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Abstract
Cassaigne et al. introduced the cyclic complexity function cx(n), which gives the
number of cyclic conjugacy classes of length-n factors of a word x. We study the
behavior of this function for the Fibonacci word f and the Thue–Morse word t.
If ' = (1 +

p
5)/2, we show that lim supn!1 cf (n)/n � 2/'2 and conjecture that

equality holds. Similarly, we show that lim supn!1 ct(n)/n � 2 and conjecture that
equality holds. We also propose a generalization of the cyclic complexity function
and suggest some directions for further investigation. Most results are obtained by
computer proofs using Mousavi’s Walnut software.

–In honour of Je↵rey Shallit’s 60th birthday.

1. Introduction

One classical measure of the complexity of an infinite word x is given by the factor
complexity function: that is, the function px(n) which gives the number of distinct
factors of x of length n. Furthermore, there is a well-known connection between the
factor complexity and the periodicity/aperiodicity of x, namely, the Morse–Hedlund
Theorem, which asserts that x is ultimately periodic if and only if px(n) is bounded.

Other complexity functions have been introduced for infinite words: for instance,
the abelian complexity function ax(n) counts the number of equivalence classes of
length-n factors of x with respect to the abelian equivalence relation. This is the
equivalence relation under which words u and v are equivalent if the letters of u can
be rearranged to obtain v.

1Supported by an NSERC USRA.
2Supported by an NSERC Discovery Grant.
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Cassaigne, Fici, Sciortino, and Zamboni [2] introduced the cyclic complexity func-
tion cx(n), which counts the number of equivalence classes of length-n factors of x
with respect to the conjugation relation. Two words u and v are equivalent under
this relation if it is possible to write u = rs and v = sr for some words r and s. We
denote this by u ⇠ v. Cassaigne et al. proved the analogue of the Morse–Hedlund
Theorem: i.e., that x is ultimately periodic if and only if cx(n) is bounded. Further-
more, they examined the limit inferior of the cyclic complexity function for several
classes of aperiodic words, notably:

• lim inf
n!1

cx(n) = 2 if x is Sturmian (but this does not characterize Sturmian
words);

• lim inf
n!1

ct(n) =1, where t is the Thue–Morse word.

In the first part of this paper, we try to provide some additional information
on the behavior of the function cx(n) for the Fibonacci word f and the Thue–
Morse word t. This behavior seems rather hard to analyze in general, and we
have only some partial results. For instance, if ' = (1 +

p
5)/2, we show that

lim supn!1 cf (n)/n � 2/'2 and conjecture that equality holds. Similarly, we show
that lim supn!1 ct(n)/n � 2 and conjecture that equality holds.

In the second part of the paper, we propose a generalization of the cyclic com-
plexity function and suggest some directions for further investigation.

Our main tool here is the software tool Walnut, which can be used to obtain
automated proofs of certain types of results concerning automatic sequences. To
understand most of this paper, the reader should have a basic understanding of
what Walnut does. For background on this, see [6] or [5, 7]. The software itself can
be downloaded at

https://cs.uwaterloo.ca/⇠shallit/Papers/Walnut.zip
and the specific Walnut commands used in this paper can be downloaded at

http://ion.uwinnipeg.ca/⇠nrampers/cyclic walnut.zip

2. Cyclic Complexity of the Thue–Morse and Fibonacci Words

Let t = 0110100110010110 · · · be the Thue–Morse word ; i.e., the word generated by
iterating the morphism 0! 01, 1! 10. Since t is an aperiodic automatic sequence,
the factor complexity function pt(n) is bounded above and below by linear functions.
In particular, we have

lim sup
n!1

pt(n)
n

=
10
3

and lim inf
n!1

pt(n)
n

= 3.

Cassaigne et al. [2] proved that lim infn!1 ct(n) is unbounded. We now give some
additional information on the growth of ct(n).
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Proposition 1. Let k � 3. For n = 2k we have ct(n) = 2n� 4.

Proof. The proof makes use of Walnut. We use a number of logical predicates. The
first,

ConjTM :=9m (m  n)^
(8k k < m) t[i + k] = t[j + n�m + k])^
(8l l < n�m) t[j + l] = t[i + m + l]),

says that the factors t[i..i + n� 1] and t[j..j + n� 1] are conjugates of each other.
The Walnut notation for this is

def Conj_tm "Em (m<=n) & (Ak k<m => T[i+k]=T[j+n-m+k]) &
(Al l<n-m => T[j+l]=T[i+m+l])";

The output that Walnut generates when this command is entered is an automaton
with 83 states (which we will not reproduce here).

