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Abstract

Let A* denote the set of k consecutive positive integers starting with n. The coprime
graph associated to this set, G(AF), is the graph whose vertices are elements of A*
and whose edges connect pairs of integers if and only if they are coprime. In this
paper, we focus on complete subgraphs and complete bipartite subgraphs of G(AF).
We investigate how the sizes of these graphs change with n and k, and show that
there are situations where there is no complete bipartite subgraph with k vertices.
This happens precisely when A is a stapled sequence; we provide some numerical
results on how frequently these occur. We also prove a result about the average size
of the smaller bipartition of the most balanced bipartite subgraph.

1. Introduction

Many problems in graph theory involve assigning labels to the components of a
graph subject to some set of conditions. Collectively, these are known as graph
labeling problems, and they are well-studied. Gallian maintains a regularly up-
dated survey of graph labeling results [12] which, as this paper was being written,
contained a bibliography listing over 3000 references. In a coprime labeling, the ver-
tices of a graph G(V, E) are labeled with distinct elements of {1,2,...,m}, where
m > |V], in such a way that when v and w are adjacent, then the integer labels
associated to v and w are relatively prime. (In this paper we will usually simply
refer to a vertex by its label.) The minimum value of m for which a coprime labeling
of G is possible is denoted pt(G), the minimum coprime number. When m = |V,
the labeling is called a prime labeling. Prime labelings were first introduced by En-
tringer [21]; prime labelings are the subject of Section 7.2 in [12]. Coprime labelings
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are an emerging variation of graph vertex labeling problems; results of this type can
be found, for example, in [1], [3], and [16].

Prime and coprime labeling can be interpreted in the context of the coprime
graph on the integers, G(Z), which is the graph that has elements of Z as its vertex
set with an edge between m and n if and only if (m,n) = 1. Given a set of integers
A, one can also study G(A), the subgraph induced by restricting the vertex set
of G(Z) to A. Let AF be the set of k consecutive integers starting at n. A finite
graph G(V, E) that admits a prime labeling is a (possibly non-induced) subgraph
of G(Allv‘). In a coprime labeling, one asks for a value of k so that the graph in
question is a subgraph of G(A}).

It is therefore an interesting question to study the coprime graph as a function
of its label set. Erdés, in one of the earliest such references [8], investigated the
size of the largest complete subgraph of G(A¥). Results have also been proved for
cycles [9], tripartite subgraphs [20], and Hamiltonicity [2]. Erdds and Selfridge [10]
proved results about the size of the largest complete subgraph in the more general
setting where the labels are a set of consecutive integers starting at some integer
value greater than 1. We remark that a labeling using the set of consecutive integers
starting at n is called a n-prime labeling in [2] and in Section 3 of [22].

Our focus is on problems related to those listed in the previous paragraph, study-
ing subgraphs of the coprime graph restricted to sets of consecutive integers, A¥.
Among the major results in this paper, we show in Theorem 1 that isolated ver-
tices in the coprime graph can be characterized as satisfying one of two conditions.
We show in Theorem 2 that a complete bipartite subgraph K, _n, of the coprime
graph is most balanced when the vertices in one bipartition are the so-called central
vertices of the graph. In fact, it is possible for there to be no such bipartite sub-
graph; this happens when the label set is a stapled sequence (Corollary 4). We end
with a result about the most balanced bipartite subgraph, showing in Theorem 5
that the average size of the smaller bipartition vertex set over all possible intervals
of length k grows as ﬁe‘"*, where v is the Euler-Mascheroni constant.

Many of our results follow from analysis of the common factor graph, which is
the complement graph of the coprime graph. Integers that are isolated vertices
in the common factor graph play an important role in a number of subgraphs of
the coprime graph. For example, these integers are also vertices that are part of
every maximum complete subgraph of the coprime graph. It is less obvious that
the same integers have a part to play in bipartite subgraphs too. Our analysis of
which integers are isolated vertices is aided by the modular table, a matrix of values
that tracks the remainders of vertex labels modulo a collection of small primes. The
Chinese Remainder Theorem implies that for a fixed number of consecutive vertex
labels there are only finitely many distinct modular tables.

