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Abstract
By a triangular number, we mean one of the numbers �n := 1

2n(n + 1), for
n = 1, 2, 3, . . . . In a recent Math Horizons note, Matthew McMullen suggested
studying triangular sums of consecutive triangular numbers. In other words, one
seeks solutions to equations of the form

�n + · · · + �n+(k�1) = �m.

McMullen classified the solutions when 2  k  5; there are no solutions when
k = 4, while in the other cases, there are infinitely many solutions. He asked if
there is a value of k > 4 for which there are no solutions. Here we show that there
are solutions for every square value of k larger than 4, but that for almost all values
of k (asymptotically 100%), there are no solutions.

1. Introduction

By a triangular number, we mean a member of the sequence

�n :=
1
2
n(n + 1), n = 1, 2, 3, . . . .

(Some authors include 0 as a triangular number; for our purposes it is convenient
to leave 0 out.) Triangular numbers feature prominently in the history of number
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theory. Probably the most famous example is the July 10, 1796 entry in Gauss’s
mathematical diary (see [4]):

E⌥PHKA! num = � + � + �.

Expressed in less telegraphic notation: Every positive integer is a sum of three
triangular numbers, where 0 is allowed. About 30 years later (1828), in a treatise
on elliptic functions, Legendre published a simple formula for the number of repre-
sentations of a nonnegative integer n as a sum of four triangular numbers (again,
allowing 0): For every n 2 N0,

#{(x, y, z, w) 2 N0 :
x(x + 1)

2
+

y(y + 1)
2

+
z(z + 1)

2
+

w(w + 1)
2

= n} = �(2n+1),

where �(m) =
P

d|m d.
In a recent note in Math Horizons [7], McMullen suggested investigating the

solutions to equations of the form

�n + · · · + · · · + �n+(k�1) = �m. (1)

In other words: When is a sum of consecutive triangular numbers also triangular?
McMullen found all solutions for k = 2, 3, 4, 5; when k = 4 there is no solution,
while in the three other cases, there are infinitely many solutions, corresponding to
solutions to certain Pell equations. The note ends with the following question:

Every value of k except k = 4 that I looked at yields at least one valid
solution. Is there a k > 4 where our problem has no solution?

We prove two theorems concerning solutions to (1). First, we show that k = 4 is
the only square value for which (1) lacks solutions.

Theorem 1. Let k > 4 be a square. Then (1) has solutions. In other words, there
do exist k consecutive triangular numbers that add up to a triangular number.

In the opposite direction, we show that for almost all values of k, there are no
solutions to (1). Thus, the answer to McMullen’s question is a definite YES !

Theorem 2. Let K(x) denote the number of integers 2  k  x for which (1) has
solutions. Then K(x) = O(x/(log x)1/2). In particular, K(x)/x ! 0, so that the
set of k for which (1) is solvable has asymptotic density 0.

Theorem 1 obviously implies that K(x) �
p

x. There is a large gap between
p

x
and x/(log x)1/2, and it is natural to ask which of these functions is closer to the
truth about K(x). We believe it is the latter; indeed, we conclude the paper with
a heuristic argument suggesting that K(x) � x/(log x)3/2.
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2. When k is a Square: Proof of Theorem 1

Elementary manipulations show that (1) is equivalent to

(2m + 1)2 � k(2n + k)2 =
(k � 1)(k2 + k � 3)

3
. (2)

Up to this point we have not used that k is a square. But if we now let k = a2,
then (2) becomes

(2m + 1� a(2n + a2))(2m + 1 + a(2n + a2)) =
(a� 1)(a + 1)(a4 + a2 � 3)

3
. (3)

(This factorization is noted already in [7].) To prove Theorem 1, we must show that
(3) has a solution in positive integers m,n. We consider separately the cases when
a is even vs. when a is odd.