Next, we define

NewConjClassTM := 8j j < i) ⇠ConjTM(i, j, n),

which says that no word in the conjugacy class of t[i..i + n � 1] occurs prior to
position i. The Walnut notation for this is

def NewConjClass_tm "Aj j<i => ~$Conj_tm(i,j,n)";

The Walnut output corresponding to this command is a 50 state automaton;
however, if we restrict n in this predicate to powers of two, Walnut produces the
automaton in Figure 1.
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(i,n): $power2_msd(n) & (Aj j<i => ~$Conj_tm(i,j,n))
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(0,0)

Figure 1: Automaton for new length-2k conjugacy classes in t

Figure 1: Automaton for new length-2k conjugacy classes in t

The binary representation of n = 2k is the string 10k, so to obtain the desired
answer, we must compute the number of paths in this automaton whose second
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component spells out the string 10k. That is, we must compute the number of
paths of length k starting from states 2, 3, or 4 and ending in states 2, 3, or 6. The
adjacency matrix of the graph of this automaton is

0
BBBBBBBBBB@

1 1 1 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 2
0 0 1 0 0 0 0 1

1
CCCCCCCCCCA

,

which has minimal polynomial x3(x � 2)(x � 1)2. For k � 3 the number of such
paths is therefore of the form A · 2k + Bk + C, and it is a routine calculation to
verify that this number is in fact 2 · 2k � 4 = 2n� 4, as required.

Proposition 2. Let k � 2. For n = 4k + 2 we have ct(n) = (4/3)n� 4.

Proof. We again use the NewConjClassTM predicate defined in the proof of Propo-
sition 1. Now we restrict n to have the form n = 4k + 2. The resulting automaton
computed by Walnut is given in Figure 2.

If n = 4k + 2 then the binary representation of n is the string 1(00)k�110. Thus
we need to compute the number of paths of length 2k in this automaton that start in
states 2, 3, 5, 6, or 13 and end in state 18. We work with the square of the adjacency
matrix, whose minimal polynomial is x2(x�4)(x�1)2. It follows that for k � 2 the
desired number of paths is of the form A · 4k + Bk + C. Plugging in initial values
and solving the resulting linear system gives A = 4/3, B = 0, and C = �4/3, which
gives the desired result: i.e., if n = 4k + 2 then ct(n) = (4/3)n� 4.

Based on Propositions 1 and 2 we make the following conjecture:

Conjecture 3.

lim sup
n!1

ct(n)
n

= 2 and lim inf
n!1

ct(n)
n

=
4
3
.

Empirical results (plotted in Figure 3) provide further evidence for the conjecture.
The values for ct(n) plotted in the figure were obtained by enumerating all factors
of t of length n and then counting only the cyclically distinct equivalence classes
among these words.

Now we examine the cyclic complexity of the Fibonacci word

f = 010010100100101001010010 · · · ;
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Figure 2: Automaton for new length-(4k + 2) conjugacy classes in t
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i.e., the word generated by iterating the morphism 0 ! 01, 1 ! 0. Let Fk denote
the k-th Fibonacci number. Recall that since f is a Sturmian word, the factor
complexity of f is pf (n) = n + 1 for all n. Cassaigne et al. determined that for
n = Fk, we have cf (n) = 2. We would like to obtain some information that would
suggest a possible value for lim supn!1 cf (n)/n.

Proposition 4. Let k � 7. For n = Fk + 1 we have

cf (n) =

(
2Fk�2 � 1 if k is odd,
2Fk�2 if k is even.

Proof. We would like to define a predicate ConjFib in exactly the same way as the
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Figure 3: Plot of c
t

(n) along with lines of slope 2 and 4/3

predicate ConjTM was defined in the proof of Proposition 1: i.e.,

ConjFib :=9m (m  n)^
(8k k < m ) f [i+ k] = f [j + n�m+ k])^
(8l l < n�m ) f [j + l] = f [i+m+ l]),

However, when given the predicate defined in this way as input, Walnut cannot
compute the desired automaton in the available computer memory. The same issue
was encountered by Du et al. [5, bottom of p. 157]; they were able to resolve the
problem by rewriting the predicate. We therefore rewrite the predicate using the
same trick:

ConjFib :=i < j ^ 9m (m  n)^
(9d d+ i+m = j + n ^ (8u (i  u ^ u < i+m) ) f [u] = f [u+ d]))^
(i+m � j ) 9e e+ j = i+m^
(8v (j  v ^ v +m < j + n) ) f [v] = f [v + e]))^
(i+m < j ) 9f f + i+m = j^
(8w (i+m  w ^ w < i+ n) ) f [w] = f [w + f ]))

Figure 3: Plot of ct(n) along with lines of slope 2 and 4/3
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ConjFib :=9m (m  n)^
(8k k < m) f [i + k] = f [j + n�m + k])^
(8l l < n�m) f [j + l] = f [i + m + l]).