This paper is organized as follows. In Section 2, we formally define the coprime
graph, the common factor graph, and the modular table, providing some basic
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properties of these objects. In Section 3, our focus shifts to maximum complete
subgraphs and complete bipartite subgraphs of the coprime graph on sets of con-
secutive integers. The collection of isolated vertices in the common factor graph is
an important component contributing to the maximum size of both subgraphs, and
this section includes results on how the size of this collection changes as a function of
the length and starting value of the label set. Results on stapled sequences are also
recalled in this section. Section 4 is a methods section that outlines an algorithm
based on the modular table which quickly finds stapled sequences of a particular
size; results are in Table 2. A result on the asymptotic average size of the smaller
bipartition of the most balanced complete bipartite subgraph of the coprime graph
is presented in Section 5.

2. Basic Constructions

Let A be a set of k distinct positive integers. Usually A consists of consecutive
positive integers, and we will let A* denote the set

{n,n+1,....,n+k—1}

of size k. When n = 1, we may drop the subscript and write A* to denote the set
{1,2,...,k}. As noted in the introduction, a prime labeling uses A* as the label
set, where k is equal to the number of vertices, |V|, whereas in a coprime labeling
k > |V| is possible.

Throughout this paper we will regularly consider two constructions: the coprime
graph and its complement, the common factor graph. We recall these definitions.

Definition 1. The coprime graph of A is a graph whose k vertices are elements of
A, and where two vertices are connected by an edge if and only if the two vertices
are coprime to each other.

Definition 2. The common factor graph of A is a graph whose k vertices are
elements of A, and where two vertices are connected by an edge if and only if the
vertices have a common factor d > 2.

We denote the coprime graph of A by G(A) and the common factor graph by
G(A). When A = A* is a set of consecutive integers, the following result tells us
more about the structure of the common factor graph.

Proposition 1. [7, Section 2] The graph G(AY) is either connected or consists of
a single connected subgraph and one or more isolated vertices.

Sketch of proof. One notes that all even numbers must be in a component, and that
k

mn?

if a prime p # 2 divides more than one element of A7, then at least one of those
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elements is even, which implies that the component with p-divisible elements is in
the same component as the even numbers. (See also the proof of Theorem 2.) O

We recall some basic definitions from graph theory. Given a graph G and vertices
u, v in the graph, the distance between u and v, d(u,v), is the length of the shortest
path between u and v. We say d(u,v) = oo if no such path exists. We define the
eccentricity of a vertex u to be max,ecy d(u,v). Finally, the center of a graph is the
subgraph induced by the vertices of minimum eccentricity.

We note that a vertex that is isolated in G(AF) is connected to every other
vertex in G(A%). Therefore, these vertices will be part of every maximum complete
subgraph of G(AF) and hence provide a lower bound on their size. Furthermore,
whenever there are isolated vertices in G(AF), these vertices are also precisely the
ones in the center of G(AF). We will also see that isolated vertices in the common
factor graph have an important role to play in complete bipartite subgraphs of
G(AF). The importance of these vertices motivates the following definition.

Definition 3. We call a vertex in the coprime graph G(A¥) a central verter when-
ever that vertex is isolated in the common factor graph G(AX).

Using a direct construction of the common factor graph to count the number of
connected components is computationally expensive. Instead, we describe a tabular
approach based on modular arithmetic that stems from the observation that if p
is a prime and p > k, then at most one integer in A" can have p as a factor.
Hence, we may restrict our attention to primes strictly less than the interval length
to determine the edges in the common factor graph, rather than the entire prime
factorization of the vertices.

Given an interval A we construct an r x k modular table of remainders as
follows. The r rows are indexed by 2, 3,5, ...p,, the set of primes less than k. The
k column numbers are indexed by elements m € A¥. The entry in the prime p; row
and column with index m is m mod p;.

Example 1. Table 1 shows the modular table (on the left) for the set Ag; =
{181,182,...,189}. 1In the table on the right, we only mark entries where the
column number is evenly divisible by the row prime.

‘181 182 183 184 185 186 187 188 189 ‘181 182 183 184 185 186 187 188 189
2010 1 0 1 0 1 0 1 2 0 0 0 0
3)r 2 0 1 2 0 1 2 0 3 0 0 0
51 2 3 4 0 1 2 3 4 5 0
776 0 1 2 3 4 5 6 0 7 0 0

Table 1: Modular tables for Afg;.
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Theorem 1. There are two conditions where a vertex associated to a column num-
ber is isolated in the common factor graph:

1. When the column contains no 0.
2. When each 0 in the column is the only 0 in its row.

Proof. From the sketch of Proposition 1, any prime divisor of a vertex in G(AF)
that is isolated does not evenly divide any other element of A*. The first condition
corresponds to the situation where a vertex’s prime divisors are all k or greater.
The second condition corresponds to the situation where some or all of the prime
divisors of a vertex are less than k. O