2.1. When a is Even

Since k is even, we have a � 3. Choosing

m =
a2(a2 � 2)(a2 + 2)

12
, n =

a(a� 2)(a3 + 2a2 + 4a + 2)
12

,

the first factor on the left-hand side of (3) is 1, while the second factor is equal to
the right-hand side of (3); thus, (3) holds. Since a is even, both numerators in the
expressions defining m and n are multiples of 4. Taking cases for a mod 3, we find
that both numerators are also multiples of 3. Thus, m and n are integers. Finally,
since a � 3, one sees easily that m,n > 0.

2.2. When a is Odd

In this case, the left-hand side of (3) is a product of two even numbers. Dividing
by 2 leads to the system of equations

m� an +
1� a3

2
= d

m + an +
1 + a3

2
= d0, (4)

for some positive integers d and d0 satisfying

dd0 =
(a� 1)(a + 1)(a4 + a2 � 3)

12
. (5)

We subdivide this case further according to the value of a modulo 3:
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• When a ⌘ 1 (mod 3), both d = a+1
2 and d0 = (a�1)(a4+a2�3)

6 are positive
integers, and (5) holds. Solving (4) with these values of d, d0 leads to

m =
a2(a� 1)(a2 + 1)

12
, n =

(a + 2)(a� 3)(a2 + 1)
12

.

Reasoning as in the case of even a, we find that m,n are positive integers.

• If a ⌘ 0 or 2 mod 3, then d = a�1
2 and d0 = (a+1)(a4+a2�3)

6 are positive
integers. These choices lead to

m =
a5 + a4 + a3 + a2 � 12

12
, n =

(a + 3)(a� 2)(a2 + 1)
12

.

Again, one checks easily that m,n are positive integers.

3. Equation (1) Usually Has No Solution: Proof of Theorem 2

We require the following lemma.

Lemma 3. Let q > 3 be a prime number. Suppose that k 2 Z is such that

(i) k is not a square modulo q,

(ii) q k k2 + k � 3.

Then there are no k consecutive triangular numbers that add up to a triangular
number.

Proof. Assume for a contradiction that k satisfies (i) and (ii) but that (1) has a
solution. Then there are positive integers m,n satisfying (2). Let x = 2m + 1 and
y = 2n + k, so that x2 � ky2 represents the left-hand side of (2). Condition (i)
guarantees that k is not congruent to 1 modulo q. Thus, q is coprime to k � 1.
Condition (ii) now implies that

q k (k � 1)(k2 + k � 3)
3

= x2 � ky2.

If q divides one of x or y, then q divides the other, since x2 ⌘ ky2 (mod q) and q
is coprime to k. But then q2 | x2 � ky2, a contradiction. So q is coprime to both x
and y, forcing (x/y)2 ⌘ k (mod q). This contradicts (i).

We will also use the following consequence of the Chebotarev density theorem
(or the weaker Frobenius density theorem); a readable modern reference is [8].
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Proposition 4. Suppose that f(x) 2 Z[x] is monic and irreducible over Q, with
deg f(x) = n. Let L be the splitting field of f(x) over Q. Fix a partition hk1, . . . , kri
of n (that is, a tuple of positive integers k1 � k2 � · · · � kr with k1 + · · ·+ kr = n).
Let � be the proportion of elements of Gal(L/Q) which, when viewed as permutations
on the roots of f(x), have cycle type hk1, . . . , kri. For all but finitely many primes
p, the polynomial f(x) factors as a product of distinct monic irreducible polynomials
modulo p, and � is the proportion of primes for which these irreducibles have degrees
k1, . . . , kr.

In Proposition 4, “proportion of primes” is meant in the same sense as in the
Chebotarev density theorem. The version of that theorem proved by Artin in [1]
implies that the number of primes p  x for which f factors mod p into irreducibles
of degrees k1, . . . , kr is

� · ⇡(x) + O(x/(log x)2). (6)

(In (6), the implied constant is allowed to depend on f , which we view as fixed.)

Lemma 5. Let A be the set of primes p for which the polynomial g(x) = x2 +x�3
has two distinct roots mod p, neither of which is a square mod p, and let B be the
set of primes p for which g(x) has two distinct roots mod p, exactly one of which is
a square mod p. The proportion of primes in A is 1

8 , while the proportion of primes
in B is 1

4 .

