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Abstract

The k-free part of a positive integer n is the product of the prime powers dividing n
that have exponent less than k in the factorization, while the k-full part of n is the
product of the prime powers that have exponent at least k. We consider sums of
the prime factor counting functions ω and Ω going over the k-free parts and k-full
parts of some particular number sequences.

1. Introduction

For a positive integer with prime factorization

n = qs11 · · · qsrr , (1)

where the qj are the prime factors and the sj ≥ 1 are their respective exponents, the

prime factor counting functions are defined by ω(n) = r and Ω(n) = s1 + · · ·+ sr.

For k ≥ 1, and n as above, let

Lk(n) =
∏

1≤j≤r
sj<k

q
sj
j and Uk(n) =

∏
1≤j≤r
k≤sj

q
sj
j .

We say that Lk(n) is the k-free part of n and that Uk(n) is the k-full part of n. By

convention, L1(n) = 1, while naturally U1(n) = n. Similarly, when k > maxj sj , we

have Lk(n) = n and Uk(n) = 1. We remark that n = Lk(n)Uk(n) for any k and

that Lk(n) and Uk(n) are coprime. The case of k = 2 was considered by Cloutier,

De Koninck, and Doyon [2].
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The aim of this article is to consider sums of ω and Ω composed with Uk and Lk
evaluated in certain sequences of positive integer numbers.

To begin, we consider the evaluation in the whole sequence of positive integer

numbers.

Theorem 1. Let k ≥ 1 be an integer. We have that

∑
n≤x

ω(Uk(n)) =

(∑
p

1

pk

)
x+Ok

(
x

1
k

log x

)
, (2)

and ∑
n≤x

Ω(Uk(n)) =

(∑
p

1− k + kp

pk+1 − pk

)
x+Ok

(
x

1
k

log x

)
, (3)

where the sums over p indicate that the sums are taken over all prime numbers.

For the rest of this article we will continue to use the convention that sums and

products over p indicate over all the primes, unless stated otherwise.

Corollary 1. Let k ≥ 1 be an integer. We have that

∑
n≤x

ω(Lk(n)) = x log log x+

(
B1 −

∑
p

1

pk

)
x+O

(
x

log x

)
, (4)

where B1 is the Mertens constant given by

B1 = γ +
∑
p

(
log

(
1− 1

p

)
+

1

p

)
, (5)

and γ = 0.57721 . . . is the Euler–Mascheroni constant.

We have that∑
n≤x

Ω(Lk(n)) = x log log x+

(
B2 −

∑
p

1− k + kp

pk+1 − pk

)
x+O

(
x

log x

)
, (6)

where

B2 = B1 +
∑
p

1

p(p− 1)
. (7)

Let h ≥ 1 be an integer. A positive integer n is said to be h-free if all its prime

factors have exponents less than h. In other words, if n has prime factorization (1),

then sj ≤ h− 1 for all j. In particular, n is square-free if all sj = 1. We denote by

Sh the set of h-free positive integers.

We have the following result.
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Theorem 2. Let h > k > 1 be integers. Then we have∑
n∈Sh
n≤x

Ω(Uk(n)) =
1

ζ(h)
DΩ,k,hx+Oh

(
x

2k−1

k2 log log x
)
, (8)

∑
n∈Sh
n≤x

ω(Uk(n)) =
1

ζ(h)
Dω,k,hx+Oh

(
x

2k−1

k2 log log x
)
. (9)

where

DΩ,k,h =
∑
p

h− 1− (k − 1)ph−k − hp+ kph−k+1

(p− 1) (ph − 1)
, (10)

and

Dω,k,h =
∑
p

ph−k − 1

ph − 1
. (11)

Corollary 2. Let h > k > 1 be integers. Then we have∑
n∈Sh
n≤x

Ω(Lk(n)) =
1

ζ(h)
x log log x+O(x), (12)

∑
n∈Sh
n≤x

ω(Lk(n)) =
1

ζ(h)
x log log x+O(x). (13)

Let h ≥ 1 be an integer. A positive integer n is said to be h-full if all its prime

factors have exponents greater or equal than h. In other words, if n has prime

factorization (1), then sj ≥ h for all j. (This definition is trivial for h = 1.) We

denote by Nh the set of h-full positive integers.

We prove the following estimates.

Theorem 3. Let k > h > 0 be integers. Then we have∑
n∈Nh
n≤x

Ω(Uk(n)) =γ0,hEΩ,k,hx
1
h +O

(
x

1
h−( kh−1) 1

k+2h(h+1)
+ε log log x

)
, (14)

∑
n∈Nh
n≤x

ω(Uk(n)) =γ0,hEω,k,hx
1
h +O

(
x

1
h−( kh−1) 1

k+2h(h+1)
+ε log log x

)
, (15)

where

γ0,h =
∏
p

1 +
p− p 1

h

p2
(
p

1
h − 1

)
 , (16)
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EΩ,k,h =
∑
p

kp
1
h − k + 1

p
k−h−1
h

(
p

1
h − 1

)(
p1+ 1

h + p
1
h − p

) , (17)

and

Eω,k,h =
∑
p

1

p
k−h−1
h

(
p1+ 1

h + p
1
h − p

) . (18)