We note that our modular table is similar to a table described in [14, Section 2],
and that the second condition in Theorem 1 is closely related to [14, Definition 2.5]
(although used in a different context). Referring to Table 1, we see that the columns
corresponding to the prime number 181 and 187 = 11 x 17 have no zeros, and the
column corresponding to 185 = 5 x 37 has one 0, which is the only 0 in its row.
Thus, the common factor graph of AJg; consists of one large connected component
consisting of {182,183, 184,186, 188,189} and three isolated vertices: 181,185 and
187. The common factor graph of Afg; is shown in Figure 1.

Figure 1: The common factor graph of Afg;.

We are interested in the properties of modular tables for various values of k.
The following number theoretic function will appear regularly in our analysis of the
enumeration of such tables.

Definition 4. Let m be a positive integer, p; the i*" prime number, and 7(m) the
number of primes less than or equal to m. Then the primorial of m, denoted by
m#, is defined by m+# = H?:(T) Di.

(2

The primorial function grows very quickly. It is known, for example [18], that
pr# _ e(l-{-o(l))rlogr7 (1)

where p, is the rth prime.



INTEGERS: 22 (2022) 6

We recall that the entries in Table 1 are the remainders upon division by the set
of prime numbers less than 9, the size of Alg;. As a modular table is completely
determined by the entries in its first column, by the Chinese Remainder Theorem
there are 2-3-5-7 = 210 = (9 — 1)# = 8% distinct 4 x 9 modular tables. Therefore,
as n varies, the modular tables associated to A) repeat with period 8#. More
generally, for a fixed value of k, data pulled from the coprime and common factor
graphs associated to A¥ are periodic with period the product of the primes in the
modular table, specifically (k — 1)#.

3. Subgraphs of the Coprime Graph

Although we will focus on bipartite subgraphs in this section, we start with some
results on complete subgraphs of coprime graphs. Using an equivalent formulation,
Erdos and Selfridge investigated the minimum and maximum sizes of the largest
complete subgraphs of G(AF) over all values of n [10]. For example, they proved
the following result, where F'(n, k) is the size of a maximum complete subgraph of

G(A}):
Proposition 2. [10, Theorem 1] The following inequality holds:
1 k

Here, log z denotes the natural log. Erdds and Selfridge also noted that

mng(n, k) < (2+ 0(1))@,
which follows from an application of the Selberg Sieve. We prove a couple of ele-
mentary results about F(n, k) as a function of two variables.

Proposition 3. For alln and k,
|F(n, k) — F(n+1,k)| <1.

In addition,
0< F(n,k+1)—F(n,k) <1.

Proof. First assume that F'(n,k) > F(n + 1,k), and take a complete subgraph of
maximum size in G(AX). If the vertex n is in the subgraph, removal of that vertex
implies that F(n + 1,k) > F(n,k) — 1. Otherwise, by the inequality assumption,
F(n,k) = F(n+1,k). There is an analogous argument when F'(n, k) < F(n+1,k).

To prove the second assertion, we note that F(n,k+1) > F(n, k) as A¥ c Ak+1.
If there were a complete subgraph of size F(n,k) + a in G(A**!) with a > 1,
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then the removal of the vertex n + k from the complete subgraph would result in a
complete subgraph of size greater than F(n, k) in G(AF), which is impossible. [

We remark that, given a subset A C Aﬁ, one can check if the subset’s induced
subgraph, G(A) C G(Ak), is a complete subgraph using the modular table for A~.
The condition is straightforward: consider the columns associated to A—there can
be at most one 0 per row in these columns. However, in practice, this condition does
not seem to lead to a straightforward way to find a maximum complete subgraph in
a coprime graph. We note that the general problem of finding a maximum complete
subgraph of an arbitrary graph is an NP-hard problem [13].

It might appear from the proof of Proposition 3 that results about maximum
complete subgraphs could be proven using induction. Unfortunately, relationships
between such subgraphs are subtle, even in sets of consecutive integers with a
lot of overlap. For example, F(11,10) = F(11,11) = 6, but the maximum com-
plete subgraphs in G(A1?) that have the greatest overlap with the maximum com-
plete subgraph with vertex set {11,13,17,19,20,21} in G(A}) have the vertex sets
{11,13,15,16,17,19} and {11,13,14,15,17,19}, each sharing only four elements.