Proof. Let f(x) = x4 + x2 � 3. Then f is irreducible over Q, the splitting field
L of f over Q has degree 8, we have Gal(L/Q) ⇠= D4, and under an appropriate
numbering of the roots of f , the Galois group of L/Q can be identified with the
subgroup

{(1), (1324), (12)(34), (1423), (34), (13)(24), (12), (14)(23)}

of S4. All of this follows immediately from the easily-checkable criteria of [6] con-
cerning quartics x4 + ax2 + b; see in particular that paper’s Theorems 2 and 3.

Suppose that p 2 A. Thus, g splits over Fp,

g(x) = (x� ✓1)(x� ✓2) for some ✓1 6= ✓2 2 Fp.

Moreover,
f(x) = g(x2) = (x2 � ✓1)(x2 � ✓2),

where the two quadratic factors are distinct and irreducible over Fp. Conversely,
suppose that g splits over Fp and that f factors as a product of distinct monic
irreducibles of degree 2. Then the roots of g, say ✓1 and ✓2, must be nonsquares in
Fp; otherwise, x2 � ✓1 or x2 � ✓2 will contribute a linear factor to f . Thus, using
Prob to denote proportions of primes (the notation chosen to suggest probability),
we see that

Prob(p 2 A) = Prob(g splits & f factors as h2, 2i).
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(When we write “f factors as hk1, . . . , kri”, we mean that f factors as a product of
distinct monic irreducibles of degrees k1, . . . , kr.)

We may rewrite the right-hand side of the last display as

Prob(g splits)� Prob(g splits & f factors as h4i)�
Prob(g splits & f factors as h2, 1, 1i)� Prob(g splits & f factors as h1, 1, 1, 1i).

The first subtracted term is 0; if g has the root ✓ mod p, then x2� ✓ is a factor of f
over Fp, so f cannot be irreducible. The final two subtracted terms are unchanged
if we omit the condition that g splits. Indeed, f factoring as h2, 1, 1i or h1, 1, 1, 1i
implies that f has a root ✓; then f also has the root �✓, and as long as q 6= 3, those
two roots are distinct. Hence, x2 � ✓2 | f(x) = g(x2). But this implies that ✓2 is a
root of g. Since g is a quadratic with a root, g splits. (The roots are distinct since
we are assuming f(x) = g(x2) factors as a product of distinct monic irreducibles.)
So by Proposition 4 together with our determination of the Galois group of f , these
final two probabilities are 2

8 and 1
8 , respectively. Finally, the probability that g

splits mod p is 1
2 , by applying Proposition 4 to g. We conclude that

Prob(p 2 A) =
1
2
� 0� 2

8
� 1

8
=

1
8
.

A similar argument works to determine Prob(p 2 B). Here it is easy to see that

Prob(p 2 B) = Prob(g splits & f factors as h2, 1, 1i).

But as noted at the end of the last paragraph,

Prob(g splits & f factors as h2, 1, 1i) = Prob(f factors as h2, 1, 1i) =
2
8

=
1
4
.

This completes the proof.

We are now ready to prove Theorem 2.

Proof of Theorem 2. We use A and B with the same meanings as in Lemma 5. Let
p be a prime in A. The conditions (i) and (ii) of Lemma 3 will then be satisfied for
all k in 2p � 2 residue classes modulo p2. Indeed, if r is either of the two roots of
x2 + x� 3 modulo p — both of which are nonsquares mod p by assumption — and
k ⌘ r (mod p), then q k k2+k�3 unless k is congruent modulo p2 to the unique lift
of r mod p to a root of x2+x�3 modulo p2. Similarly, for each p 2 B, the conditions
(i) and (ii) of Lemma 3 are satisfied for all k in p�1 residue classes modulo p2. But
if k is counted by K(x), then k does not satisfy (i) and (ii) for any p. In particular,
considering for now only those p 2 A[B not exceeding z := (log x)1/2, we see that
k is confined to N residue classes modulo P :=

