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Abstract
In a recent paper the authors studied the denominators of polynomials that rep-
resent power sums by Bernoulli’s formula. Here we extend our results to power
sums of arithmetic progressions. In particular, we obtain a simple explicit criterion
for integrality of the coe�cients of these polynomials. As applications, we obtain
new results on the sequence of denominators of the Bernoulli polynomials. A con-
sequence is that certain quotients of successive denominators are infinitely often
integers, which we characterize.

1. Introduction

For positive integers n and x, define the power sum

Sn(x) :=
x�1X

k=0

kn = 0n + 1n + · · ·+ (x� 1)n,

and for integers m � 1 and r � 0 define the more general power sum of an arithmetic
progression

Sn
m,r(x) :=

x�1X

k=0

(km + r)n = rn + (m + r)n + · · ·+ ((x� 1)m + r)n.

In particular, we have Sn
1,0(x) = Sn(x) and, more generally,

Sn
m,0(x) = mnSn(x). (1)
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Bazsó et al. [2, 3] considered the generalized Bernoulli formula

Sn
m,r(x) =

mn

n + 1

⇣
Bn+1

⇣
x +

r

m

⌘
�Bn+1

⇣ r

m

⌘⌘
, (2)

where the nth Bernoulli polynomial Bn(x) is defined by the series

text

et � 1
=

1X

n=0

Bn(x)
tn

n!
(|t| < 2⇡)

and is given by the formula

Bn(x) =
nX

k=0

✓
n

k

◆
Bk xn�k, (3)

Bk = Bk(0) 2 Q being the kth Bernoulli number. Thus, Sn
m,r(x) is a polynomial in

x of degree n + 1 with rational coe�cients.

Remark. Bazsó et al. required r and m to be coprime. However, since the forward
di↵erence �Bn(x) := Bn(x + 1)�Bn(x) equals nxn�1 (cf. [7, Eq. (5), p. 18]), the
telescoping sum of these di↵erences with x = k + r

m implies (2) at once for any
r/m 2 Q.

For a polynomial f(x) 2 Q[x], define its denominator, denoted by denom
�
f(x)

�
,

to be the smallest d 2 N such that d · f(x) 2 Z[x]. This includes the usual definition
of denom(q) for q 2 Q.

In the classical case of Bernoulli’s formula

Sn(x) =
1

n + 1
�
Bn+1(x)�Bn+1

�
,

the authors [6, Thms. 1 and 2] determined the denominator of the polynomial Sn(x).
From now on, let p denote a prime.

Theorem 1 (Kellner and Sondow [6]). For n � 1, denote

Dn := denom
�
Bn(x)�Bn

�
. (4)

Then we have the relation

denom
�
Sn(x)

�
= (n + 1) Dn+1

and the remarkable formula

Dn =
Y

pMn
sp(n)� p

p with Mn :=

8
><

>:

n + 1
2

, if n is odd,
n + 1

3
, if n is even,

(5)

where sp(n) denotes the sum of the base-p digits of n, as defined in Section 4.
Moreover,

Dn is odd if and only if n = 2k (k � 0). (6)



INTEGERS: 18 (2018) 3

The first few values of Dn are (see [11, Seq. A195441])

Dn = 1, 1, 2, 1, 6, 2, 6, 3, 10, 2, 6, 2, 210, 30, 6, 3, 30, 10, 210, 42, 330, . . . .

The sequence (Dn)n�1 and its properties will play a central role in this paper. The
denominators Dn are involved in formulas for related denominators in an essential
way. As implied by the product formula (5), it turns out that the values of Dn obey
certain divisibility properties. This culminates in the fact that certain quotients of
successive denominators Dn are infinitely often integers, as we will see.

Here we extend Theorem 1 to the denominator of Sn
m,r(x), as follows.

Theorem 2. We have

denom
�
Sn

m,r(x)
�

=
n + 1

gcd(n + 1,mn)
· Dn+1

gcd(Dn+1,m)
. (7)

In particular, denom
�
Sn

m,r(x)
�

divides denom
�
Sn(x)

�
and is independent of r.

Moreover, for any integers r1, r2 � 0,

Sn
m,r1

(x)� Sn
m,r2

(x) 2 Z[x].

The next theorem shows exactly when Sn
m,r(x) itself lies in Z[x].

Theorem 3. For n � 1, denote

Dn := denom
�
Bn(x)

�
, Dn := denom(Bn).