However, when given the predicate defined in this way as input, Walnut cannot
compute the desired automaton in the available computer memory. The same issue
was encountered by Du et al. [5, bottom of p. 157]; they were able to resolve the
problem by rewriting the predicate. We therefore rewrite the predicate using the
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same trick:

ConjFib :=i < j ^ 9m (m  n)^
(9d d + i + m = j + n ^ (8u (i  u ^ u < i + m)) f [u] = f [u + d]))^
(i + m � j ) 9e e + j = i + m^
(8v (j  v ^ v + m < j + n)) f [v] = f [v + e]))^
(i + m < j ) 9f f + i + m = j^
(8w (i + m  w ^ w < i + n)) f [w] = f [w + f ])).

For technical reasons we try to avoid using subtraction whenever possible in the
predicate. The Walnut command is:

def Conj_fib "?msd_fib i<j & Em (m<=n) &
(Ed d+i+m=j+n & (Au (i<=u & u<i+m) => F[u]=F[u+d])) &
(i+m>=j => Ee e+j=i+m & (Av (j<=v & v+m<j+n) => F[v]=F[v+e])) &
(i+m<j => Ef f+i+m=j & (Aw (i+m<=w & w<i+n) => F[w]=F[w+f]))";

Here the msd fib command indicates that Walnut is doing arithmetic using the
Zeckendorf expansion of natural numbers. The resulting Walnut output is an au-
tomaton with 143 states.

Next we define the NewConjClassFib predicate in the same way that the New-
ConjClassTM predicate is defined in the proof of Proposition 1. If we restrict n in
this latter predicate to n = Fk + 1, Walnut produces the automaton in Figure 4.

INTEGERS: 18 (2018) 7

For technical reasons we try to avoid using subtraction whenever possible in the
predicate. The Walnut command is:

def Conj_fib "?msd_fib i<j & Em (m<=n) &

(Ed d+i+m=j+n & (Au (i<=u & u<i+m) => F[u]=F[u+d])) &

(i+m>=j => Ee e+j=i+m & (Av (j<=v & v+m<j+n) => F[v]=F[v+e])) &

(i+m<j => Ef f+i+m=j & (Aw (i+m<=w & w<i+n) => F[w]=F[w+f]))";

Here the msd fib command indicates that Walnut is doing arithmetic using the
Zeckendorf expansion of natural numbers. The resulting Walnut output is an au-
tomaton with 143 states.

Next we define the NewConjClassFib predicate in the same way that the New-
ConjClassTM predicate is defined in the proof of Proposition 1. If we restrict n in
this latter predicate to n = F

k

+ 1, Walnut produces the automaton in Figure 4.

(j,n): ?msd_fib $fib_plus1(n) & Ai i<j => ~$Conj_fib(i,j,n)

0

(0,0) 1
(0,1)

2

(1,1)

3

(0,0)

4(1,0)

5(0,0)

6(0,0)

7

(1,0)

8

(0,1)

(1,1)

9(0,0)

(1,0)

(0,1)

(0,0)
(0,1)

(1,1)

10

(1,0) (0,1)

11

(0,0)

(1,1)

12

(0,0)

13(1,0)

(0,1)

14

(0,0)

(1,0)

(1,1)

15

(0,0)
(0,1)
(1,1)

(1,0)

(0,0)

16
(0,0)

(1,1)

(1,0)
(0,0)

(1,1)

(1,0)

(0,0)

(1,1)(1,0)

(0,0)

Figure 4: Automaton for new length-(F
k

+ 1) conjugacy classes in f

The Zeckendorf representation of n = F

k

+ 1 is the string 10k�31, so to obtain
the desired answer, we must compute the number of paths of length k � 2 in this
automaton starting from states 1 or 2 and ending in state 8. The adjacency matrix

Figure 4: Automaton for new length-(Fk + 1) conjugacy classes in f
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The Zeckendorf representation of n = Fk + 1 is the string 10k�31, so to obtain
the desired answer, we must compute the number of paths of length k � 2 in this
automaton starting from states 1 or 2 and ending in state 8. The adjacency matrix
of the graph of this automaton is

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 2 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 2 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

,

which has minimal polynomial x5(x + 1)(x � 1)2(x2 � x � 1). It follows that for
k � 7 the number of paths of length k� 2 starting from states 1 or 2 and ending in
state 8 is of the form

A

 
1 +

p
5

2

!k�2

+ B

 
1�

p
5

2

!k�2

+ C(�1)k�2 + Dk + E.

