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Abstract

Every natural number greater than two may be written as the sum of a prime
and a square-free number. We establish several generalizations of this, by placing
divisibility conditions on the square-free number.

1. Introduction

In 1742, Goldbach conjectured that every even integer greater than two is the sum

of two primes. In 1966, Chen [3, 4] proved that every sufficiently large even integer is

the sum of one prime and a product of at most two primes1, and in 2013, Helfgott

[8] proved the ternary Goldbach conjecture, which states that every odd integer

greater than five is the sum of three primes.

Since a complete proof of the Goldbach conjecture remains out of reach, we

consider results where we relax one of the primes to be a square-free number instead.

To this end, Dudek [5] proved the following version of Estermann’s result [6].

Theorem 1 (Dudek, 2017). Every integer greater than two is the sum of a prime

and a square-free number.

A simple extension of Theorem 1 is given in Corollary 1.2

Corollary 1. Every integer greater than four may be written as the sum of two

primes and a square-free number.

As an extension of Theorem 1, Yau [15] established a uniform bound for the

number of representations of an integer as a prime in a fixed residue class plus a

1Yamada [14] has shown that Chen’s theorem holds for even integers larger than exp(exp(38)).
2To establish Corollary 1, observe that if n > 4, then n − 2 > 2, so Theorem 1 implies that

n− 2 = p+ η for at least one prime p and square-free number η.
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square-free number. Instead of placing constraints on the prime, we will impose an

additional condition on the divisors of the square-free numbers in Theorem 1. That

is, suppose q is prime and n > n0 where n0 is small. Does there exist at least one

prime p and a square-free integer η which is co-prime to q and

n = p+ η ? (Q1)

Moreover, does there exist at least one pair of primes p1, p2 and a square-free integer

η such that (η, q) = 1 and

n = p1 + p2 + η ? (Q2)

We have answered (Q1) and (Q2) for primes 2 ≤ q < 105 in the following results.

Our results are stated for the best possible range of n.

Theorem 2. Every even integer greater than three can be written as the sum of a

prime and an odd square-free number.3

Theorem 3. Every integer greater than two except for eleven can be written as the

sum of a prime and a square-free number which is co-prime to three.

Theorem 4. Suppose 3 < q < 105 is prime. Every integer greater than two can be

written as the sum of a prime and a square-free number co-prime to q.

Corollary 2. Suppose 2 ≤ q < 105 is prime. Every integer greater than four can

be written as the sum of two primes and a square-free number co-prime to q.

Computations suggest that one could establish similar results for composite q.

The authors also believe that a similar method of proof is plausible, if the auxiliary

results in Section 2.2 can be extended in the appropriate manner.

In future work, it may also be interesting to investigate the quantity maxSq,

where an exception set Sq contains all the integers which do not have a representa-

tion as a prime plus a square-free number co-prime to q for any integer q > 1. For

example, Theorem 3 implies maxS3 = 11, and a search over the first 108 integers

suggests that maxS15 = 23, maxS∏35
i=2 pi

= 355. Here, pi denotes the ith prime.

1.1. Outline of the Paper

In Section 2, we provide all of the necessary notation and auxiliary results which

will be needed throughout the paper. In Section 3, we will prove an important

lemma. Finally, in Section 4, we will prove the main results of this paper.

3For sufficiently large even integers, Theorem 2 is also a consequence of Chen’s theorem.
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2. Notation and Auxiliary Results

2.1. Notation

Throughout, p will denote a prime number and n will denote an integer. Further,

ϕ denotes the Euler-phi function, µ denotes the Möbius function,

θ(x) =
∑
p≤x

log p, θ(x; q, a) =
∑
p≤x

p≡a (mod q)

log p, µ2(n) =
∑
a2|n

µ(a),

R(n) =
∑
p≤n

µ2(n− p) log p =
∑
a≤n

1
2

µ(a)θ(n; a2, n),

in which µ2(n) = 1 if n is square-free, and µ2(n) = 0 otherwise. We also use µ2 as

a square-free identifier function and (a, b) as the greatest common divisor function.