Then we have the equivalence

Sn
m,r(x) 2 Z[x] if and only if Dn | m

as well as the equalities
Dn = lcm(Dn,Dn) (8)

and
Dn = lcm

�
Dn+1, rad(n + 1)

�
, (9)

where rad(k) :=
Q

p | k p.

The first few values of Dn and Dn are (see [11, Seqs. A144845 and A027642])

Dn = 2, 6, 2, 30, 6, 42, 6, 30, 10, 66, 6, 2730, 210, 30, 6, 510, 30, 3990, . . . ,
Dn = 2, 6, 1, 30, 1, 42, 1, 30, 1, 66, 1, 2730, 1, 6, 1, 510, 1, 798, 1, 330, . . . .

Example 1. Set m = Dn = 2, 6, 2, 30, 6 for n = 1, 2, 3, 4, 5, respectively. Then
certainly Dn | m, so Z[x] contains the polynomials Sn

m,r(x) with r = 0 (which
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satisfy (1)):

S1
2,0(x) = x2 � x = 2 · 1

2
(x2 � x) = 2 · S1(x),

S2
6,0(x) = 6 (2x3 � 3x2 + x) = 62 · 1

6
(2x3 � 3x2 + x) = 62 · S2(x),

S3
2,0(x) = 2 (x4 � 2x3 + x2) = 23 · 1

4
(x4 � 2x3 + x2) = 23 · S3(x),

S4
30,0(x) = 27000 (6x5 � 15x4 + 10x3 � x)

= 304 · 1
30

(6x5 � 15x4 + 10x3 � x) = 304 · S4(x),

S5
6,0(x) = 648 (2x6 � 6x5 + 5x4 � x2)

= 65 · 1
12

(2x6 � 6x5 + 5x4 � x2) = 65 · S5(x)

as well as those with r = 1:

S1
2,1(x) = x2,

S2
6,1(x) = 12x3 � 12x2 + x,

S3
2,1(x) = 2x4 � x2,

S4
30,1(x) = 162000x5 � 378000x4 + 217800x3 + 24360x2 � 26159x,

S5
6,1(x) = 1296x6 � 2592x5 + 540x4 + 1200x3 � 273x2 � 170x.

Remark. Bazsó and Mező [2, Eqs. (7), (8) and Thm. 2, pp. 121–122] defined a very
complicated formula F (n) in order to give a somewhat tautological characterization
of when Sn

m,r(x) 2 Z[x]. With their formula they computed a few values of F (n)
that apparently equal Dn, but without recognizing this relation. They were not
aware of advanced results like those in our Theorems 2 and 3.

As an immediate by-“product” of our theorems, we obtain a new product formula
for Dn from (9) by applying Theorem 1. (Other explicit product formulas for this
denominator, based on (8), were already given in [6, Thm. 4].)

Corollary 1. For n � 1, the denominator of the nth Bernoulli polynomial equals

Dn =
Y

p |n+1

p ⇥
Y

p - n+1

pMn+1

sp(n+1)� p

p.

Remark. The first author [5] has shown that the condition sp(n) � p is su�cient
in (5) to define Dn as a product over all primes:

Dn =
Y

sp(n)� p

p. (10)
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(So one can remove the restrictions p Mn in (5) and p Mn+1 in Corollary 1.)
Moreover, if n + 1 is composite, then (see [5, Thm. 1])

rad(n + 1) | Dn. (11)

Finally, we obtain new properties of Dn and Dn.

Corollary 2. The sequences (Dn)n�1 and (Dn)n�1 satisfy the following conditions:

(i) We have the relations

Dn = lcm
�
Dn+1, rad(n + 1)

�
, if n � 3 is odd,

Dn = lcm
�
Dn+1, rad(n + 1)

�
, if n � 2 is even.

(ii) We have the divisibilities

Dn+1 | Dn, if n � 1 is odd,
Dn+1 | Dn, if n � 2 is even.

Theorem 4. For odd n � 1, the quotients (see [11, Seq. A286516])

Dn

Dn+1
= 1, 2, 3, 2, 5, 3, 7, 2, 3, 5, 11, 1, 13, 7, 15, 2, 17, 3, 19, 5, 7, . . .

are odd, except that

Dn

Dn+1
= 2 if and only if n = 2k � 1 (k � 2).