Corollary 3. Let k > h > 0 be integers. The following formula holds:∑
n∈Nh
n≤x

Ω(Lk(n)) =hγ0,hx
1
h log log x+ γ0,h (CΩ,h − Eω,k,h)x

1
h +Oh

(
x

1
h

√
log x

)
,

(19)

where

CΩ,h = h(B2 − log h) +
∑
p

(h+ 1)p1+ 1
h − hp− 2hp

2
h + (2h− 1)p

1
h

(p− 1)
(
p

1
h − 1

)(
p1+ 1

h + p
1
h − p

) . (20)

Corollary 3 is deduced from an estimate for the first moment of Ω(n) over h-full

numbers that was computed in [8, Theorem 2]. It would be interesting to obtain

an analogous result for ω(n). To do this, we would need to use different techniques

than the ones employed in the proof of [8, Theorem 2], which rely in the total

multiplicativity of Ω(n). See [9, Section 6] for a discussion of this issue in the

function field case.

This article is organized as follows. Section 2 includes the proof of Theorem 1 and

Corollary 1 by elementary counting, as well as a corollary considering the sum going

over h-powers. Theorem 2 is proven in Section 3. This is achieved by counting first

the h-free integers that are coprime to certain fixed number. Corollary 2 is obtained

as a consequence of known results for the count over all h-free numbers. Finally,

Section 4 contains a proof of Theorem 3, which follows from counting integers that

are simultaneously h-free and k-full, while Corollary 3 is obtained as a consequence

of known results for the count over all h-full numbers.

2. Sums over Integers

In this section we prove Theorem 1. We start by recalling the following results

involving sums of primes.

Lemma 1. [1, Lemma 1.2] If s > 1,∑
p≥x

1

ps
=

1

(s− 1)xs−1 log x
+O

(
1

xs−1 log2 x

)
.
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Lemma 2. [1, Lemma 1.4] If r, s ≥ 0,∑
p≤x

ps

logr p
=

xs+1

(s+ 1) logr+1 x
+O

(
xs+1

logr+2 x

)
.

Proof of Theorem 1. We consider Equation (2). Notice that summing over all the

numbers of the form ω(Uk(n)) is equivalent to counting the number of powers p` ≤ x
such that ` ≥ k, and each power must be counted with multiplicity equal to the

number of n ≤ x such that p` | n. But this is equivalent to counting the multiples

of pk that are less than or equal to x. In other words, we have∑
n≤x

ω(Uk(n)) =
∑
pk≤x

⌊
x

pk

⌋
=
∑
p≤x

1
k

x

pk
−
∑
p≤x

1
k

{
x

pk

}
.

Applying the Prime Number Theorem as well as Lemma 1, we have∑
n≤x

ω(Uk(n)) =x
∑
p

1

pk
− x

∑
p>x

1
k

1

pk
+Ok

(
x

1
k

log x

)

=x
∑
p

1

pk
+Ok

(
x

1
k

log x

)
.

Equation (3) is proven similarly. Summing over all the numbers of the form

Ω(Uk(n)) is equivalent to counting the number of powers p` ≤ x such that ` ≥ k,

and each power must be counted with multiplicity equal to the number of n ≤ x

such that p` | n but p`+1 - n, multiplied by `. Set t =
⌊
logp x

⌋
. We have∑

n≤x

Ω(Uk(n)) =
∑
pk≤x

t∑
`=k

`

(⌊
x

p`

⌋
−
⌊

x

p`+1

⌋)

=
∑
pk≤x

(
k

⌊
x

pk

⌋
+

⌊
x

pk+1

⌋
+ · · ·+

⌊
x

pt

⌋)

=x
∑
pk≤x

(
k

pk
+

1

pk+1
+ · · ·+ 1

pt

)

−
∑
pk≤x

(
k

{
x

pk

}
+

{
x

pk+1

}
+ · · ·+

{
x

pt

})

=x
∑
pk≤x

(
1

pk+1 − 1
pt+1

1− 1
p

+
k

pk

)
+O

 ∑
p≤x

1
k

t


=x

∑
pk≤x

1−k
pk+1 − 1

pt+1 + k
pk

1− 1
p

+O

log x
∑
p≤x

1
k

1

log p

 .
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Now we use the Prime Number Theorem to estimate

x
∑
pk≤x

1

pt+1(1− 1
p )
� x

∑
p≤x

1
k

1

x
�k

x
1
k

log x
.

By applying the above estimate as well as Lemmas 1 and 2 (with r = 1, s = 0), we

obtain

∑
n≤x

Ω(Uk(n)) =x
∑
p

1−k
pk+1 + k

pk

1− 1
p

− x
∑
p>x

1
k

1−k
pk+1 + k

pk

1− 1
p

+Ok

(
x

1
k

log x

)

=x
∑
p

1− k + kp

pk+1 − pk
+Ok

(
x

1
k

log x

)
.

This concludes the proof of Theorem 1.

Proof of Corollary 1. To prove Equations (4) and (6) we use the well-known iden-

tities [5, Theorem 430] and [4, Section 1.4.4]) for x ≥ 2:∑
n≤x

ω(n) =x log log x+B1x+O

(
x

log x

)
, (21)

∑
n≤x

Ω(n) =x log log x+B2x+O

(
x

log x

)
, (22)

where B1 and B2 are given by Equations (5) and (7) respectively.

Notice that Ω(n) = Ω(Lk(n)) + Ω(Uk(n)) and, since Lk(n) and Uk(n) are co-

prime, ω(n) = ω(Lk(n)) +ω(Uk(n)) as well. Combining Equations (2) and (3) with

Equations (21) and (22), we get Equations (4) and (6).

