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Abstract

Let G be a molecular graph. The Wiener and detour indices of G are defined as
the sum of the lengths all shortest and longest paths between vertices of G,
respectively. In this paper exact formulae for the Wiener and detour indices of a
family of nanostar dendrimers are given.

1. Introduction

Dendrimers are highly branched macromolecules. They are being investigated for
possible uses in nanotechnology, gene therapy, and other fields. The nanostar dendrimer
is part of a new group of macromolecules that appear to be photon funnels just like
artificial antennas. The topological study of these macromolecules is the aim of this
article.

A topological index is a numeric quantity derived from the structural graph of a
molecule. Suppose G is a simple graph, without multiple edges and loops. The set of
vertices and edges of G are denoted by V(G) and E(G), respectively. It is easy to see
that [V(G)| and |[E(G)| are topological indices of G. The path P, is an acyclic graph with
two vertices of degree 1, and the other n—2 vertices of degree 2. If G is a path then
[E(G)] is called the length of G. The distance dg(u,v) (d(u,v) for short) between two
vertices u, v € V(G) is the minimum length of the paths connecting them. If no such a

path exists then the distance is set equal to co.
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The concept of “topological index” was first proposed by Haruo Hosoya
(Hosoya, 1971) for characterizing the topological nature of a graph. Such graph
invariants are usually related to the distance function d(-,-). Recently, this part of
Mathematical Chemistry was named "Metric Graph Theory". The first topological index
of this type was proposed in 1947 by the chemist Harold Wiener, (Wiener, 1947). It is
defined as the sum of all distances between vertices of the graph under consideration.

This paper addresses the problem of computing the Wiener and detour indices of
nanostar dendrimers. Our notation is standard and taken mainly from the book of
Harary (Harary, 1969).

The detour matrix, in contrast to the distance matrix (that considers the length of
the shortest path between vertices), records the length of the longest path between each
pair of vertices. The detour index is defined as the sum of entries of the detour matrix,
and this has recently received some attention in the chemical literature (John, 1995).

The problem of computing topological indices of nanostructures was raised by
Diudea and his co-authors. In some research papers (Diudea & Graovac, 2001; Diudea,
Silaghi-Dumitrescu, & Parv, 2001; Diudea & John, 2001; Diudea, 2002a, 2002b; John
& Diudea, 2004; Diudea, Stefu, Parv & John, 2004) they computed the Wiener index of
polyhex and TUC4Cg(R/S) nanotubes and tori. In (VukiCevi¢ & Trinajsti¢, 2004;
Gutman & Radenkovié, 2006), the authors presented some methods for the calculation
of the Wiener index and resonance energy of benzenoid systems that are extendable to
nanomaterials. In recent years, some authors worked on computing the Wiener, PI,
Schultz and Szeged indices of the chemical graphs of some nanomaterials (Xu, & Deng,
2008; Chen, Jang & Hou, 2008; Eliasi & Taeri, 2008; Yousefi-Azari, Ashrafi, Bahrami
& Yazdani, 2008; Ashrafi & Mirzargar, 2008).

In literature, there are many papers on the problem of computing Wiener index
of chemical graphs, but a few of them presented general methods useful for the
calculation of detour index. The authors usually derive a general formula for the
minimum and maximum distances between vertices of a given chemical graph G and
then calculate the Wiener and detour indices of G (Yousefi & Ashrafi, 2006; Yousefi &
Ashrafi, 2007; Yousefi & Ashrafi, 2008; Ashrafi & Yousefi, 2007a, 2007b). In this
paper, we present another method that is useful for chemical graphs with separate
cycles. By a graph with separate cycles, we consider a graph in which the vertex set, as

well as the edge set of cycles are disjoint.
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2. Result and Discussion

Throughout this paper, G[n] denotes the molecular graph of a nanostar dendrimer with
exactly n generations (Figures 1 and 2). We first compute the Wiener and detour
matrices of the graph G[n] and then calculate the Wiener and topological indices of
these nanostars.