For the rest of this section we will consider complete bipartite subgraphs of the
coprime graph. This is a statement about Afl, and whether it can be partitioned into
two subsets so that every element in the first set is coprime with every element in the
second set. We note that we allow integers within the same subset to be coprime
with each other, so that when we pass to the graphical setting, the subgraphs
corresponding to the subsets need not be induced subgraphs of G(A¥). As a follow-
up question, we wish to determine the complete bipartite subgraph, K, x—m, should
it exist, whose bipartitions are closest in size. We refer to this bipartite graph as the
most balanced. We will approach this problem through an analysis of the common
factor graph G(AF). Recall from Proposition 1 that G(AX) consists of a large
connected component and some isolated vertices.

Theorem 2. Given a set of consecutive positive integers A, the most balanced
complete bipartite subgraph, K, x—m, of G(AE) has the integers in the connected
component of the common factor graph G(AF) in one bipartition, and the isolated
vertices in G(AF), i.e., the central vertices of G(AF), in the other bipartition.

Proof. The argument parallels the argument for Proposition 1. Even integers in .A*
must be in the same partition, Vi, because they share a factor of 2. Similarly, if p
is a prime factor of an even number in A% vertices that are multiples of p must be
in V7 as well. We continue this process prime-by-prime, which terminates because
the initial set, A¥ | is finite. The vertices which remain in the other bipartition, Va,
have prime factors that do not occur as factors of any other vertex in A¥. This
follows since when a prime p divides more than one element of A”,
those elements is even. In particular, each of the vertices in V5 is coprime with the

at least one of
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other elements of AX. This implies that their eccentricity is 1, and hence they are
central. Together, the central vertices form the largest set of vertices that can be
in Vs. O]

Notice that the size of the set of isolated vertices in G(A¥) provides a lower
bound for F(n,k). The example for F'(11,10) above shows that this lower bound
is not necessarily tight. Also, since the vertices in V5 are pairwise coprime, vertices
in V5 can be moved to V; while maintaining coprimality between the vertices in the
bipartitions.

Theorem 2 tells us that the problem of finding complete bipartite subgraphs of
the coprime graph whose bipartitions include all vertices is the same problem as
finding isolated vertices in the common factor graph. We will use the coprime graph
formulation in what follows, because of its connection with the modular table.

Corollary 1. Suppose G(AX) has m > 0 connected components. Then G(AE)
contains m — 1 different-sized complete bipartite subgraphs with k vertices.

Example 2. The common factor graph of AJg; shown in Figure 1.

The graph G(Ag;) has three isolated vertices: 181, 185, and 187. Therefore,
Ks1, K72, and Kg3 are the only complete bipartite subgraphs of G(Afg;) with
9 vertices, depending on whether the smaller bipartition contains one, two, or all
three central vertices. The most balanced complete bipartite subgraph is Kg 3.

We note a couple of basic results on the number of isolated vertices, the first
about prime labeling. Recall that A* = {1,2,... k}.

Lemma 1. The number of isolated vertices of G(A¥) is given by (k) —m (| 5]) +1

Proof. From the proof of Proposition 1, we know that isolated vertices are integers
whose prime factors do not occur as factors of any other integer in A*. Since A*
k

contains 1, and any prime less than or equal to |5 | will divide more than one

element of A¥, integer labels of isolated vertices are either 1 or a prime greater than
15 0
Example 3. For the first 30 values of k, the number of isolated vertices in G(A¥)
as given by Lemma 1 are

1,2,3,2,3,2,3,3,3,2,3,3,4,3,3,3,4,4,5,5,5,4,5,5,5,4,4,4, 5, 5.

The last value in the list means that using the label set A3, there are five distinct
complete bipartite graphs with 30 vertices that admit prime labelings, namely Kag 1,
Kos 2, Kor3, Koga, and Kos 5 (with vertex set {1,17,19,23,29}). Lemma 1 and
the Prime Number Theorem imply that the number of isolated vertices in G(A*)
grows as ﬁ We remark that the sequence in Example 3 is OEIS A076225, which
is one greater than OEIS A056171. There is a related sequence, OEIS A080359,
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where the mth term in the sequence is the first time m appears in OEIS A056171.
It is also the smallest positive integer n where n! has m distinct prime factors.

The next result describes how the number of isolated vertices in G(A¥) changes as
the length and starting point of the sequence of integers changes. From Proposition
3, one might expect these changes to be small. In contrast:

Proposition 4. Given any positive integer M, there exist values of n and k so that

1. the difference between the number of isolated vertices in G(AR) and G(AF ;)
is at least M.