Moreover, if p is an odd prime and n = 2`pk � 1, then

Dn

Dn+1
2 {1, p} (k, ` � 1),

and more precisely,

Dn

Dn+1
= p (k � 1, 1  ` < log2 p),

while

Dn

Dn+1
= 1 (k � 1, ` � Lp),

where Lp > log2 p is a constant depending on p.
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Theorem 5. For even n � 2, all terms are odd in the sequence
(see [11, Seq. A286517])

Dn

Dn+1
= 3, 5, 7, 3, 11, 13, 5, 17, 19, 7, 23, 5, 3, 29, 31, 11, 35, 37, . . . .

In particular, if p is an odd prime and n = pk � 1, then

Dn

Dn+1
= p (k � 1).

More generally, if p 6= q are odd primes and n = pkq` � 1, then

Dn

Dn+1
2 {1, p, q, pq} (k, ` � 1)

with the following cases:

Dn

Dn+1
= p (k � L0p,q, 1  ` < logq p),

Dn

Dn+1
= q (1  k < logp q, ` � L00p,q),

Dn

Dn+1
= 1 (k � L0p,q, ` � L00p,q),

where L0p,q > logp q and L00p,q > logq p are constants depending on p and q.

Theorems 4 and 5 immediately imply the following result.

Corollary 3. Statements (i), (ii) (respectively, (iii), (iv)) below hold for infinitely
many odd (respectively, even) values of n:

(i) Dn/Dn+1 = p for a given prime p � 2.

(ii) Dn = Dn+1.

(iii) Dn/Dn+1 = p for a given prime p � 3.

(iv) Dn = Dn+1.

2. Preliminaries

Let Zp be the ring of p-adic integers, Qp be the field of p-adic numbers, and vp(s)
be the p-adic valuation of s 2 Qp (see [9, Chap. 1.5, pp. 36–37]). If s 2 Z, then
pe k s means that pe | s but pe+1 - s, or equivalently, e = vp(s).
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The Bernoulli numbers satisfy the following properties (cf. [4, Chap. 9.5, pp. 63–
68]). The first few nonzero values are

B0 = 1, B1 = �1
2
, B2 =

1
6
, B4 = � 1

30
, B6 =

1
42

, (12)

while Bn = 0 for odd n � 3. For even n � 2 the von Staudt–Clausen theorem states
that the denominator of Bn equals

Dn =
Y

p�1 |n

p (n 2 2N). (13)

Thus, all nonzero Bernoulli numbers have a squarefree denominator. Moreover, for
even n � 2 the p-adic valuation of the divided Bernoulli number Bn/n is

vp

✓
Bn

n

◆
=

⇢
�(vp(n) + 1), if p� 1 | n,

� 0, else. (14)

Now let m, n, and r be positive integers. The Bernoulli polynomials satisfy as
Appell polynomials the general relation

Bn(x + y) =
nX

k=0

✓
n

k

◆
Bk(y)xn�k, (15)

of which (3) is a special case, as well as the reflection formula

Bn(1� x) = (�1)nBn(x) (16)

(see [8, Chap. 3.5, pp. 114–115]). Further, denote by Bn
m,r the number

Bn
m,r := mn

⇣
Bn

⇣ r

m

⌘
�Bn

⌘
=

n�1X

k=0

✓
n

k

◆
Bk mkrn�k. (17)

Almkvist and Meurman [1, Thm. 2, p. 104] showed that

Bn
m,r 2 Z. (18)

Actually, (18) holds for all r 2 Z (cf. [4, Thm. 9.5.29, pp. 70–71]). We also point
out an analog to (15) for r1, r2 2 Z, namely,

Bn
m,r1+r2

=
nX

k=0

✓
n

k

◆
Bk

m,r1
rn�k
2 + Bn

m,r2
.

The integers Bn
m,r satisfy a useful divisibility property, which we need later on.

The following lemma is part of [4, Thm. 11.4.12, pp. 327–329], but we give here a
clearer and simpler proof.
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Lemma 1. If m,n � 1, r 2 Z, a prime p - m, and 0  e  vp(n), then

Bn
m,r ⌘ 0 (mod pe). (19)

Proof. It su�ces to prove the case e = vp(n). If e = 0, then we are trivially done.
So let pe k n with

n > e = vp(n) � 1.

We split the proof into two cases as follows.
Case p | r: From (12) and (17) we deduce that

Bn
m,r =

n�1X

k=0

✓
n

k

◆
Bk mkrn�k

= rn +
n�1X

k=1

n

✓
n� 1
k � 1

◆
Bn�k mn�k rk

k
.