Q
pz p2, where

N

P
=

Y

pz
p2A

✓
1� 2p� 2

p2

◆ Y

pz
p2B

✓
1� p� 1

p2

◆
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Continuing, we note that we may ignore the contribution to K(x) from k satis-
fying

p2 | k2 + k � 3 for some prime p > z. (7)

Indeed, for each prime p, there are at most two roots of k2 + k � 3 modulo p. As
long as p 6= 13, each root mod p lifts to a unique mod p2, by Hensel’s lemma. Thus,
if p2 | k2 + k � 3, then k is confined to a certain two residue classes modulo p2,
and the corresponding number of k  x is at most 2x/p2 + 2. Also, if k  x and
p2 | k2 + k � 3, we certainly have p  2x (for large x). Thus, the total number of
k  x for which (7) holds is


X

z<p2x

✓
2x
p2

+ 2
◆
⌧ x

X

m>z

1
m2

+ ⇡(2x) ⌧ x

(log x)1/2
.

Since our goal is to show K(x) = O(x/(log x)1/2), this contribution is acceptable.
Suppose now that p > z. If p 2 A[B, and p | k2 + k� 3 where k is a nonsquare

modulo p, then either p2 | k2 + k � 3 — in which case, p was counted in the last
paragraph already — or conditions (i) and (ii) of Lemma 3 hold. Thus, if k is
counted by K(x) and k was not accounted for in the last paragraph, then k avoids
2 residue classes mod p for those p 2 A and one residue classes mod p for those
p 2 B.

Let R mod P denote any one of the N residue classes modulo P not eliminated
in the first paragraph of the proof. We may assume that 0  R < P . Suppose k
is counted by K(x), that k does not satisfy (7), and that k ⌘ R (mod P ). Then
k = Pu + R, where 0  u  x/P . By our work in the last paragraph, k, and hence
u, avoids two residue classes modulo each prime p 2 A\ (z, x] and one residue class
modulo each prime p 2 B \ (z, x]. Applying Brun’s sieve, the number of choices of
u, and hence k, is

⌧ x

P

Y

p2A
z<px

✓
1� 2

p

◆ Y

p2B
z<px

✓
1� 1

p

◆
.

(This follows from the first half Theorem 2.2 of [5]; the parameter “A” in that result
can be taken to be 2, since the height x up to which we sieve satisfies x  (x/P )2

for large enough x.) Now summing on possible Rs, we see that the total number of
values of k encountered this way is

⌧ x
N

P

Y

p2A
z<px

✓
1� 2

p

◆ Y

p2B
z<px

✓
1� 1

p

◆
.

Turning attention to the factor N
P , we note that 1� 2p�2

p2  (1� 2
p )(1 + O(1/p2)),

and 1� p�1
p2  (1� 1

p )(1+O(1/p2)). Since
Q

p(1+O(1/p2)) = O(1), we deduce that
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N
P ⌧

Q
p2A
pz

⇣
1� 2

p

⌘Q
p2B
pz

⇣
1� 1

p

⌘
. Hence, the right-hand side of the last display

is
⌧ x

Y

p2A
px

✓
1� 2

p

◆ Y

p2B
px

✓
1� 1

p

◆
.

The right-hand side of this new display does not exceed

x exp
✓
� 2

X

p2A
px

1
p
�

X

p2B
px

1
p

◆
.

We finish by substituting in the estimates

X

p2A
px

1
p

=
1
8

log log x + O(1) and
X

p2B
px

1
p

=
1
4

log log x + O(1);

these follow from Lemma 5, the estimate (6), and partial summation.

Remark. One can show that K(x)/x ! 0 without using the Chebotarev (or Frobe-
nius) density theorem. It is not di�cult to prove directly that the primes p 2 B
with p > 3 are precisely those with

��3
p

�
= �1 and

�
13
p

�
= 1. Quadratic reciprocity,

along with a su�ciently strong form of Dirichlet’s theorem, then implies that the
proportion of primes in B is 1

4 . Sieving only by the primes in B in the above proof
is su�cient to yield the estimate K(x) = O(x/(log x)1/4).