A perfect power is a number of the form nh, where h ≥ 2 and n are positive

integers. We can immediately deduce the following result from Theorem 1.

Corollary 4. Let k ≥ 2 be an integer. The following formulas hold:

∑
nh≤x

Ω(Uk(nh)) =h

(∑
p

1− k + kp

pk+1 − pk

)
x

1
h +Ok,h

(
x

1
hk

log x

)
,

∑
nh≤x

ω(Uk(nh)) =

(∑
p

1

pk

)
x

1
h +Ok,h

(
x

1
hk

log x

)
.
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In addition, the following formulas hold:∑
nh≤x

Ω(Lk(nh)) =hx
1
h log log x+ h

(
B2 − log h−

∑
p

1− k + kp

pk+1 − pk

)
x

1
h

+Oh

(
x

1
h

log x

)
,

∑
nh≤x

ω(Lk(nh)) =x
1
h log log x+

(
B1 − log h−

∑
p

1

pk

)
x

1
h +Oh

(
x

1
h

log x

)
.

Let ωk(n) be the number of primes with exponent k in the prime factorization

of n.

Corollary 5. Let k ≥ 1 be an integer. We have the asymptotic formula∑
n≤x

ωk(n) =

(∑
p

p− 1

pk+1

)
x+Ok

(
x

1
k

log x

)
.

This recovers a result of Elma and Liu [3], who also studied the second moment

of ωk.

Proof. By Equation (2), we have

∑
n≤x

ωk(n) =
∑
n≤x

ω(Uk(n))− ω(Uk+1(n)) = x

(∑
p

1

pk
−
∑
p

1

pk+1

)
+Ok

(
x

1
k

log x

)
,

and the result follows.

Remark 1. It is interesting to consider the quotient of the sums appearing in

Equations (2) and (3). We get∑
n≤x Ω(Uk(n))∑
n≤x ω(Uk(n))

→
∑
p

1−k+kp
pk+1−pk∑
p

1
pk

. (23)

Since we have that

k

pk
=

k(p− 1)

pk(p− 1)
<
kp− (k − 1)

pk(p− 1)
≤ (k + 1)(p− 1)

pk(p− 1)
=
k + 1

pk
,

and the second inequality is strict for p > 2, we conclude that the limit (23) belongs

to the interval (k, k + 1).

Remark 2. The constants appearing in Equations (2) and (3) can also be expressed

as ∑
p

1

pk
=

1

ζ(k)

∑
U∈Nk

∏
q|U

(
qk − qk−1

qk − 1

)
ω(U)

U
(24)
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and ∑
p

1− k + kp

pk+1 − pk
=

1

ζ(k)

∑
U∈Nk

∏
p|n

(
qk − qk−1

qk − 1

)
Ω(U)

U
. (25)

This can be seen by working with the generating functions, in a method that will

be employed to find the constants in Theorems 2 and 3. In fact, Equations (24) and

(25) can be obtained from Dω,k,h and Equation (30) as well as DΩ,k,h and Equation

(29) by letting h→∞ and therefore removing the condition h-free.

3. Sums over h-Free Numbers

In this section we prove Theorem 2. We start with the following estimate for the

number of k-free positive integers that are not divisible by some fixed primes.

Lemma 3. Let q1, . . . , qr be prime numbers, and let Qk,q1···qr (x) be the number of

k-free positive integers not exceeding x such that they are relatively prime to q1 · · · qr.
The following formula holds:

Qk,q1···qr (x) =
1

ζ(k)

r∏
j=1

(
1− 1

qj

)
(

1− 1
qkj

)x+Ok

(
2rx

1
k

)
.

We remark that the above formula generalizes the classical estimate giving

Qk(x) =
x

ζ(k)
+O

(
x

1
k

)
,

where Qk(x) is the number of k-free numbers not exceeding x.

Proof. Consider the modified Möbius function defined as

µq1···qr (d) =

{
µ(d) (d, q1 · · · qr) = 1,

0 otherwise.
.

By Möbius inversion, we have

Qk,q1···qr (x) =
∑
n∈Sk
n≤x

(n,q1···qr)=1

1 =
∑
n≤x

(n,q1···qr)=1

∑
dk|n

(d,q1···qr)=1

µ(d)

=
∑
n≤x

(n,q1···qr)=1

∑
dk|n

µq1···qr (d).
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Writing n = dke, we have

Qk,q1···qr (x) =
∑
dk≤x

µq1···qr (d)
∑

e≤x/dk
(e,q1···qr)=1

1.

Estimating the inner sum with inclusion-exclusion, we obtain

Qk,q1···qr (x) =
∑
dk≤x

µq1···qr (d)

(⌊ x
dk

⌋
−
⌊

x

qidk

⌋
+

⌊
x

qiqjdk

⌋
+ · · ·

)

=
∑
dk≤x

µq1···qr (d)
x

dk

r∏
j=1

(
1− 1

qj

)

+O

∑
dk≤x

µq1···qr (d)

({ x
dk

}
−
{

x

qidk

}
+

{
x

qiqjdk

}
+ · · ·

)
=
∑
dk≤x

µq1···qr (d)
x

dk

r∏
j=1

(
1− 1

qj

)
+O

2r
∑
dk≤x

1

 .