Plugging in initial values and solving the resulting linear system (using SAGE) gives
A = 2/

p
5, B = �2/

p
5, C = 1/2, D = 0, and E = �1/2. From the well-known

formula

Fk�2 =
1p
5

 
1 +

p
5

2

!k�2

� 1p
5

 
1�

p
5

2

!k�2

,

we obtain the claimed result.

Writing ' = (1+
p

5)/2, we have the asymptotic result cf (Fk +1) ⇠ (2/
p

5)'k�2.
Since Fk ⇠ 'k/

p
5, we therefore propose the following (see Figure 5):

Conjecture 5.

lim sup
n!1

cf (n)
n

=
2
'2
⇡ 0.7369 · · ·
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Figure 5: Plot of c
f

(n) along with line of slope 0.7369
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is the quantity lim sup

n!1 c

x

(n)/n maximal for the Fibonacci word
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(n) =
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x

(n))?

3. Generalized cyclic complexity

Charlier, Puzynina, and Zamboni [3] introduced a very general framework for study-
ing certain types of complexity functions. Let S

n

denote the symmetric group on
n symbols (here we will use {0, 1, · · · , n � 1}). For any subgroup G ✓ S

n

, we can
define an equivalence relation on words of length n as follows: If u = u0u1 · · ·un�1

and v = v0v1 · · · vn�1, where the u

i

and v

i

are single letters, then u ⇠ v if there
exists � 2 G such that

u0u1 · · ·un�1 = v

�(0)v�(1) · · · v�(n�1).

Now let (G
n

)
n�1 be an infinite sequence of subgroups G

n

✓ S

n

. For any infinite
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In addition to the conjectures given above, one can pose the following ques-
tions/problems:

Explore further the cyclic complexity of Sturmian words. In particular,
is the quantity lim supn!1 cx(n)/n maximal for the Fibonacci word
among all Sturmian words x? Also, is it possible to have cx(n) = o(n)
for an aperiodic word x? More generally, is it possible to have cx(n) =
o(px(n))?

3. Generalized Cyclic Complexity

Charlier, Puzynina, and Zamboni [3] introduced a very general framework for study-
ing certain types of complexity functions. Let Sn denote the symmetric group on
n symbols (here we will use {0, 1, · · · , n � 1}). For any subgroup G ✓ Sn, we can
define an equivalence relation on words of length n as follows: If u = u0u1 · · ·un�1

and v = v0v1 · · · vn�1, where the ui and vi are single letters, then u ⇠ v if there
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exists � 2 G such that

u0u1 · · ·un�1 = v�(0)v�(1) · · · v�(n�1).

Now let (Gn)n�1 be an infinite sequence of subgroups Gn ✓ Sn. For any infinite
word x we can define a complexity function fx, where fx(n) is equal to the number
of distinct equivalence classes of factors of x of length n under the action of Gn.
For instance, if Gn = {idn} for all n, then fx is the usual factor complexity function
px. If Gn = Sn for all n, then fx is the abelian complexity function ax.

Recall that by the Morse–Hedlund Theorem, a word x is aperiodic if and only if
px is unbounded. On the other hand this result does not hold with ax in place of
px, since, for example, any Sturmian word x is aperiodic but has ax(n) = 2 for all n.
The natural question, then, is for which complexity functions fx as defined above
does an analogue of the Morse–Hedlund Theorem hold? Charlier et al. partially
answer this question by proving that

fx(n) � "(Gn) + 1,

where "(Gn) is the number of distinct Gn-orbits of {0, 1, · · · , n� 1}.
The cyclic complexity function also fits into this framework in a way that suggests

the following generalization of cyclic complexity. For a, d 2 Zn, let �a,d 2 Sn be
defined by

�a,d(j) = a + dj (mod n) for j 2 {0, 1, . . . , n� 1}.
If

Gn = {�a,1 : a 2 Zn}
for all n, then fx is the cyclic complexity function cx. If

Gn = {�a,d : a, d 2 Zn, (d, n) = 1}

for all n, then we call fx the generalized cyclic complexity function and denote it by
gcx. From now on we use the symbol ⇠ to denote cyclic equivalence of words and
the the symbol ⇠gc to denote the generalized cyclic equivalence of words. This latter
equivalence was introduced by Djokovic et al. [4] (and they called the equivalence
classes under this relation “charm bracelets”).