In Figure 3, four subgraphs of G[n] are depicted. From this figure, it is clear that
G[n] is constructed from the subgraphs isomorphic to B and the core to which these
subgraphs are joined (Figure 2). To compute the Wiener and detour indices of G[n], we
calculate matrices WA, WA,, WA3; and WB that are the Wiener matrices of the
subgraphs A, A, A; and B, respectively.

Let D; and Dy be 8 x 8 and 8 x 122 matrices (of which entries are equal to 1)
while M is the Wiener matrix of the core. To construct the Wiener matrix of G[n], it is
enough to calculate the distance matrix between a subgraph isomorphic to B and the
core, distance matrix between two subgraphs isomorphic to B (see A, and Aj; in Fig. 3)
and the Wiener matrix of the core. The distance matrix between a subgraph isomorphic
to B and the core is equal to the sum of the Wiener matrix of the subgraph A;, WA,
and the matrix Dy, where i = 1(P) — 1 such that P is a minimum path connecting a vertex
of the core to a vertex of A; and 1(P) denotes the length of P. We now calculate the
distance matrix between two subgraphs isomorphic to B. To do this, we assume that B,
and B, are two subgraphs isomorphic to B while P is a minimum path connecting a
vertex of B; to a vertex of B,. Obviously, there are two separate cases: (i) one of the
end vertices of P belongs to a hexagon of G[n] or (ii) two end vertices of P do not
belong to a hexagon. In case (i), the distance matrix D(B;,B,) between B; and B; is
equal to WA3 + Dj while in case (ii), D(B;,B2) = WA, + D;. As shown in Figure 1, the
molecular graph of G[n] can be partitioned into a core together with six isomorphic
subgraphs (i.e., branches) M[n], ..., Mg[n]. Then M[n] = M;[n] U ...UMg[n].
Obviously, each of the branches Mj[n], 1 < i < 6, has exactly two isomorphic
components M[n] and M’[n]. Moreover, the core and the branches constitute a
partition for G[n]. Every subgraph M;[n], 1 <i < 6, has exactly 2" subgraphs isomorphic
to B, say Y}, ..., Yzi“,‘ for Mi[n] and Yzi",,ﬂ, ... Y, for M?[n], such that the degree

of vertices of their hexagons are 2 in G. We now define the values of sy, ..., sg as

follows:
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s; is the summation of distances between vertices of Yil and le, for each of i
andj, 1 <i=j<2",
s, is the summation of distances between vertices of Y and Y, for each of i
andj, 1 <i=j<2",
s3 is the summation of distances between vertices of Y, and Yjs, for each of i
andj, 1<i=j<2",

s4 is the summation of distances between the vertices of Yll, ey Yzln,I and a

subgraph isomorphic to M;[n—1] obtained from M;[n] by deleting the end
subgraphs isomorphic to B,

ss is the summation of distances between vertices of Yll, e Y21n and M;[n-1]
obtained from M;,[n] by deleting the end subgraphs isomorphic to B,

S is the summation of distances between vertices of Y/, ..., Yzln and My[n-1]
obtained from My[n] by deleting the end subgraphs isomorphic to B,

s7 is the summation of distances between vertices of Y, and Y, and those of
two chains of hexagons from the end hexagon of the core and hexagons of Y}
and Yzl,

sg is the summation of distances between other vertices of M[n].

—
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Figure 1. The molecular graph of G[4] Figure 2. The core of G[n]
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By definition of sy, ..., sg, one can prove the following equalities:
— S 3622 (10i-7) = 40.4%n - 22 4102, — 24 4o
i 3 3
2i n n 68
232 (101 +9)_74 +40.4"n )
i=1
= i3.22”2.(10i+ 27)= ?6.4" + 160.4“.n—%
n 1
se= 2'23 2G4 -T) = 244 40470 +2042" —60.2"n -8
j=21i=
S5 = i23 i (5(1+j)+9)=24.2"-120.2"n 7% 4" +80.4"n 32
j=2i=1
n 1
S¢ = ZJ 3.215, 5.a+)+27)= ]3312 4" +320.4"n-1632.2" —480.2"n +&
j=21i=1
n j-2
5= 3 53,27 (51)= 240.2" ~150.2".n +30.2"n — 240
j=3i=1
n I-11-k .
=y 3.2”'.(5(1 +1)—(5k+2))= —4—24.4“ +40.4"n—84.2" +234.2"n-30.2"n" + E
1=3k=2 i=1
By a simple calculation with Maple, we can see