Since p | r, we have vp(rn) � n and vp(rk/k) � 1 for all k � 1. If Bn�k 6= 0, then
vp(Bn�k) � �1, since the denominator is squarefree. In this case we obtain

vp

✓
nBn�k

rk

k

◆
� e.

Considering all summands, we finally infer that (19) holds.
Case p - r: Since n � 2, we have by (3) and (16) that

Bn(1)�Bn =
n�1X

k=0

✓
n

k

◆
Bk = 0,

which we use in the second step below. Set u := m/r 2 Z⇥p . As in the first case
above, we derive that

r�n Bn
m,r =

n�1X

k=0

✓
n

k

◆
Bk uk

=
n�1X

k=0

✓
n

k

◆
Bk · (uk � 1)

= �n

2
(u� 1) +

n�1X

k=2
2 | k

n

✓
n� 1
k � 1

◆
Bk

k
(uk � 1).

In both cases p = 2 and p � 3, we have

n

2
(u� 1) ⌘ 0 (mod pe).
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Since (14) implies Bk/k 2 Zp if k � 2 is even and p� 1 - k, we get

r�n Bn
m,r ⌘

n�1X

k=2
2 | k

p�1 | k

n

✓
n� 1
k � 1

◆
Bk

k
(uk � 1) (mod pe).

Now fix one k of the above sum. We then have the decomposition

k = a (p� 1) pt = a'(pt+1),

where p - a, t = vp(k), and '(·) is Euler’s totient function. By assumption u is a
unit in Zp and so is û := ua 2 Z⇥p . Euler–Fermat’s theorem shows that

uk ⌘ û'(pt+1) ⌘ 1 (mod pt+1).

Thus, vp(uk�1) � t+1. Since vp(Bk/k) = �(t+1) by (14), we achieve finally that

vp

✓
n

Bk

k
(uk � 1)

◆
� e� (t + 1) + (t + 1) = e,

implying that
r�n Bn

m,r ⌘ 0 (mod pe)

and showing the result.

3. Proof of Theorem 2

Before giving the proof of Theorem 2, we need several lemmas with some com-
plementary results. The next lemma easily shows a related partial result toward
Theorem 2, while the full proof of this theorem requires much more e↵ort.

Lemma 2. We have

denom
�
(n + 1)Sn

m,r(x)
�

= denom
�
mn(Bn+1(x)�Bn+1)

�

=
Dn+1

gcd(Dn+1,m)
.

Proof. By rewriting Sn
m,r(x) as given in (2), and using (3) and (15), we easily derive

that

(n + 1)Sn
m,r(x) = mn

nX

k=0

✓
n + 1

k

◆
Bk

⇣ r

m

⌘
xn+1�k

= mn
nX

k=0

✓
n + 1

k

◆⇣
Bk

⇣ r

m

⌘
�Bk + Bk

⌘
xn+1�k
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=
nX

k=0

✓
n + 1

k

◆
mn�k mk

⇣
Bk

⇣ r

m

⌘
�Bk

⌘

| {z }
Bk

m,r 2Z by (18)

xn+1�k (20)

+ mn
�
Bn+1(x)�Bn+1

�
. (21)

By applying the simple observation that if f(x) 2 Z[x] and g(x) 2 Q[x], then

denom
�
f(x) + g(x)

�
= denom

�
g(x)

�
, (22)

we infer that

denom
�
(n + 1)Sn

m,r(x)
�

= denom
�
mn(Bn+1(x)�Bn+1)

�
.

Finally, from (4) and (5) we deduce that

denom
�
mn(Bn+1(x)�Bn+1)

�
=

Dn+1

gcd(Dn+1,mn)
=

Dn+1

gcd(Dn+1,m)
,

the latter equation holding because Dn+1 is squarefree. This completes the proof.

Lemma 3. For positive integers k  n, define the rational number

cn,k :=
1
k

✓
n

k � 1

◆
.

Then we have the following properties:

(i) Symmetry:
cn,k = cn,n+1�k.

(ii) Denominator:

denom(cn,k) | gcd(n + 1, k), denom(cn,k)  n + 1
2

.

(iii) Integrality:

If k = 1 or k = n or n + 1 is prime, then cn,k 2 Z.