After using the full sum to estimate, the above becomes,

∑
d

µq1···qr (d)
x

dk

r∏
j=1

(
1− 1

qj

)
−
∑
dk>x

µq1···qr (d)
x

dk

r∏
j=1

(
1− 1

qj

)
+O

(
2rx

1
k

)

=x
∏
p 6=qj

(
1− 1

pk

) r∏
j=1

(
1− 1

qj

)
+O

x ∑
dk>x

1

dk

+O
(

2rx
1
k

)
.

Estimating the first big-O term by approximating with an integral, we obtain

Ok(x
1
k ), and this yields

Qk,q1···qr (x) =x
∏
p

(
1− 1

pk

) r∏
j=1

(
1− 1

qj

)
(

1− 1
qkj

) +Ok

(
2rx

1
k

)

=
1

ζ(k)

r∏
j=1

(
1− 1

qj

)
(

1− 1
qkj

)x+Ok

(
2rx

1
k

)
.

We now state some results involving sums of prime factor counting functions over

h-full numbers that will be needed for the proofs of Theorem 2 and Corollary 2.
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Theorem 4. Let h ≥ 1 be an integer. We have

∑
n∈Nh
n≤x

Ω(n) = hγ0,hx
1
h log log x+ γ0,hCΩ,hx

1
h +Oh

(
x

1
h

√
log x

)
, (26)

where γ0,h is given by Equation (16) and CΩ,h is given by Equation (20).

We omit the proof, since Equation (26) was proven in [8, Theorem 2].

Lemma 4. Let α ∈ R. Then, we have∑
n∈Nh
x<n≤y

Ω(n)nα = Oh

(
y

1
h+α log log y

)
+Oh

(
x

1
h+α log log x

)
.

and ∑
n∈Nh
x<n≤y

ω(n)nα = Oh

(
y

1
h+α log log y

)
+Oh

(
x

1
h+α log log x

)
.

Proof. Denote

Nh(x) =
∑
n∈Nh
n≤x

Ω(n),

and remark that the asymptotics for Nh(x) is given by Equation (26).

By Abel’s summation formula,∑
n∈Nh
x<n≤y

Ω(n)nα =Nh(y)yα −Nh(x)xα − α
∫ y

x

Nh(t)tα−1dt

=hγ0,hy
1
h+α log log y − hγ0,hx

1
h+α log log x

+O
(
y

1
h+α

)
+O

(
x

1
h+α

)
+O

(∫ y

x

tα−
h−1
h log log tdt

)
=Oh

(
y

1
h+α log log y

)
+Oh

(
x

1
h+α log log x

)
.

The estimate for the sum over ω(n) can be deduced from the fact that ω(n) ≤ Ω(n).

Proof of Theorem 2. We prove Equations (8) and (10). Fix 0 < B ≤ x (to be

determined later) and suppose that U = Uk(n) is such that U ≤ B. We start by

counting all the possible values of L = Lk(n) satisfying L ≤ x/U . By Lemma 3,

the number of possible values of L is given by

Qk,q1···qr

( x
U

)
=

1

ζ(k)

r∏
j=1

(
qkj − q

k−1
j

qkj − 1

)
x

U
+O

(
2r
x

1
k

U
1
k

)
,
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where q1, . . . , qr are the primes in the factorization of U . Thus we have∑
n∈Sh
n≤x

Ω(Uk(n)) =
∑
n∈Sh
n≤x

Uk(n)≤B

Ω(Uk(n)) +
∑
n∈Sh
n≤x

B<Uk(n)≤x

Ω(Uk(n))

=
x

ζ(k)

∑
U∈Nk∩Sh
U≤B

∏
q|U

(
qk − qk−1

qk − 1

)
Ω(U)

U

+O

 ∑
U∈Nk∩Sh
U≤B

Ω(U)2ω(U) x
1
k

U
1
k

+
∑
n∈Sh
n≤x

B<Uk(n)≤x

Ω(Uk(n)).

Notice that for U ∈ Nk, we have 2ω(U) ≤ q1 · · · qr ≤ U
1
k . Using this to bound

the error term gives

∑
n∈Sh
n≤x

Ω(Uk(n)) =
x

ζ(k)

∑
U∈Nk∩Sh

∏
q|U

(
qk − qk−1

qk − 1

)
Ω(U)

U
+O

x 1
k

∑
U∈Nk∩Sh
U≤B

Ω(U)


+

∑
n∈Sh
n≤x

B<Uk(n)≤x

Ω(Uk(n))− x

ζ(k)

∑
U∈Nk∩Sh
B<U

∏
q|U

(
qk − qk−1

qk − 1

)
Ω(U)

U
.

(27)

We have the following estimate∑
n∈Sh
n≤x

B<Uk(n)≤x

Ω(Uk(n)) ≤
∑

U∈Nk∩Sh
B<U≤x

⌊ x
U

⌋
Ω(U) ≤

∑
U∈Nk
U≤x

x

U
Ω(U). (28)

Applying Lemma 4 to Equations (27) and (28), we have∑
n∈Sh
n≤x

Ω(Uk(n)) =
x

ζ(k)

∑
U∈Nk∩Sh

∏
q|U

(
qk − qk−1

qk − 1

)
Ω(U)

U
+Oh

(
x

1
kB

1
k log logB

)

+Oh

(
x

1
k log log x

)
+Oh

(
xB

1
k−1 log logB

)
.