2. the number of isolated vertices in G(AEH1) is at least M less than in G(AF).

On the other hand, the number of isolated vertices in G(A*TY) can be no more than
one greater than in G(AF).

Proof. The examples for both numbered parts of the proposition come from sets
involving integers that satisfy the second condition in Theorem 1. Let N = p#
for some prime p. We note that in the modular table for intervals of length p 4+ 1,
column N consists of all 0’s.

For the first claim, consider the intervals A’])pr and Alfvfp G- We claim that
the values {N — p,.}, where p, is any prime strictly greater than £ and less than p,
will be isolated vertices in the graph G(A%,_,). This follows as N ¢ A}, using
the observation that the only prime less than p which divides N — p,. is p,.. This
implies that in the modular table for A’;\,_p, the column N — p,. contains only one
0, and that 0 is the only one in its row. However, since N € AII)\/prrl’ none of the
column numbers {N — p, } correspond to isolated vertices in G(AR_,, ). From the
P
and hence will eventually take on a value greater than orQequal to any fixed M.
Therefore, by picking a suitable prime p, the number of isolated vertices in A?V_p 1
can be made to be at least M less than .Azj’v_p, for any M. An analogous argument
with the sets AR, and A%, 41 shows that the number of isolated vertices can increase
as well.

We use similar examples for the second claim of the proposition. Consider the
sets .Af\,_p and AR +_1p. Then the same reasoning as above shows that by choosing

discussion after Lemma 1, the number of primes between £ and p grows as ﬁ(k)

a suitably large value of p, G(AR +_1p) has at least M fewer isolated vertices than
G(AY_,), for any fixed value of M.

For the final claim, when G(A%*1) has more isolated vertices than G(A¥), con-
sider those graphs’ respective modular tables. By Theorem 1, the addition of the
(k + 1)st column will not convert a non-isolated vertex in G(AF) into an isolated
one in G(AX*1). Therefore, any increase happens as the (k + 1)st column satisfies
one of the conditions of Theorem 1. O
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Although Proposition 4 suggests that it may be difficult to say much about the
overall behavior of the number of isolated vertices in G(A¥), there is a characteri-
zation for this number for small values of n relative to k. This next result can be
thought of as a significant generalization of Lemma 1.

Theorem 3. Forn > 3 and 1 < n < k + 1, the number of isolated vertices in
G(AF) is given by m(n + k — 1) — o (2E=1).

Proof. Since A¥ = {n,n+1,...,n+k—1}, we are only considering column numbers
less than or equal to 2k. We can check directly that the claim holds for 3 <n <9,
so assume that n > 9. We claim that any column number that both satisfies the
hypotheses of this theorem and is an isolated vertex must be prime. To see this,
take a composite column number m < 2k and let p; be its smallest prime divisor.

We note that if p; < %, then A will contain at least two integers evenly divisible
by p1, and so m is not isolated. However, if p; > %, then m > p? > (%)2 > 2k as
we are assuming that n > 9, and hence k > 9. This implies that m ¢ A~.
Therefore, we may restrict our attention to prime column numbers. We note that
not all prime numbers in A¥ correspond to isolated vertices, for example, those that
are less than or equal to g We can be more specific. Say that the prime column
number p lies in the interval [k, n+k]. Then in order for the 0 in p’s column to only
appear once in the modular table, we must have 2p > n + k — 1, which implies that
p> %H We conclude that the only possible column numbers which correspond
to isolated vertices are prime numbers that are larger than %k_l and less than or

equal ton +k — 1. O

The reader may wish to compare Theorem 3 to results about prime and coprime
labelings of complete bipartite graphs from a different point of view in [11, Propo-
sition 2.3] and [16, Corollary 4.1].

The statements of Lemma 1, Proposition 4, and Theorem 3 show how the number
of central vertices in the coprime graph changes with A%. The next two corollaries
follow from Theorem 3.

Corollary 2. The number of isolated vertices of G(AF)—equivalently the number
of central vertices of G(AE)—roughly increases as n increases from 1 to k.