Proof. We first observe that

cn,k =
1
k

✓
n

k � 1

◆
=

1
n + 1

✓
n + 1

k

◆
, (23)
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which shows the symmetry in (i). From (23) it also follows that denom(cn,k) must
divide both of the integers n + 1 and k. Thus,

denom(cn,k) | gcd(n + 1, k).

Since k < n + 1, we then infer that denom(cn,k)  (n + 1)/2. This shows (ii). If
k = 1 or k = n, then cn,k = 1. If n + 1 is prime, then gcd(n + 1, k) = 1 as k  n,
so denom(cn,k) = 1. This proves (iii).

Lemma 4. If m,n, r � 1 and 0  k  n, then

mn

n + 1

✓
n + 1

k

◆⇣
Bk

⇣ r

m

⌘
�Bk

⌘
2 Z. (24)

Proof. If k = 0, then the quantity in (24) vanishes by B0(x)�B0 = 0. For 1  k  n,
we can rewrite the quantity in (24) by (17) and (23) as

cn,k ⇥ mn�k ⇥ Bk
m,r, (25)

where Bk
m,r 2 Z by (18) and cn,k = 1

k

� n
k�1

�
2 Q. We have to show that (25) lies in

Z. If k = 1 or k = n or n + 1 is prime, then cn,k 2 Z by Lemma 3. We can now
assume that n � 3, 1 < k < n, and d := denom(cn,k) > 1. For each prime power
divisor pe k d we consider two cases, which together imply the integrality of (25).

Case p - m: Since d | k, we have pe | Bk
m,r by Lemma 1.

Case p | m: We show that pe | mn�k, or equivalently,

n + 1 > e + k. (26)

As pe | k, by symmetry in Lemma 3 we also have pe | n + 1� k, so e < n + 1 � k
and (26) holds. This completes the proof.

Proof of Theorem 2. To prove the last statement, it su�ces to show that for r � 0

Sn
m,r(x)� Sn

m,0(x) 2 Z[x]. (27)

By (20) and (21) we have

Sn
m,r(x) =

mn

n + 1
�
Bn+1(x)�Bn+1

�
+ h(x), (28)

where (n + 1)h(x) = f(x) 2 Z[x] as given by (20). By Lemma 4 it turns out that
the coe�cients of h(x) are already integral, and thus h(x) 2 Z[x]. Since by (2)

Sn
m,0(x) =

mn

n + 1
�
Bn+1(x)�Bn+1

�
,

relation (27) follows.
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Applying the rule (22) to (28) and using (4) along with the fact that Bn+1(x) is
monic, we then infer that

denom
�
Sn

m,r(x)
�

= denom
✓

mn

(n + 1)Dn+1

◆
. (29)

We have to show that (29) implies (7).
In the following trivial cases we are done: case m = 1; cases n = 1, 3, since

D2 = D4 = 1; and case n = 2, since n + 1 = 3 and D3 = 2.
So let m � 2 and n � 4. If a prime power pe k n + 1, then e < n. Consequently,

we deduce that
gcd(n + 1,mn) = gcd(n + 1,mn�1). (30)

Then by splitting mn into mn�1 · m in (29) and applying (30) and the fact that
Dn+1 is squarefree, we infer that (7) holds.

Since denom
�
Sn(x)

�
= (n+1) Dn+1 by Theorem 1, we see at once that (7) implies

denom
�
Sn

m,r(x)
�
| denom

�
Sn(x)

�
.

As a result of (29), the denominator of Sn
m,r(x) is independent of r. This completes

the proof of Theorem 2.

4. Proofs of Theorem 3 and Corollary 2

Before we give the proofs, we need some definitions and lemmas. Recall that, given
a prime p, any positive integer n can be written in base p as a unique finite p-adic
expansion

n = ↵0 + ↵1 p + · · ·+ ↵t pt (0  ↵j  p� 1).

This expansion defines the sum-of-digits function

sp(n) := ↵0 + ↵1 + · · ·+ ↵t,

which satisfies the congruence

sp(n) ⌘ n (mod p� 1). (31)

Actually, these properties hold for any integer base b � 2 in place of a prime p.
The following lemma (see [9, Chap. 5.3, p. 241]) shows the relation between sp(n)

and sp(n + 1).