Let B = x1− 1
k . We get∑

n∈Sh
n≤x

Ω(Uk(n)) =
x

ζ(k)

∑
U∈Nk∩Sh

∏
q|U

(
qk − qk−1

qk − 1

)
Ω(U)

U
+Oh

(
x

2k−1

k2 log log x
)
.
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We now proceed to find a closed expression for

1

ζ(k)

∑
U∈Nk∩Sh

∏
q|U

(
qk − qk−1

qk − 1

)
Ω(U)

U
. (29)

We consider a generating function given by

DΩ,k,h(z) =
∑

n∈Nk∩Sh

zΩ(n)

n

∏
q|n

qk − qk−1

qk − 1

=
∏
p

(
1 +

(
pk − pk−1

pk − 1

)
zk

pk

(
1 +

z

p
+ · · ·+ zh−k−1

ph−k−1

))

=
∏
p

1 +

(
pk − pk−1

pk − 1

) zh

ph
− zk

pk

z
p − 1

 ,

which is absolutely convergent over compact sets.

We will recover our term of interest from considering D′Ω,k,h(1). In order to find

this term, we consider the logarithmic derivative of DΩ,k,h(z):

D′Ω,k,h(z)

DΩ,k,h(z)
=
∑
p

(
pk−pk−1

pk−1

)(
(h− 1) zh

ph+1 − (k − 1) zk

pk+1 − h z
h−1

ph
+ k z

k−1

pk

)
(
z
p − 1

)2
(

1 +
(
pk−pk−1

pk−1

) zh

ph
− zk
pk

z
p−1

) .

Evaluating at z = 1, we obtain,

D′Ω,k,h(z)

DΩ,k,h(z)

∣∣∣∣
z=1

=
∑
p

(
pk

pk−1

)(
h−1
ph+1 − k−1

pk+1 − h
ph

+ k
pk

)
(

1− 1
p

)(
1− pk

pk−1

(
1
ph
− 1

pk

)) .

Multiplying the above by DΩ,k,h(1) and by the coefficient 1
ζ(k) =

∏
p

(
1− 1

pk

)
provides the coefficient for the main term of (8):

D′Ω,k,h(1)

ζ(k)
=

1

ζ(k)

∑
p

(
pk

pk−1

)(
h−1
ph+1 − k−1

pk+1 − h
ph

+ k
pk

)
(

1− 1
p

)(
1− pk

pk−1

(
1
ph
− 1

pk

))
×
∏
p

(
1−

(
pk

pk − 1

)(
1

ph
− 1

pk

))

=
∑
p

h−1
ph+1 − k−1

pk+1 − h
ph

+ k
pk(

1− 1
p

)(
1− 1

ph

) ∏
p

(
1− 1

ph

)

=
1

ζ(h)

∑
p

h− 1− (k − 1)ph−k − hp+ kph−k+1

(p− 1) (ph − 1)
.
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Equations (9) and (11) are proven analogously. Here the difference is that we

must consider instead

1

ζ(k)

∑
U∈Nk∩Sh

∏
q|U

(
qk − qk−1

qk − 1

)
ω(U)

U
, (30)

while the error term can be bounded as in the Ω case, using the fact that ω(n) ≤
Ω(n).

In this case the generating function is given by

Dω,k,h(z) =
∑

n∈Nk∩Sh

zω(n)

n

∏
q|n

qk − qk−1

qk − 1

=
∏
p

(
1 +

(
pk − pk−1

pk − 1

)
z

pk

(
1 +

1

p
+ · · ·+ 1

ph−k−1

))

=
∏
p

1 +

(
pk − pk−1

pk − 1

) z
(

1
ph
− 1

pk

)
1
p − 1

 ,

which is absolutely convergent.

In order to find D′ω,k,h(1), we consider the logarithmic derivative:

D′ω,k,h(z)

Dω,k,h(z)
=
∑
p

(
pk−pk−1

pk−1

) ( 1

ph
− 1

pk

)
1
p−1

1 +
(
pk−pk−1

pk−1

) z
(

1

ph
− 1

pk

)
1
p−1

.

Therefore,

D′ω,k,h(z)

Dω,k,h(z)

∣∣∣∣
z=1

=
∑
p

ph−k − 1

ph − 1
.

Multiplying the above by Dω,k,h(1) and by the coefficient 1
ζ(k) =

∏
p

(
1− 1

pk

)
yields

the coefficient for the main term of Equation (9):

D′ω,k,h(1)

ζ(k)
=

1

ζ(k)

∑
p

ph−k − 1

ph − 1

∏
p

(
1−

(
pk

pk − 1

)(
1

ph
− 1

pk

))

=
∑
p

ph−k − 1

ph − 1

∏
p

(
1− 1

ph

)

=
1

ζ(h)

∑
p

ph−k − 1

ph − 1
.

This concludes the proof of Theorem 2.
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Theorem 5. The following asymptotic formulas hold:∑
n∈Sh
n≤x

Ω(n) =
1

ζ(h)
x log log x+O(x), (31)

and ∑
n∈Sh
n≤x

ω(n) =
1

ζ(h)
x log log x+O(x). (32)

We omit the proof, since Equation (31) was proven in [8, Theorem 1] and Equa-

tion (32) can be proven similarly.