4. A Heuristic Lower Bound on K(x)

We find it plausible that the following conditions should hold simultaneously for
� x/(log x)3/2 primes p  x:

(i) p ⌘ 7 (mod 24),

(ii) p2 + p� 3 is not divisible by any prime q for which p mod q is a nonsquare,

(iii) the real quadratic field Q(pp) has class number 1.

Examples of primes p satisfying these conditions are p = 7, 31, 103, and 127.
The same kind of sieve-based reasoning underlying the proof of Theorem 2 sug-

gests that (i) and (ii) hold for � ⇡(x)/(log x)1/2 � x/(log x)3/2 primes p  x.1

The Cohen–Lenstra heuristics [2, 3] suggest that (iii), by itself, holds for a positive
1Using the sieve, one can show unconditionally that there are ⌧ x/(log x)3/2 primes p  x for

which (i) and (ii) hold, and that there are� x/(log x)3/2 primes p  x that satisfy (i) and a weak
form of (ii), where (ii) is required only for q up to a small power of x.
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proportion — roughly 75.45% — of primes p. Lacking any reason for believing the
contrary, we believe that a positive proportion of the p surviving (i) and (ii) should
also satisfy (iii). Indeed, we suspect that (i) and (ii) are statistically independent
of (iii). This is supported by the computational evidence; for instance, of the 9824
primes p ⌘ 7 (mod 24) not exceeding 106, 4417 of them satisfy conditions (i) and
(ii), and 3451 satisfy condition (iii). The ratio 3451

4417 is ⇡ 78.13%. For comparison,
61320 of the 78498 primes p  106 satisfy (iii), and 61320

78498 ⇡ 78.12%.
Now suppose that p satisfies (i)–(iii). Let k = p. We will show that (1) has a

solution by finding positive integers m,n satisfying (2). Hence, k will be counted
by K(x), and the lower bound K(x) � x/(log x)3/2 “follows”.

For notational convenience, we let

T =
(k � 1)(k2 + k � 3)

3
.

Let q be any odd prime dividing T . Our assumptions imply that k is a square
modulo q, and so q splits or ramifies in Q(

p
k). When q = 2, we have that 2 k T .

The prime 2 ramifies in Q(
p

k) since the field discriminant is the even integer 4k.
So every prime dividing T is split or ramified.

The ring Z[
p

k] is the full ring of integers of the class number 1 field Q(
p

k).
Thus, for each prime q dividing T , we can choose an element xq + yq

p
k 2 Z[

p
k]

with N(xq + yq

p
k) = ±q. Working modulo 8 shows that we must have

N(x2 + y2

p
k) = 2,

(i.e., the plus sign must hold), and that for each odd prime q dividing T ,

N(xq + yq

p
k) = �(q)q,

where �(·) is the nontrivial Dirichlet character modulo 4. (Thus, �(q) = ±1 with
the sign chosen to make �(q) ⌘ q (mod 4).) Define

↵ =
Y

q↵kT

(xq + yq

p
k)↵ 2 Z[

p
k].

Then
N↵ = T · �(T/2).

It is not di�cult to check that since k ⌘ 7 (mod 24), we have T/2 ⌘ 1 (mod 4),
and so in fact N↵ = T .

Changing the signs of the components of ↵ if necessary, we obtain an element

� = s + t
p

k

with norm T and s, t � 0. Since s2 � kt2 = T ⌘ 2 (mod 4) and k ⌘ 7 (mod 8),
we must have that s, t are odd. Thus, we can write s = 2m + 1 and t = 2n + k for
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some integers m,n. Then

(2m + 1)2 � k(2n + k)2 = T,

which is (2). However, we do not know that m,n are positive here; for that, we need
s > 1 and t > k. To ensure this, we replace � with �✏m, where ✏ is the fundamental
unit of Z[

p
k], and m is large enough to give the needed inequalities on s and t.
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