2.2. Auxiliary Results

In Section 3, we will determine estimates for R(n). To do this, we will appeal to

the following estimate, which follows from the work of Bennett et al. [1].

Proposition 1. For each square a2 ∈ [22, 3162] and integer n which is co-prime to

a, there exist explicit constants cθ(a
2) and xθ(a

2) ≤ 4.81 · 109 such that∣∣∣∣θ(x; a2, x)− x

ϕ(a2)

∣∣∣∣ < cθ(a
2)

x

log x

for all x ≥ xθ(a2).

Proof. For each 3 ≤ q ≤ 105 and integers a such that (a, q) = 1, Bennett et al. [1,

Theorem 1.2] provide explicit constants cθ(q) and xθ(q) ≤ 8 · 109 such that∣∣∣∣θ(x; q, a)− x

ϕ(q)

∣∣∣∣ < cθ(q)
x

log x

for all x ≥ xθ(q). Analysis on the values of cθ(q) and xθ(q) from the tables4

provided for [1] at each square q = a2 in this range will yield the constants cθ(a
2)

and demonstrate that the maximum value of xθ(a
2) is 4 800 162 889 ≤ 4.81 ·109.

We will also make use of the following estimate for θ(x) from Broadbent et al.

[2, Theorem 1].

Theorem 5 (Broadbent et al.). For x > e20 ≈ 3.59 · 109, we have

|θ(x)− x| ≤ 0.375
x

log3 x
.

4The tables are available at https://www.nt.math.ubc.ca/BeMaObRe/.
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3. A Key Lemma

Theorem 1 is true as long as R(n) > 0 for all n ≥ 3. To prove Theorem 1, Dudek

found an explicit lower bound for R(n) in [5, Section 2.3], which inferred that

R(n) > 0 for all n ≥ 1010, then computationally checked R(n) > 0 for n ∈ [3, 1010).

We will prove Lemma 1 and use it to prove the main results of this paper. The

main benefit of this (over the lower bound in [5, Section 2.3]) is that we will need

to manually verify our main results for a smaller range of n.

Lemma 1. If A ∈ (0, 1/2) and n ≥ 4.81 · 109, then

R(n)

n
> 0.37395− 0.95

log n
− 0.375

log3 n
− 0.0096

(
1 + 2A

1− 2A

)
− log n

(
n−2A + n−A − nA−1 + n−

1
2

)
, (1)

where 0.37395 is Artin’s constant, rounded to 5 decimal places.

The improvements we obtain come from Proposition 1 (which is wider-reaching

than the results from Ramaré–Rumely [12] which Dudek used), and Theorem 5.

Remark 1. Since our paper was released, Hathi and Johnston have established an

update to Lemma 1 with more generality in [7, Lemma 3.1]. To see a comparable

result, take d = e = 1 in their notation.

3.1. Set-up

Trivially, if (a, n) > 1, then θ(n; a2, n) ≤ log n. Therefore,

R(n) >
∑
a≤n

1
2

(a,n)=1

µ(a)θ(n; a2, n)− n 1
2 log n = Σ1 + Σ2 + Σ3 − n

1
2 log n,

in which A ∈ (0, 1/2) will be chosen later,

Σ1 =
∑
a≤316
(a,n)=1

µ(a)θ(n; a2, n), Σ2 =
∑

316<a≤nA

(a,n)=1

µ(a)θ(n; a2, n), and

Σ3 =
∑

nA<a≤n
1
2

(a,n)=1

µ(a)θ(n; a2, n).