For example, the cyclic equivalence class of 00201 is the set of words

00201 02010 20100 01002 10020

and the generalized cyclic equivalence class of 00201 is the set of words

00201 02010 20100 01002 10020
02100 21000 10002 00021 00210
00012 00120 01200 12000 20001
01020 10200 02001 20010 00102.
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Recall that Cassaigne et al. proved that x is aperiodic if and only if cx(n) is
unbounded. One can then ask whether this holds with gcx in place of cx. We
believe that this is true, but have not been able to prove this.

Before proceeding, let us introduce one additional complexity function: the func-
tion crx(n) (for cyclic/reversal complexity) defined as above by taking

Gn = {�a,1 : a 2 Zn} [ {�a,n�1 : a 2 Zn}.

Note that under this relation, two words u and v are equivalent if either u ⇠ v or
u ⇠ ṽ, where ṽ denotes the reversal of the word v. Observe that

ax(n)  gcx(n)  crx(n)  cx(n)  px(n).

Let f be the Fibonacci word. Some initial values for cf (n), crf (n), and gcf (n)
are given below:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
cf (n) 2 2 2 3 2 4 4 2 7 4 5 8 2 9 9 4 13
crf (n) 2 2 2 3 2 3 4 2 5 3 4 6 2 6 6 3 8
gcf (n) 2 2 2 3 2 3 2 2 5 3 4 6 2 6 6 3 8

Note that crf and gcf are equal for these initial values of n, except n = 7. Indeed
this appears to be the case in general; computer calculations suggest the following.

Conjecture 6. Let f be the Fibonacci word. Then crf (n) = gcf (n) for all n � 1,
except n = 7.

Let t be the Thue–Morse word. Some initial values for ct(n), crt(n), and gct(n)
are given below:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
ct(n) 2 3 2 4 4 6 8 12 8 12 16 14 18 18 18 28 20
crt(n) 2 3 2 4 4 5 6 7 6 8 10 8 12 10 10 16 12
gct(n) 2 3 2 4 2 5 4 7 4 8 10 8 12 10 6 16 6

Computer calculations suggest the following.

Conjecture 7. Let t be the Thue–Morse word. Then crt(n) = gct(n) for all n � 1,
except when n equals 5 or is of the form n = 2k ± 1 for k � 3.

If the set of factors of x is closed under reversal, we can obtain a relationship
between the cyclic complexity and the cyclic/reversal complexity in a word x by
calculating the number of cyclic equivalence classes of palindrome pairs of length n
that appear in x. A word w is a palindrome pair if w = uv, where each of u and v
is a palindrome (possibly empty). Note that every cyclic shift of a palindrome pair
is again a palindrome pair. For more on palindrome pairs, see [1].
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Proposition 8. A word w is a palindrome pair if and only if w ⇠ w̃.

Proof. ()) Write w = uv where u = ũ and v = ṽ. Then w̃ = ṽũ = vu, so w ⇠ w̃.
(() Write w = uv and w̃ = vu. However w̃ = ṽũ, so we get v = ṽ and u = ũ.

Thus w is a palindrome pair.

Observe that if w 6⇠ w̃, then the cyclic equivalence classes of w and w̃ merge into
one cyclic/reversal equivalence class, and if w ⇠ w̃, then w and w̃ already belong to
the same cyclic/reversal equivalence class. For example, for the Thue–Morse word,
one can use this observation to obtain certain values of crt(n).

Proposition 9. Let k � 3. For n = 2k, the number of cyclic equivalence classes of
palindrome pairs among all length-n factors of t is either 2 if k is odd or 4 if k is
even.

Proof. The proof is again done with Walnut. We compute the automaton in Figure 6
and note that for k � 3 the number of paths from state 2 to a final state is either
2 or 4 accordingly as k is odd or even.
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if k is odd, and

crt(n) = (ct(n)� 4)/2 + 4 = (2n� 4� 4)/2 + 4 = n

if k is even.

For our two examples, the Fibonacci word and the Thue–Morse word, it appears
that the generalized cyclic complexity classes are almost always exactly equal to
the cyclic/reversal equivalence classes. One wonders to what extent this is true for
certain classes of infinite words: i.e., automatic, Sturmian, morphic, etc.
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