Lemma 5. If n � 1 and p is a prime, then

sp(n + 1) = sp(n) + 1� (p� 1) vp(n + 1).
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In particular,
sp(n + 1)  sp(n) if and only if p | n + 1,

while
sp(n + 1) = sp(n) + 1 if and only if p - n + 1. (32)

Lemma 6. If n � 1, then

lcm(Dn,Dn) | lcm
�
Dn+1, rad(n + 1)

�
.

Proof. Set Ln := lcm
�
Dn+1, rad(n + 1)

�
. Since Dn and Dn are squarefree by (5)

and (13), we show that p | lcm(Dn,Dn) implies p | Ln. Moreover, since rad(n+1) |
Ln, we may assume that p - n + 1.

If p | Dn, then by (5) we have sp(n) � p. Applying (32) followed by (10), we
obtain p | Dn+1, and finally p | Ln.

Since D1 = 2 by (12) and Dn = 1 for odd n � 3, we have Dn | Ln for odd n � 1.
So take n � 2 even. If p | Dn, then p� 1 | n by (13), so also p� 1 | sp(n) by (31).
Thus sp(n) � p � 1. As p - n + 1 by assumption, (32) implies sp(n + 1) � p, so
p | Dn+1 by (10). Finally p | Ln. This proves the lemma.

Lemma 7. If n � 1, then

lcm
�
Dn+1, rad(n + 1)

�
| lcm(Dn,Dn).

Proof. As D1 = D2 = 1, and D1 = 2 by (12), the case n = 1 holds. So assume
n � 2 and set Ln := lcm(Dn,Dn).

If n + 1 is not prime, then (11) implies rad(n + 1) | Ln. Otherwise, p = n +
1 = rad(n + 1) is an odd prime and so n is even. By (13) we have p | Dn, so
rad(n + 1) | Ln.

It remains to show that Dn+1 | Ln. As Dn+1 is squarefree by (5), it su�ces to
show for any prime p | Dn+1 that p | Ln. By (5) again we have sp(n + 1) � p,
and as rad(n + 1) | Ln we may assume that p - n + 1. Then by (32) we obtain
sp(n) = sp(n + 1) � 1 � p � 1. If sp(n) � p, then p | Dn by (10), so p | Ln.
Otherwise, sp(n) = p� 1 and so p� 1 | n by (31). Moreover, n must be even, as n
odd would imply p = 2, contradicting p - n + 1. Hence p | Dn by (13), and finally
p | Ln. This completes the proof.

Proof of Theorem 3. To show the equivalence, we have to prove that

denom
�
Sn

m,r(x)
�

= 1 if and only if Dn | m.

By (7), we have denom
�
Sn

m,r(x)
�

= 1 if and only if

n + 1
gcd(n + 1,mn)

=
Dn+1

gcd(Dn+1,m)
= 1,
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which in turn is true if and only if n + 1 | mn and Dn+1 | m. Moreover,

n + 1 | mn if and only if rad(n + 1) | m.

Indeed, p | n + 1 | mn implies p | m, proving the “)” direction. Conversely, if
p | rad(n + 1) | m, then pn | mn. But pe k n + 1 with e  n, so finally n + 1 | mn.
It follows that

denom
�
Sn

m,r(x)
�

= 1 if and only if lcm
�
Dn+1, rad(n + 1)

�
| m.

By Lemmas 6 and 7, together with the proof of [6, Thm. 4], we have

lcm
�
Dn+1, rad(n + 1)

�
= lcm(Dn,Dn) = Dn.

This proves the theorem.

Proof of Corollary 2. (i), (ii) If n � 3 is odd, then Dn = 1. Hence, (8) and (9)
yield Dn = lcm

�
Dn+1, rad(n + 1)

�
. Together with D1 = D2 = 1, this implies that

Dn+1 | Dn for all odd n � 1, as desired.
Similarly, for even n � 2, we have Dn+1 = Dn+1 by (8). Then (9) gives Dn =

lcm
�
Dn+1, rad(n + 1)

�
, so Dn+1 | Dn, as claimed.

5. Proofs of Theorems 4 and 5

Let a, b � 2 be integers that are multiplicatively independent, that is, ae 6= bf for all
integers e, f � 1. Senge and Straus [10, Thm. 3] showed that for a given constant
A the number of integers n satisfying

sa(n) + sb(n) < A

is finite. Steward [12, Thm. 1, p. 64] proved the e↵ective lower bound

sa(n) + sb(n) >
log log n

log log log n + C
� 1 (33)

for n > 25, where C > 0 is an e↵ectively computable constant depending on a
and b. This bound leads to the following lemma.