Proof of Corollary 2. Since n = Lk(n)Uk(n), we have Ω(n) = Ω(Lk(n))+Ω(Uk(n)),

and similarly with ω (since Lk(n) and Uk(n) are coprime). Combining Equations (8)

and (31), we immediately obtain Equation (12). Equation (13) follows by combining

Equations (9) and (32).

4. Sums over h-Full Numbers

In this section we prove Theorem 3. Before proceeding to the proof, we need the

following generalization of Lemma 3.

Lemma 5. Let q1, . . . , qr be prime numbers and let k > h be integers. We define

Qk,h,q1···qr (x) as the number of k-free, h-full positive integers not exceeding x such

that they are relatively prime to q1 · · · qr. The following formula holds:

Qk,h,q1···qr (x) =

r∏
j=1

1 +

1
qj
− 1

q
k
h
j

1− 1

q
1
h
j


−1∏

p

(
1− 1

p

)1 +

1
p −

1

p
k
h

1− 1

p
1
h

x
1
h

+O
(

2rx
2h+1

2h(h+1)
+ε
)
,

where ε > 0 is arbitrarily small.
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Proof. Consider the generating function∑
n∈Nh∩Sk

(n,q1···qr)=1

1

ns
=
∏
p 6=qj

(
1 +

1

psh
+ · · ·+ 1

ps(k−1)

)

=
∏
p 6=qj

(
1 +

1
psh
− 1

psk

1− 1
ps

)

=

r∏
j=1

(
1 +

1

qshj

)−1∏
p

(
1 +

1

psh

) ∏
p 6=qj

1 +

1
ps(h+1) − 1

psk(
1− 1

ps

)(
1 + 1

psh

)


=

r∏
j=1

(
1 +

1

qshj

)−1
ζ(sh)

ζ(2sh)
Hq1···qr (s).

Notice that for Re(s) > 1
h+1 ,

|Hq1···qr (s)| ≤
∏
p 6=qj

1 +

∣∣∣∣∣∣
1

ps(h+1) − 1
psk(

1− 1
ps

)(
1 + 1

psh

)
∣∣∣∣∣∣


≤
∏
p

1 +

∣∣∣∣∣∣
1

ps(h+1) − 1
psk(

1− 1
ps

)(
1 + 1

psh

)
∣∣∣∣∣∣
 , (33)

which is convergent for Re(s) ≥ 1
h+1 + ε, and therefore Hq1···qr (s) is convergent for

Re(s) > 1
h+1 . Now we use Perron’s formula ([10, Section 5.1], [11, Section 4.4],

more precisely, Problems 4.4.15-4.4.17). Take σ0 = 1
h + ε. As T →∞,

Qk,h,q1···qr (x) =
∑

n∈Nh∩Sk
n≤x

(n,q1···qr)=1

1

=
1

2πi

∫ σ0+iT

σ0−iT

r∏
j=1

(
1 +

1

qshj

)−1
ζ(sh)

ζ(2sh)
Hq1···qr (s)

xs

s
ds

+O

(
xσ0+ε

T

)
.

To compute this integral we consider the rectangle of vertical sides [σ0− iT, σ0 + iT ]

and [σ1 − iT, σ1 + iT ] and horizontal sides [σ0 ± iT, σ1 ± iT ]. The integral over the

sides is equal to the residue from the pole at s = 1
h , which can be computed as
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follows:

r∏
j=1

(
1 +

1

qj

)−1
h

ζ(2)
Hq1···qr

(
1

h

)
x

1
hRess= 1

h
ζ(sh)

=

r∏
j=1

1 +

1
qj
− 1

q
k
h
j

1− 1

q
1
h
j


−1

1

ζ(2)

∏
p

1 +

1

p
1
h

+1
− 1

p
k
h(

1− 1

p
1
h

)(
1 + 1

p

)
x

1
h .

Since we are interested in the integral over the segment [σ0−iT, σ0+iT ], we proceed

to bound the integral at the vertical segment [σ1− iT, σ1 + iT ] and at the horizontal

lines [σ0 ± iT, σ1 ± iT ]. First we note that Inequality (33) gives a uniform bound

for Hq1···qr (s) which is independent of the choice of q1, . . . , qr. Next notice that we

have, over the same segments,∣∣∣∣1 +
1

qsh

∣∣∣∣−1

≤ 1

1− 1
qRe(s)h

≤ 1

1− 1

q
h
h+1

≤ 1

1− 1

q
1
2

,

and the above bound is less than or equal to 2 when q 6= 2, 3, and for q = 2, 3 it

is bounded by 4 and 3, respectively. Thus, we have the following bound over the

vertical segment [σ1 − iT, σ1 + iT ] and at the horizontal lines [σ0 ± iT, σ1 ± iT ]:∣∣∣∣∣∣
r∏
j=1

(
1 +

1

qshj

)−1
∣∣∣∣∣∣ < 12 · 2r.

Since ζ(σ ± iT ) = O
(
T

1
2

)
uniformly for ε ≤ σ ≤ 1 as T → ∞ (see for ex-

ample, [6, Theorem 1.9]), the horizontal integrals on [σ0 ± iT, σ1 ± iT ] contribute

O

(
2r x

σ0T− 1
2

log x

)
.

The vertical line [σ1 − iT, σ1 + iT ] contributes to O
(

2rxσ1T
1
2

)
.