We will bound Σ1 + Σ2 and Σ3 separately.
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3.2. Bounding Σ1 + Σ2

We start by listing important bounds, which we will use to deduce a lower bound

for Σ1 + Σ2. First, we observe by computation that∑
2≤a≤316

cθ(a
2) = 0.9474935 < 0.95. (2)

Second, suppose that c denotes Artin’s constant. It follows from computations by

Wrench [13] that ∑
(a,n)=1

µ(a)

ϕ(a2)
>
∏
p

(
1− 1

p(p− 1)

)
= c > 0.37395. (3)

Third, in the range 316 < a ≤ nA, the Brun–Titchmarsh theorem [9] yields

θ(n; a2, n) =
n

ϕ(a2)
+ ε

(
1 + 2A

1− 2A

)
n

ϕ(a2)
, (4)

such that |ε| < 1. Finally, we may observe that∑
a>316
(a,n)=1

µ(a)

ϕ(a2)
≤
∞∑
a=1

µ2(a)

ϕ(a2)
−
∑
a≤316

µ2(a)

ϕ(a2)
< 0.0096. (5)

To deduce the upper bound, we observed that an upper bound for the infinite sum

is 1.95 [11] and computed the finite sum manually. Computations suggest that (5)

may be numerically improved, but this is unnecessary for our purposes.

To bound Σ1, combine Proposition 1, Theorem 5, (2) and (3) to yield

Σ1 > n

 ∑
2≤a≤316
(a,n)=1

µ(a)

ϕ(a2)
−

∑
2≤a≤316
(a,n)=1

cθ(a
2)µ(a)

log n
+ 1− 0.375

log3 n



> n

 ∑
(a,n)=1

µ(a)

ϕ(a2)
−

∑
a>316
(a,n)=1

µ(a)

ϕ(a2)
−

∑
2≤a≤316
(a,n)=1

cθ(a
2)

log n
− 0.375

log3 n



> n

0.37395−
∑
a>316
(a,n)=1

µ(a)

ϕ(a2)
− 0.95

log n
− 0.375

log3 n

 ,

since the +1 gets absorbed into the left-most sum. Next, use (4) to see that

Σ2 > n

 ∑
316<a≤nA

(a,n)=1

µ(a)

ϕ(a2)
−
(

1 + 2A

1− 2A

) ∑
316<a≤nA

(a,n)=1

µ2(a)

ϕ(a2)

 .
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Finally, using the preceding observations and (5), Σ1 + Σ2 is larger than

n

0.37395−
∑
a>nA

(a,n)=1

µ(a)

ϕ(a2)
− 0.95

log n
− 0.375

log3 n
−
(

1 + 2A

1− 2A

) ∑
316<a≤nA

(a,n)=1

µ2(a)

ϕ(a2)



> n

0.37395− 0.95

log n
− 0.375

log3 n
−
(

1 + 2A

1− 2A

) ∑
a>316
(a,n)=1

µ2(a)

ϕ(a2)


> n

(
0.37395− 0.95

log n
− 0.375

log3 n
− 0.0096

(
1 + 2A

1− 2A

))
.

3.3. Final Steps

Following a similar logic to Dudek [5], with less waste, we used a trivial bound for

θ(n; a2, n) to bound |Σ3| and obtain

Σ3 > −n log n
(
n−2A + n−A − nA−1

)
.

Combining our preceding observations, we have established (1) for all n ≥ 4.81 ·109.

4. Main Results

In this section, we will establish all of the main results of this paper. We treat

Theorem 2 separately, but to prove the remaining results, we will use Lemma 1 to

establish them for large n and the algorithm described in Section 4.5 to verify the

results for small n.

Suppose that 2 ≤ q ≤ 105 is prime and Rq(n) denotes the weighted number of

representations of n as the sum of a prime and a square-free number coprime to q.

Then, we have

Rq(n) =
∑
p≤n

p 6≡n (mod q)

µ2(n− p) log p = R(n)−
∑
p≤n

p≡n (mod q)

µ2(n− p) log p.

