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1 Introduction

The study of sequences containing infinitely many squares is a common topic

in number theory. It has been conjectured [1], and checked for n ≤ 103200, that

Pn =
n∏

k=1
(k2 + 1)

is not a square for n > 3. We prove this conjecture in full.

As an easy consequence we deduce that the sequence xn := tan
∑n

k=1 tan−1(k)

doesn’t vanish for n > 3, which is the main result of [1]. Indeed, as
∑n

k=1 tan−1(k)

is the argument of the Gaussian integer
∏n

k=1(1 + ki) = r + si, we have that if

xn = 0 then s = 0, so
∏n

k=1(1 + k2) = r2, which is impossible for n > 3.

There exists a wide literature about the greatest prime factor, say Qn, of the

product Pn. We observe that the early estimates Qn/n → ∞ ([3]) or Qn À
n log n ([4]) easily imply that Pn is not a square for n large enough after the

first remark in the proof of Theorem 1.

It should be noted, however, that our proof is completely elementary. Actually,

the most sophisticated tool used in the proof is the Chebyshev’s upper bound

inequality for prime numbers. In particular we avoid the use of the asymptotic
∑

p6≡1 (mod 4)
log p

p ∼ 1
2 log n used in the above mentioned estimates of Qn.
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2 The result

Theorem 1 If n > 3, then Pn =
∏n

k=1(k
2 + 1) is not a square.

Proof. Through the proof, p denotes a rational prime. If Pn were a square and

p|Pn then p2|Pn. There are two possibilities: If p2|k2 + 1 for some k ≤ n then

p ≤ √
n2 + 1 < 2n. Otherwise, there exist j, k, j < k ≤ n such that p|j2 + 1

and p|k2 + 1 and then p|(k − j)(k + j) which also implies that p < 2n. Then,

if Pn is a square we can write

Pn =
∏

p<2n

pαp.

Since Pn > n!2, if we write n! =
∏

p≤n pβp we have that

∑

p≤n
βp log p <

1

2

∑

p<2n

αp log p. (1)

We observe that α2 = dn/2e since k2 + 1 ≡ 1 or 2 (mod 4) depending whether

k is odd or even. Also it is well known that if an odd prime p divides k2 + 1

then p ≡ 1 (mod 4). In this case, since each interval of length pj contains two

solutions of x2 + 1 ≡ (mod pj), we have

αp =
∑

j≤log(n2+1)/ log p

#{k ≤ n, pj|k2 + 1} ≤ ∑

j≤log(n2+1)/ log p

2dn/pje. (2)

On the other hand

βp =
∑

j≤log n/ log p

#{k ≤ n, pj|k} =
∑

j≤log n/ log p

bn/pjc. (3)

Thus, if p ≡ 1 (mod 4) we have

αp/2− βp ≤ ∑
j≤ log n

log p

(dn/pje − bn/pjc) +
∑

log n
log p <j≤ log(n2+1)

log p

dn/pje

≤ ∑
j≤ log n

log p
1 +

∑
log n
log p <j≤ log(n2+1)

log p

1 ≤ log(n2+1)
log p .
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We use this in (1) to write

∑

p≤n
p6≡1 (4)

βp log p ≤ 1

2
dn/2e log 2 + log(n2 + 1)π(n; 1, 4) +

1

2

∑

n<p<2n

αp log p. (4)

The estimates αp ≤ 2 if p > n and

βp ≥ n

p− 1
− p

p− 1
− log n

log p
≥ n− 1

p− 1
− log(n2 + 1)

log p
if p ≤ n

can be obtained easily from (2) and (3). Next we put these estimates in (4) to

get

(n− 1)
∑

p≤n
p 6≡1 (4)

log p

p− 1
≤ (n + 1)

log 2

4
+ log(n2 + 1)π(n) +

∑

n<p<2n

log p.

Now we use the Chebyshev inequalities
∑

p≤n log p ≤ log 4n and
∑

n<p<2n log p ≤
n log 4 and π(n) ≤ 2 log 4 n

log n +
√

n (see for example [2]) to obtain

∑

p≤n
p6≡1 (4)

log p

p− 1
≤ n + 1

n− 1

(
log 2

4
+ log 4

)
+

log(n2 + 1)

n− 1

(
2 log 4

n

log n
+
√

n

)
.

The limit of the right hand side is 41
4 log 2. Actually, that quantity is < 7.14

for n ≥ 702007. Adding over enough primes p 6≡ 1 (mod 4) we can see that for

n ≥ 702007
∑

p≤n
p6≡1 (4)

log p

p− 1
> 7.14, (5)

which proves the theorem for n ≥ 702007.

Finally we have to check that Pn is not a square for 4 ≤ n < 702007.

42+1 = 17. The next time that the prime 17 divides k2+1 is for k = 17−4 = 13.

Hence Pn is not a square for 4 ≤ n ≤ 12.

102 + 1 = 101. The next time that the prime 101 divides k2 + 1 is for k =

101− 10 = 91. Hence Pn is not a square for 10 ≤ n ≤ 90.
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362 + 1 = 1297. The next time that the prime 1297 divides k2 + 1 is for

k = 1297− 36 = 1261. Hence Pn is not a square for 36 ≤ n ≤ 1260.

8602 + 1 = 739601. The next time that the prime 739601 divides k2 + 1 is for

k = 739601− 860 = 738741. Hence Pn is not a square for 860 ≤ n ≤ 738740.

Acknowledgement: We thank Carlos Vinuesa for checking (5).
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