Finally, taking T = x
1

h(h+1) gives a final estimate of

Qk,h,q1···qr (x) =

r∏
j=1

1 +

1
qj
− 1

q
k
h
j

1− 1

q
1
h
j


−1

1

ζ(2)

∏
p

1 +

1

p
1
h

+1
− 1

p
k
h(

1− 1

p
1
h

)(
1 + 1

p

)
x

1
h

+O
(

2rx
2h+1

2h(h+1)
+ε
)
.

We remark that the main term in Lemma 5 reduces to the main term in Lemma

3 when h = 1. However, the error term has size O
(

2rx
3
4 +ε
)

and is worse. The
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reason for this is that we are we are only considering the pole at s = 1
h in Perron’s

formula. To eliminate the dependence on h we would need to remove all the poles

up to 1
k .

Another interesting case is when k → ∞ and r = 0. This counts the h-full

numbers not exceeding x and recovers the formula

γ0,hx
1
h +O

(
x

2h+1
2h(h+1)

+ε
)
.

This is a much weaker version of the result of Ivić and Shiu [7], who estimate this

number to be

γ0,hx
1
h + γ1,hx

1
h+1 + · · ·+ γh−1,hx

1
2h−1 + ∆h(x),

where γ0,h, γ1,h . . . , γh−1,h are certain computable constants and ∆h(x)� xρ for ρ

small.

Proof of Theorem 3. First, we proceed to prove Equations (14) and (17). Fix 0 <

B ≤ x (to be determined later) and suppose that U = Uk(n) is such that U ≤ B.

We start by counting all the possible L = Lk(n) satisfying L ≤ x/U . Since L must

be both k-free and h-full, Lemma 5 implies that the number of possible values of L

is given by

Qk,h,q1···qr

( x
U

)
=

r∏
j=1

1 +

1
qj
− 1

q
k
h
j

1− 1

q
1
h
j


−1∏

p

(
1− 1

p

)1 +

1
p −

1

p
k
h

1− 1

p
1
h

 x
1
h

U
1
h

+O

(
2r
x

2h+1
2h(h+1)

+ε

U
2h+1

2h(h+1)
+ε

)
,

where q1, . . . , qr are the primes in the factorization of U .

To make the proof easier to follow, we define

f(k, h) :=
∏
p

(
1− 1

p

)1 +

1
p −

1

p
k
h

1− 1

p
1
h

 .
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Thus we have∑
n∈Nh
n≤x

Ω(Uk(n)) =
∑
n∈Nh
n≤x

Uk(n)≤B

Ω(Uk(n)) +
∑
n∈Nh
n≤x

B<Uk(n)≤x

Ω(Uk(n))

=f(k, h)x
1
h

∑
U∈Nk
U≤B

∏
q|U

1 +

1
q −

1

q
k
h

1− 1

q
1
h

−1

Ω(U)

U
1
h

+O

 ∑
U∈Nk
U≤B

2ω(U)Ω(U)
x

2h+1
2h(h+1)

+ε

U
2h+1

2h(h+1)
+ε

+
∑
n∈Nh
n≤x

B<Uk(n)≤x

Ω(Uk(n)).

Notice that for U ∈ Nk, we have 2ω(U) ≤ q1 · · · qr ≤ U
1
k . Using this to bound the

error term above gives

∑
n∈Nh
n≤x

Ω(Uk(n)) =f(k, h)x
1
h

∑
U∈Nk

∏
q|U

1 +

1
q −

1

q
k
h

1− 1

q
1
h

−1

Ω(U)

U
1
h

+O

x 2h+1
2h(h+1)

+ε
∑
U∈Nk
U≤B

Ω(U)U
1
k−

2h+1
2h(h+1)

−ε


+

∑
n∈Nh
n≤x

B<Uk(n)≤x

Ω(Uk(n))

− f(k, h)x
1
h

∑
U∈Nk
B<U

∏
q|U

1 +

1
q −

1

q
k
h

1− 1

q
1
h

−1

Ω(U)

U
1
h

. (34)

We have the following estimate, analogous to Equation (28):∑
n∈Nh
n≤x

B<Uk(n)≤x

Ω(Uk(n)) ≤
∑
U∈Nk
B<U≤x

⌊ x
U

⌋
Ω(U) ≤

∑
U∈Nk
U≤x

x

U
Ω(U). (35)
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Applying Lemma 4 to Equations (34) and (35), we have

∑
n∈Nh
n≤x

Ω(Uk(n)) =f(k, h)x
1
h

∑
U∈Nk

∏
q|U

1 +

1
q −

1

q
k
h

1− 1

q
1
h

−1

Ω(U)

U
1
h

+O
(
x

2h+1
2h(h+1)

+εB
2
k−

2h+1
2h(h+1)

−ε log logB
)

+O
(
x

1
k log log x

)
+O

(
x

1
hB

1
k−

1
h log logB

)
.

We choose B = x
k

k+2h(h+1) and get

∑
n∈Nh
n≤x

Ω(Uk(n)) =f(k, h)x
1
h

∑
U∈Nk

∏
q|U

1 +

1
q −

1

q
k
h

1− 1

q
1
h

−1

Ω(U)

U
1
h

+O
(
x

1
h−( kh−1) 1

k+2h(h+1)
+ε log log x

)
.

We now proceed to find a closed expression for

f(k, h)
∑
U∈Nk

∏
q|U

1 +

1
q −

1

q
k
h

1− 1

q
1
h

−1

Ω(U)

U
1
h

.