Therefore, to show Rq(n) > 0, it suffices to demonstrate

R(n) >
∑
p≤n

p≡n (mod q)

µ2(n− p) log p. (6)
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4.1. Proof of Theorem 2

It is an equivalent problem to establish R2(n) > 0 for all even n > 2. First, we

observe that for each odd n, n− p is even for all odd primes p, hence

R2(n) =

{
log(n− 2) if µ2(n− 2) = 1,

0 if µ(n− 2) = 0.

There are infinitely many odd choices for n such that µ(n − 2) = 0, hence our

restriction to even n in this case.

Suppose that n is even, then R2(n) > 0 if and only if R(n) > θ(n; 2, n). If

(n, q) > 1, then θ(n; q, n) ≤ log q. Therefore it suffices to show that R(n) > log 2.

Taking A = 0.33 (for example) in Lemma 1, one may easily verify that R(n) > log 2

for n ≥ 4.81 · 109. For the remaining range, note that Theorem 2 follows from

verifications of Goldbach’s conjecture, since n being written as the sum of two odd

primes is satisfactory. Indeed, for 3 < n ≤ 4 · 1018, n even, this verification is

provided by Silva, Herzog, and Pardi [10].

4.2. Proof of Theorem 4 for Large n

Suppose 3 < q ≤ 105 is prime; then Theorem 4 holds for n ≥ 8 · 109 if and only if

Rq(n) > 0. Using (6), it suffices to show that R(n) > θ(n; q, n). By Lemma 1, we

need to show that there exists A ∈ (0, 1/2) such that

0.37395− 0.95

log n
− 0.375

log3 n
− 0.0096

(
1 + 2A

1− 2A

)
−
(
n−2A + n−A − nA−1 + n−

1
2

)
log n >

θ(n; q, n)

n
. (7)

We may use Proposition 1 to estimate θ(n; q, n) for each 3 ≤ q ≤ 105. It follows

that A = 0.33 implies (7) for all primes q in our assumed range.

4.3. Proof of Theorem 3 for Large n

We use a similar method to the preceding proof, although we must consider the

case q = 3 separately because it is clear that 1/ϕ(3) = 1/2 > 0.37395. So, we will

need to consider a stronger version of (7). Observe that∑
p≤n

p≡n (mod 3)

µ2(n− p) log p =
∑
p≤n

p≡n (mod 3)

log p−
∑
p≤n

p≡n (mod 3)
µ(n−p)=0

log p. (8)
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An inclusion-exclusion argument yields∑
p≤n

p≡n (mod 3)
µ(n−p)=0

log p >
∑
p≤n

p≡n (mod 9) or
p≡n (mod 12) or
p≡n (mod 75)

log p

= θ(n; 9, n) + θ(n; 12, n) + θ(n; 75, n)

− θ(n; 36, n)− θ(n; 225, n)− θ(n; 300, n) + θ(n; 900, n).

Therefore, (8) yields∑
p≤n

p≡n (mod 3)

µ2(n− p) log p < θ(n; 3, n)− θ(n; 9, n)− θ(n; 12, n)− θ(n; 75, n)

+ θ(n; 36, n) + θ(n; 225, n) + θ(n; 300, n)− θ(n; 900, n). (9)

Using the explicit bounds from Bennett et al. [1, Theorem 1.2] to estimate each

θ(n; q, n) term in (9) according to these values establishes∑
p≤n

p≡n (mod 3)

µ2(n− p) log p <
19

120
n+ 0.00592

n

log n
. (10)

We may compare (10) with Lemma 1, and thereby establish (6) whenever

0.37395− 0.95

log n
− 0.375

log3 n
− 0.0096

(
1 + 2A

1− 2A

)
(11)

−
(
n−2A + n−A + nA−1 − n− 1

2

)
log n >

19

120
+

0.00592

log n
.

Choosing A = 0.33 will verify that (11) holds for n ≥ 8 · 109.