Proof. We analyze w(n + k) — (”;k), as n goes from 1 to k, using the Prime

Number Theorem: 7(x) ~ 2. We use the fact that

logz*

_ x x 3 _x log (1)
fla) =m(x) == (5) " log(z)  log (£) 2 log(x) 104% (5)
One checks that
(log (%) — 1) log®(x) + (2 + log(2)) log(4) log(w) — log(2) log(4)
21og? (%) log®(x)

fi(z) =
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The numerator is a cubic polynomial in log(z) with one real root: x ~ 1.41078. For
the n and k values in Proposition 4, f/(z) > 0. Therefore, w(n+k) —m (2£) tends
to increase as n goes from 1 to k. O

Corollary 3. For a fized k, the mazimum number of isolated vertices of G(A¥)—
equivalently the number of central vertices of G(AE)—is at least m(2k) — w(k) ~
k log(%)

log(2k) log(k) -

We get a more specific result using the following inequalities from [6]:

m(x) > I for x > 5393 and 7(x)

> for x > 60184.
logx —

x

< _

~ logx—1.1

Therefore,

> 2x B T )
log2x —1 logz —1.1

for z > 60184. One can show by basic calculus techniques that the ratio of the right-

hand side of Inequality (2) and {55
that

m(2z) — 7(x)

approaches 1. A Mathematica plot confirms

m(2z) — 7w(x) > 0.9 <lon>

holds for x > 1329.

We remark that the formula in Theorem 3 does not hold for n = 3 (consider .A3)
and in general for n > k + 1 (consider A3 and A$, for examples with undercounts
and overcounts, respectively). Also, the number of isolated vertices in Corollary 3
gives a lower bound for F(n, k) as defined at the start of this section, and matches
the dominant term in Proposition 2. The graph in Figure 2 shows how the number
of isolated vertices with £ = 600 grows as n increases.

90

80f -

601

200 400 600 800

Figure 2: The number of isolated vertices in G(A%%) with 1 < n < 900.
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For the final question in this section, we investigate whether it is always possible
to split the entries of A* into two bipartitions of a complete bipartite subgraph.
In particular, are there intervals AX where there are no central vertices in G(AF)?
In light of Theorem 2, an equivalent question is whether, for all intervals AX, the
modular table either has a column with no 0’s, or a column where each 0 is the
only one in its row. If neither condition holds, then the large connected component
described in Proposition 1 contains every integer in the sequence and there are no
isolated vertices in G(AF). Although this is restrictive, intervals for which both
situations fail can be realized for all k > 17.

Definition 5. Let AX be an interval with the property that in its modular table,
every column contains at least one zero and at least one zero in each column is in
a row with another zero. Then A is a stapled sequence.

Stapled sequences have a long history. They were first studied by Pillai [19] in
the 1930’s and around the same time by Brauer [4]. Eggleton noted [7, Theorem
3] that there are intervals A% for all k > 17 where G(AF) contained no isolated
vertices. Gassko, who coined the term “stapled sequence,” conducted further in-
vestigations into their properties [14,15]. For additional background and history of
these sequences, see [7,14].

Corollary 4. For all k > 17 there exist sequences AX where there are no central
vertices in G(AF), and hence for which there are no complete bipartite subgraphs
Km,k—m 0 G(.Alfl)

The first stapled sequence is
AXTe, = {2184,2185, . ..,2200}.

Since stapled sequences can be identified by a property of a modular table, the
existence of one stapled sequence implies the existence of infinitely many, repeating
with period (k — 1)#. A list of the smallest n so that A is a stapled sequence is
OEIS A090318.

4. Stapled Sequences: Numerical Methods

The modular table framework provides an approach to readily determine the number
of isolated vertices in G(AF). We briefly describe our algorithm, implemented in
Mathematica, to find the number of isolated vertices in G(AF) and in particular
stapled sequences (see Figure 2). Given the interval length &, we know that modular
tables repeat with period (k — 1)#, which makes the search-space large, but finite.
Moreover, stapled sequences cannot contain any prime number larger than k, so we
can restrict our searches to prime gaps—consecutive sequences of composite integers.



INTEGERS: 22 (2022) 13

We construct a modular table for every possible interval and then use the conditions
on zeros described in Definition 5 to determine if the interval is a stapled sequence.
We store only the interval’s starting value, which is sufficient to reconstruct the
entire interval given its length. Here are the basic steps of the algorithm.

Stapled Sequence Search Algorithm
1. Set the interval length and determine the modular table period.
2. Determine the list of row primes needed to build the modular table.
3. Sequentially find the prime gaps larger than the interval length.

4. Construct a large modular table for the full length of the prime gap using only
the primes less than the interval length.