thats, +s, +...+s, = 720-4" -n+666—1146-2" +480-4" —576-2" -n. Therefore, we

prove the following theorem,

Theorem 1: The Wiener index of G = G[n] is computed as follows:

W(G) =64176-2" +8905+21120-2" -n+60672-4" +46080-4" -n

Proof. By definition of Aj, A,, A3, B, M, D; and D' and above calculations, we have:
W(G)=64(s, +s, +...+54 ) +(-120-2" +60-2" -n + IZO)ZLJd;j +W(A)(12-2" -12)

+W(A,)(-12-2" - n+54+72-4" —126-2") + W(A,)(-24-2" +12-2" -n +24) +
FW(B)12-2" —12)+ W(M)
=64(720-4" -n+666—1146-2" +480-4" —576-2".n)+976(-120-2" + 60-2" -n+120)"
+26260(12-2" —12)+416(—12-2" -n+54+72-4" —126-2") + 368(—24-2" +12-2" -n
+24)+64(12-2" —12) + 133753
=64176-2" +8905+21120-2" -n+60672-4" +46080-4" -n. m]

To compute the detour index of G[n], we define the quantities t,, ..., tg similar to
s, ..., Sg by changing distance into longest distance. By a similar method as above, we

can see that the following equalities are satisfied:
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B=33.2"=12.2"-12
i1

A, =33-27=12.2"-12

i=1

A,=-12-2"-n+54+72-4"-126-2"

A, =332 (-1)=-242"+12-2" :n+24
=

:i3-2‘*‘ 5(i-1)=-120-2"+60-2" -n+120
i=2

t]=ii6~2-i’2*‘(l4i—9)=56-4“ n—%+138 2"~ 3§2 4"

j=li=l

23 2% (141+9)_7 " 15647 n—%

=313.2%2 (14 +27) _¥ 4" +224.4". n—?

i=1

n 1
2123 2. (G +j) - 9)_—% 4745647 n+276.2" —84.2" .- 220

j=2i=1

n j-l L.
ts= 3 532 (7(i+ ) +9)=120-2" ~168-2" .n—z—iz‘4"+112-4" ‘n

j=2i=l1

128
3

=3 33.24 (7. i+))+27)==2 800 4 1 448.4".n—1248.2" —672.2" n+%44

=2i=1

t7:iz3-2”1-(7i):336-2“7210-2"-n+42-2"-n27336

j=3i=1

n ik 668 992
=5 3329 (7(1+i) - (Tko+2)=—==4" + 56n4" 108" +318n2" - 42nzzn+T

1=3k=2 i=1

A simple calculation by Maple revealed the following formula:
t,+t,+...+t; =1008-4" -n+366—-486-2" +120-4" —816-2" -n. Therefore, we prove

the following theorem:
Theorem 2: The detour index of G = G[n] is computed as follows:

dd(G) =1950684 -2" —1846967 +29568-2" -n +51456-4" + 64512-4" -n

Proof. By definition of A, A,, A3, B, M, D; and D;' and above calculations, we have:
dd(G) =64(1008-4" -n+366—486-2" +120-4" —816-2" -n) +976(—168-2" +84-2" -n +168)
+186317(12-2" —12) + 608(—12-2" -n+54+72-4" —126-2")
+592(=24-2" +12-2" -n+24)+ 64(12-2" —12) + 155173
=1950684-2" —1846967 +29568-2" -n +51456-4" +64512-4" -n

which completes our proof. O
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Figure 3. Some subgraphs of G[n].
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