We consider a generating function given by

EΩ,k,h(z) =
∑
n∈Nk

zΩ(n)

n
1
h

∏
q|n

1 +

1
q −

1

q
k
h

1− 1

q
1
h

−1

=
∏
p

1 +

1 +

1
p −

1

p
k
h

1− 1

p
1
h

−1

zk

p
k
h

(
1 +

z

p
1
h

+
z2

p
2
h

+ · · ·
)

=
∏
p

1 +

1 +

1
p −

1

p
k
h

1− 1

p
1
h

−1 zk

p
k
h

1− z

p
1
h

 ,

which is absolutely convergent over compact sets.

We will recover our term of interest by computing E ′Ω,k,h(1), which we find by

considering the logarithmic derivative:

E ′Ω,k,h(z)

EΩ,k,h(z)
=
∑
p

kzk−1

p
k
h

− (k−1)zk

p
k+1
h(

1− z

p
1
h

)2

(
1 +

1
p−

1

p
k
h

1− 1

p
1
h

)
+

zk

p
k
h

1− z

p
1
h

.
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Therefore,

E ′Ω,k,h(z)

EΩ,k,h(z)

∣∣∣∣
z=1

=
∑
p

k

p
k
h
− k−1

p
k+1
h(

1− 1

p
1
h

)(
1 + 1

p −
1

p
1
h

) .
By multiplying the above by EΩ,k,h(1) and by the coefficient f(k, h), we get an

expression for EΩ,k,h:

f(k, h)E ′Ω,k,h(1) =f(k, h)
∑
p

k

p
k
h
− k−1

p
k+1
h(

1− 1

p
1
h

)(
1 + 1

p −
1

p
1
h

)

×
∏
p

1 +

1 +

1
p −

1

p
k
h

1− 1

p
1
h

−1 1

p
k
h

1− 1

p
1
h


=
∑
p

k

p
k
h
− k−1

p
k+1
h(

1− 1

p
1
h

)(
1 + 1

p −
1

p
1
h

)

×
∏
p

1 +

1

p
k
h

1− 1

p
1
h

+ 1
p −

1

p
k
h

(1− 1

p

)1 +

1
p −

1

p
k
h

1− 1

p
1
h


=
∑
p

kp
1
h − k + 1

p
k−h−1
h

(
p

1
h − 1

)(
p1+ 1

h + p
1
h − p

) ∏
p

1 +
p− p 1

h

p2
(
p

1
h − 1

)
 .

Equations (15) and (18) are proven analogously. Here instead we must consider

f(k, h)
∑
U∈Nk

∏
q|U

1 +

1
q −

1

q
k
h

1− 1

q
1
h

−1

ω(U)

U
1
h

.

The corresponding generating function is given by

Eω,k,h(z) =
∑
n∈Nk

zω(n)

n
1
h

∏
q|n

1 +

1
q −

1

q
k
h

1− 1

q
1
h

−1

=
∏
p

1 +

1 +

1
p −

1

p
k
h

1− 1

p
1
h

−1

z

p
k
h

(
1 +

1

p
1
h

+
1

p
2
h

+ · · ·
)

=
∏
p

1 +

1 +

1
p −

1

p
k
h

1− 1

p
1
h

−1 z

p
k
h

1− 1

p
1
h

 ,
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which is absolutely convergent.

In order to find E ′ω,k,h(1), we consider the logarithmic derivative:

E ′ω,k,h(z)

Eω,k,h(z)
=
∑
p

1

p
k
h

1− 1

p
1
h

+ 1
p −

1

p
k
h

+ z

p
k
h

.

Therefore,

E ′ω,k,h(z)

Eω,k,h(z)

∣∣∣∣
z=1

=
∑
p

1

p
k
h

1− 1

p
1
h

+ 1
p

.

By multiplying the above by Eω,k,h(1) and by the coefficient f(k, h), we get an

expression for Eω,k,h:

f(k, h)E ′ω,k,h(1) =f(k, h)
∑
p

1

p
k
h

1− 1

p
1
h

+ 1
p

∏
p

1 +

1 +

1
p −

1

p
k
h

1− 1

p
1
h

−1 1

p
k
h

1− 1

p
1
h


=
∑
p

1

p
k
h

1− 1

p
1
h

+ 1
p

×
∏
p

1 +

1

p
k
h

1− 1

p
1
h

+ 1
p −

1

p
k
h

(1− 1

p

)1 +

1
p −

1

p
k
h

1− 1

p
1
h


=
∑
p

1

p
k−h−1
h

(
p1+ 1

h + p
1
h − p

) ∏
p

1 +
p− p 1

h

p2
(
p

1
h − 1

)
 .

This concludes the proof of Theorem 3.

Proof of Corollary 3. Recall that n = Lk(n)Uk(n) and this implies

Ω(n) = Ω(Lk(n)) + Ω(Uk(n)).

Combining Equations (14) and (26), we immediately obtain Equation (19).

Acknowledgements. The authors are grateful to the anonymous reviewer for their

helpful corrections. The first author would like to thank to Universidad Nacional de

Luján for their support. The second author is partially supported by the Natural

Sciences and Engineering Research Council of Canada (Discovery Grant 355412-

2022) and the Fonds de recherche du Québec - Nature et technologies (Projet de
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