5. Select sub-tables of adjacent columns to create modular tables of the correct
size.

6. Check the placement of zeros in each sub-table to see if they satisfy the re-
quirements of Definition 5.

7. Store the starting values of each stapled sequence found.

The reader interested in the actual code should contact the authors. We remark
that our current implementation searches through the 25# = 23# = 223,092,870
total intervals of length 26 to find that 1750 are stapled sequences (see Table 2).
The search takes about 12 minutes on a reasonably modern PC.

Using our code, we have found all stapled sequences of lengths 17 through 31
within a period. These data can be found in Table 2. The primorial growth rate
given in Equation (1) implies the modular table period grows super-exponentially,
which means that the search for all stapled sequences quickly becomes prohibitively
difficult; we expect our algorithm to require about a week of computation to find
all stapled sequences of length 32 within one period.

An interesting question to ask is how stapled sequences of different lengths may
be related to one another. If a stapled sequence has even length 2m, then it either
starts or ends with an odd integer. In this case, the even integer adjacent to the odd
endpoint can be included to make a stapled sequence of odd length 2m-+1. However,
not every stapled sequence of odd length comes about in this manner, since this
would imply that there are stapled sequences of length 16. Stapled sequences of
odd length 2m 41 have endpoints of equal parity. If the interval has odd endpoints,
then two additional even integers can be included to make a new stapled sequence of
length 2m + 3. Gassko also noted that stapled sequences of prime length p naturally
give rise to stapled sequences of length p + 1 [14, Lemma 3.7].
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Interval length (n) | Stapled sequence count | Period ((n — 1)#)
17 2 30,030
18 4 510,510
19 10 510,510
20 128 9,699,690
21 250 9,699,690
929 192 9,699,690
23 226 9,699,690
24 1916 223,092,870
25 2568 223,092,870
26 1750 223,092,870
27 1666 223,092,870
28 568 223,092,870
29 534 223,092,870
30 3772 6,469,693,230
31 4472 6,469,693,230

Table 2: The number of stapled sequences within a period.

Given these observations, one might expect the number of stapled sequences to
be monotonically increasing with the interval length k. A quick look at Table 2
shows this is not true. Gassko’s observation about stapled sequences of lengths p
and p+1 does appear, although we note that the increase also coincides with a large
increase in the length of the period. It is not even true that there must be more
stapled sequences of length 2m + 1 than of length 2m. For example, the number
of stapled sequences decreases from interval lengths of 25 to 29, so in particular
from 26 to 27 as well from 28 to 29. To see what can happen, consider the two
intervals {771320, ...,771345} and {771321,...,771346} of length 26. Both of these
sets are stapled sequences that are sub-intervals of same stapled sequence of length
27, namely {771320,...,771346}. This is a situation where one stapled sequence
contains two sub-intervals that are both stapled sequences. Eggleton [7] refers to
this situation as a constellation. For the reader interested in learning more, we
recommend [7] and [15].

5. Average Size of the Smallest Bipartition

In Section 3, we showed that the number of isolated vertices of G(A¥) with k fixed
can take on a wide range of values (Corollaries 3 and 4, and Figure 2), and in
general, can change significantly with n and k (Proposition 4). In other words, the
shape of the most balanced maximal bipartite subgraph of G(A¥) varies widely with
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n and k. In this section, we will show that, despite this variation, we can still say
something about the average number of central vertices in coprime graphs. More
specifically, we will fix a value of £ and determine the average number of isolated
vertices in G(AF) over an entire period, that is, as n ranges from 1 to (k—1)#. We
begin with some notation.

Definition 6. Denote the function fr(k) on integer values k > 2 by
fr(k) = [[ (1 - 1)
<k p)
p<
where the product is over primes less than or equal to &

The function fr(k), which is a decreasing function of k, gives the fraction of
integers coprime to a set of small primes in certain intervals starting at 1. This
follows from a sieve result, and is the subject of the next lemma.

Lemma 2. Let p, be a prime and N = p,.#. Then for any m < p,, there are
Nfx(m) integers in (1, N] that are coprime to [, -, pi.

Proof. Given m < p,, let p1,p2,...,p; be the primes less than or equal to m, and
note that N is evenly divisible by p;#. The size of the set of integers we are counting
can be readily determined using an inclusion-exclusion argument:

N N N
N-> —+ (—1)!
7 pj Tk PPk pip2 - Pi
1 1 1
=N|[1- — + + —1)
Zj:pj jzk:pjpk ( pPip2 - - Di
= Nfr(m).