4.4. Proof of Corollary 2 for Large n

Suppose that 2 ≤ q ≤ 105 is prime. We will consider the cases q = 2 and q ≥ 3

separately. In the former case, we did not require the computations (which will be

outlined in section 4.5) to verify that the result is true for small n, so we consider

a larger range for n in this case.

If q = 2 and n > 4 is even, then n − 2 > 2 is also even. Therefore, there is a

prime p1 and an odd square-free number η1 such that n− 2 = p1 + η1 by Theorem

2. Moreover, if q = 2 and n > 5 is odd, then n− 3 > 2 is even. Therefore, there is a

prime p2 and an odd square-free number η2 such that n− 3 = p2 + η2 by Theorem

2. To complete Corollary 2 at q = 2, observe that 5 = 2 + 2 + 1.

If q ≥ 3 and n ≥ 8 · 109, then suppose that

T (n) :=
∑
p≤n

n−p 6∈{1,2,11}

µ2(n− p) log p > R(n)− 3 log n.
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If T (n) > 0 then there exists at least one prime p3 such that n − p3 > 2 and

n − p3 6= 11. Hence, Corollary 2 is also true by corollary of Theorem 4 for q > 3,

and by corollary of Theorem 3 for q = 3. Therefore, it suffices to show T (n) > 0 in

the desired range of n. It follows from Lemma 1 that

T (n)

n
> 0.37395− 0.95

log n
− 0.375

log3 n
− 0.0096

(
1 + 2A

1− 2A

)
− log n

(
n−2A + n−A − nA−1 + n−

1
2 +

3

n

)
. (12)

Now, (12) with A = 0.385 implies the result for large n.

4.5. Computations

To complete each of our main results, we verified each result for small n, wherever

necessary. We did this computationally, by slightly adapting the algorithm used by

Dudek in [5, p. 239]. Our computations took just short of 7 hours on a machine

equipped with 3.20 GHz CPU, using MapleTM 5.

If 3 < n ≤ 4·1018 is even, we know by Oliveira e Silva et al. [10] that n is the sum

of two primes. Unless n = q + q for some prime q ∈
[
3, 105

]
, we are done. When

n = q + q, it is a simple task to verify that it has at least one other representation

as a prime plus a square-free co-prime to q. Hence, we only need to consider odd

integers between 3 and 8 · 108.

As in Dudek’s algorithm, we pre-compute a set S of square-free numbers up to

2 · 107. We break the problem up, considering n in intervals of the form

Ia =
[
a · 107, (a+ 1) · 107

)
,

where a is an integer between 1 and 800. For each such a, we compute decreasing

lists Pa = (p1, p2, . . . , p100) of the 100 largest primes in Ia−1. Starting with the

smallest odd n in Ia, we check if n−pi is in S as i ranges from 1 to 100. Each time this

check is successful, we compute the gcd of n−pi with all previous successful n−pj ,
moving on to n+ 2 when this gcd equals 2 (that is, when there is a representation

with a square-free number co-prime to every prime q ∈
[
3, 105

]
). If there were any n

for which the largest 100 primes did not produce all the appropriate representations,

we could have checked these cases separately with more primes. However, our

program did not return any such n.

For the initial interval n ∈
(
2, 107

)
, a similar check can be used. Relevant

representations can easily be found for n up to 106, with the exception of n = 2

and n = 11 (which is an exception only when q = 3). Then, letting P0 be the set of

the 100 largest primes less than 106, we perform the same check as we did for the

other intervals to n ∈ (106, 107), finding no new exceptions.

5Maple is a trademark of Waterloo Maple, inc.
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To verify Corollary 2, we adapted the algorithm above. Note that we only need

to check the even n in this scenario, since the result follows directly from the ternary

Goldbach conjecture for odd n [8]. Importantly, we used S′ = S \ {1, 2, 11} in place

of S and no exceptions were found for n between 5 and 8 · 109.
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