=

p−1∑
j=(p+1)/2

(
np− 1

p− 1− j

)(
(3n− 2) p+ 2j − 1

j

)
(−2)

p−1−j
,

or equivalently

Θ2 =

(p−1)/2∑
j=1

(
np− 1

(p− 1)/2− j

)(
(3n− 1) p+ 2j − 2

(p− 1)/2 + j

)
(−2)

(p−1)/2−j
.

In view of (10), we have(
(3n− 1) p+ 2j − 2

(p− 1)/2 + j

)
≡ p (3n− 1)

(−1)
(p−1)/2−j−1(

(p−1)/2+j
2j−2

)
((p− 1)/2− j + 2)

(mod p2),

furthermore, observing that(
(p− 1)/2 + j

2j − 2

)
=

(
(p− 1)/2 + j

2j

)
2j (2j − 1)

((p− 1)/2− j + 1) ((p− 1)/2− j + 1)
,

and from Lemma 9, we find(
(3n− 1) p+ 2j − 2

(p− 1)/2 + j

)
≡ p (3n− 1)

(
−1

p

)
42j−1

j
(
2j
j

) (mod p2).

It follows that

Θ2 ≡ p (3n− 1)

(
−2

p

) (p−1)/2∑
j=1

23j−2

j
(
2j
j

) (mod p2).

From (24), we conclude that

Θ2 ≡ −p (3n− 1)

(
−1

p

)
χp (mod p2). (30)

In view of Glaisher’s congruence (3), we have(
np− 1

p− 1

)
(−2)

p−1 ≡ 1 + pqp (2) (mod p2).

Combining the above congruence with (29) and (30) completes the proof of Theorem

3.
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