Lemma 8. If p 6= q are primes, then

lim
k!1

sp

�
qk

�
=1.

In particular, there exists a positive integer Lp,q > logq p such that

sp

�
qk

�
� p (k � Lp,q).
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Proof. By taking a = p, b = q, k � 5, and n = qk > 25, we derive from (33) that

sp(qk) >
log(k log q)

log log(k log q) + C
� 2 =: f(k)

with some constant C > 0 depending on p and q. Since f(k) is strictly increasing
for all su�ciently large k, we infer that limk!1 sp

�
qk

�
=1. Therefore, there exists

a positive integer Lp,q such that sp

�
qk

�
� p for k � Lp,q. On the other hand, since

sp(m) = m for 0  m < p, we have that sp(qk) < p for 1  k < logq p, implying
that Lp,q > logq p, as claimed.

Proof of Theorem 4. If n = 1, then D1/D2 = 1. By (6), if n � 3 is odd and n + 1 is
not a power of 2, then Dn and Dn+1 are both even. Since by (5) they are squarefree,
Dn/Dn+1 must be odd.

Likewise, if n = 2k � 1 for some k � 2, then Dn/Dn+1 must be twice an odd
number. If an odd prime p divides Dn, then sp(n) � p by (5). Since p - 2k = n + 1,
we infer by (32) that sp(n + 1) > p. Hence by (10) the prime p also divides Dn+1,
so indeed Dn/Dn+1 = 2.

Now, let n = 2`pk�1 with p an odd prime and k, ` � 1. Then we have rad(n+1) =
2p, and by (6) that Dn and Dn+1 are both even. Thus, Dn/Dn+1 2 {1, p} by
Corollary 2 part (i). We consider two cases.

Case 1  ` < log2 p: Since sp(n + 1) = sp(2`) < p, we infer that p - Dn+1 by (10)
implying Dn/Dn+1 = p.

Case ` > log2 p: Lemma 8 implies a constant Lp := Lp,2 > log2 p such that
sp(n + 1) = sp(2`) � p for all ` � Lp. Hence p | Dn+1 by (10) and Dn/Dn+1 = 1.
This proves the theorem.

Proof of Theorem 5. It is shown in [6, Thm. 4] that Dn is even and squarefree for
all n � 1. (This also follows from (8) for even n � 2, since 2 | Dn, and from (9) for
odd n � 1, since 2 | rad(n + 1), all terms in question being squarefree.) Hence if
n � 2 is even, so that Dn+1 | Dn, then the quotient must be odd.

Let p be an odd prime. If n = pk�1 for some k � 1, then we have rad(n+1) = p
and sp(n + 1) = sp(pk) = 1 < p. Thus p - Dn+1 by (10). Since n is even, we have
Dn+1 = Dn+1 by (8) and so p - Dn+1. By Corollary 2 part (i) we finally obtain
Dn/Dn+1 = p.

Now, let p 6= q be odd primes and n = pkq` � 1 with k, ` � 1. We then have
rad(n + 1) = pq and by Corollary 2 part (i) that Dn/Dn+1 2 {1, p, q, pq}. Note
that sp(n + 1) = sp(q`) and sq(n + 1) = sq(pk). By Lemma 8 we define L0p,q :=
Lq,p > logp q and L00p,q := Lp,q > logq p. We consider the following statements by
using (10):

If 1  ` < logq p, then sp(q`) < p and p - Dn+1. Otherwise, if ` � L00p,q, then
sp(q`) � p and p | Dn+1.
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If 1  k < logp q, then sq(pk) < q and q - Dn+1. Otherwise, if k � L0p,q, then
sq(pk) � q and q | Dn+1.

All three cases of the theorem follow from the arguments given above, since
Dn+1 = Dn+1. This completes the proof of the theorem.

6. Conclusion

The numbers
Bn

m,r = mn
⇣
Bn

⇣ r

m

⌘
�Bn

⌘
,

shown by Almkvist and Meurman to be integers, play here a key role in proofs. By
their result, the polynomial Bn(x)�Bn, with an extra factor, takes integer values
at rational arguments x = r/m. In the present paper, the numbers Bn

m,r reveal
their natural connection with the power sums of arithmetic progressions Sn

m,r(x).
Moreover, the divisibility properties of Bn

m,r are important in attaining our results
in Theorems 2 and 3.
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