O

When m = p,, Lemma 2 is the well-known result that the number of positive
integers less than or equal to NV and coprime to N is ¢(N), where ¢ is the standard
Euler totient function.

Proposition 5. For a fized interval length k, let S be the sum of all isolated vertices
in G(AK), as n ranges over all values in [1, N]. Then

ENfr(k) < S < kNfr(k/2).

Proof. Theorem 1 provides two conditions where a vertex associated to a column
number in the modular table corresponds to an isolated vertex. The first condition,
when the column contains no 0, implies that the column number is coprime to
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(k —1)#. By the note after Lemma 2, there are p((k — 1)#) such integers, each of
which is a column number for a column with no 0 in £ modular tables of length k.
Therefore, such integers account for

Sy = kg ((k — 1)4#) = kNfr(k — 1) > kNfr(k) (3)

isolated vertices in G(A¥) over all intervals of length k over a full period, making
S1 a lower bound for S, the total sum of isolated vertices.

To construct the upper bound, we add to S; an estimate of the number of isolated
vertices that arise from the second condition of Lemma 2, column numbers where
each 0 in the column is the only one in its row. We denote this component of
the sum by S5. Let p1,ps,...,p, be an ordered list of primes less than k. By the
condition on 0’s, it is sufficient in the modular table to only consider rows with
primes greater than g By Bertrand’s postulate [17, Theorem 8.7], we know that
there is a smallest prime strictly between g and k, say p;.

We stratify the count for S;, adding one prime divisor at a time. By Lemma 2,
the number of integers in [1, N] that are divisible by p; but none of p1,pa,...pj—1
is

Nfr(pj-1) — Nfr(p;).
In addition, when p; > g there are 2p; — k modular tables of length k& which have
precisely one column number divisible by p;. That is, there are as many as

N (fr(pj-1) — fr(p;)) (2p; — k) (4)

isolated vertices to be added to the S count that come from column numbers
divisible by p; but not primes p1,...,p;—1. This is a likely overcount, since not all
2p; — k placements of p; will necessarily result in isolated vertices; there could be
another 0 in a row with prime label larger than p; that is not the only 0 in its row.

We repeat this process for all primes from p; to p,, noting that the resulting sets
of column numbers are disjoint and include all integers divisible by at least one of
Dj,Pj+1,---,Dr but not any of p1,pa,...,pj—1. Therefore,

S2 < N (fx(pj—1) — £x(p;)) (2p; = k) + -+ N (fx(pr—1) — £x(pr)) 2pr — F).

We can replace 2p; — k with 2p, — k in each term, increasing the right-hand side
and turning it into a telescoping sum. Using the fact that fr(n) is a decreasing
function and 2p, — k < k, we have the following upper bound for Ss:

Sy < N (fr(pj—1) — £r(p;)) 2pr — k) +--- + N (fr(p,—1) — £x(p.)) 2p, — k)
N (fr(pj-1) — £x(p;)) (2pr — k)
N (fr(k/2) — fr(k — 1)) (2pr — k)
< kN (£r(k/2) — fr(k —1)).
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Therefore, the total sum of isolated vertices in coprime graphs, S, over an entire
period that comes from both cases of Lemma 2 is bounded above by S; + Ss. By
Equation (3) and Inequality (5),

Si+ Sy < kNfr(k — 1)+ kN(fr(k/Z) —fr(k— 1)) — kNfr(k/2).

To finish the argument, we use Merten’s third theorem.

Theorem 4. [5, Theorem 5.2.1] Let v be the Euler-Mascheroni constant. Then

I(5) = i (0 )

p<n

Theorem 5. Given a fized interval length k, the average number of isolated ver-
tices in G(AF)—equivalently the number of central vertices of G(AEF)—over the the
interval [1,N] grows as tize™7.

Proof. We apply Merten’s theorem to the upper and lower bounds for the sum S
in Proposition 5. For the lower bound,

e 1
ENfr(k) = kNlogk (1 + O <logk)> .

For the upper bound,

kNtr(k/2) = kN% <1 +O <10g(2/2)>) .

1og(;/2) - lo;k (HO <lo;k>> '

This implies that both bounds have the same growth function. We average over the
entire period by dividing both bounds by N, and the result follows. O

However,

In the context of Section 3, Theorem 5 also provides a statement about a lower
bound on the average size of the largest complete subgraph of G(AF) as well as the
average size of the smaller bipartition in complete bipartite subgraphs of G(A¥).
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