communications in mathematical

B:O, no. 43, March 2001

and in computer chemistry

ISSN 0340-6253 MATCDY (43) 49-66 (2001)

ON HOSOYA POLYNOMIALS OF BENZENOID
GRAPHS

Ivan Gutman,® Sandi Klavzar,®* Marko Petkoviek®' and

Petra Zigert”

2 Faculty of Science, University of Kragujevac,
P. 0. Box 60, YU-34000 Kragujevac, Yugoslavia
gutman@knez .uis.kg.ac.yu

b Department of Mathematics, PEF, University of Maribor,
Koroska 160, SI-2000 Maribor, Slovenia
sandi.klavzarQuni-1j.si ; petra.zigert@uni-mb.si

¢ Departiment of Mathematics and Mechanics, University of Ljubljana,
Jadranske 19, SI-1000 Ljubljana, Slovenia
marko.petkovsek@fmf .uni-1j.si

(Received September 2000)

Abstract

For a connected graph G we denote by d(G, k) the number of vertex pairs at
distance k. Then the Hosoya polynomial of G is H = T450d(G, k) z*. Some basic
properties of the Hosoya polynomial of the molecular graphs of benzenoid molecules
are established, and a recursive method for its calculation is presented. By means
of this method explicit expressions for H are obtained for a number of homologous
series of unbranched catacondensed benzenoid systems.
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1. INTRODUCTION

In 1988 Hosoya [1] introduced a novel graphic polynomial H(G, x) in the following
manner. If G is a connected (molecular) graph with n vertices and m edges, and if
d(G, k) is the number of pairs of its vertices that are at distance k, then

H(G)=H(G,z) =Y d(G,k)z* .
k>0
Note that d(G,0) = n and d(G,1) = m. For convenience we set d(G,k) = 0 for
k<0.

The main property of H(G), that makes it interesting in chemistry, follows directly

from its definition:

H'(G,1) = W(G) (1)

where H'(G, z) denotes the first derivative of H(G, z) whereas W(G) is the famous
Wiener topological index (= the sum of distances between all pairs of vertices of G ).

Another elementary property of H(G) is:
n
H(G1)= (2)+n. (2)

In view of Eq. (1) Hosoya named H(G) the “Wiener polynomial”. However, it is
more justified and consistent with tradition to call it “Hosoya polynomial”; this name
has been used in the recent papers on this matter [2]-[5]. It should be mentioned
that the same graph polynomial was apparently independently conceived by Sagan
et al. [6] who also called it “Wiener polynomial”.

The hitherto published works on the Hosoya polynomial [1]-{10] report mainty
results on trees, highly symmetric graphs and similar easy-to-handle objects. None
of the papers [1]-[10] are concerned with polycyclic graphs, benzenoid systems in
particular. This is in stark contrast to the work done on the Wiener index, where
scores of publications dealing with benzenoid systems exist.

The aim of this paper is to contribute towards filling this gap. The definition
of benzenoid graphs (molecular graphs representing benzenoid hydrocarbons) and a

survey of their basic properties can be found in the book [11].
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Concerning the chemical relevance and applications of the Hosoya polynomial we
have, first of all, to point at the generalization of Eq. (1). Namely, if the first
derivative of the Hosoya polynomial evaluated at x=1 is a useful topological index
(the Wiener index), then also the “extended Wiener indices”: the second, third,
etc. derivatives of the same polynomial evaluated at x=1, may be of some chemical
applicability. This fact was first demonstrated by Estrada et al. [12] and recently also
by Konstantinova and Diudea [13]. In both works various physico-chemical properties
of alkanes were shown to be well reproduced by means of linear combinations of the
extended Wiener indices.

The Hosoya polynomial contains more information on the distance-relations in a
(molecular) graph than any of the hitherto proposed distance-based topological in-
dices. In view of this it imaginable that the Hosoya polynomial and the quantities
derived from it will play a significant role in QSPR and QSAR studies. The demon-
stration of this, in spite of the preliminary success achieved in [12, 13], remains a task

for the future.

2. HOSOYA POLYNOMIALS OF BENZENOID GRAPHS - SOME
ELEMENTARY RESULTS

We start this section with two examples, the benzenoid graphs G, and G5 (per-

taining to anthracene and phenanthrene, respectively), depicted in Fig. 1.

sesliocs

Figure 1: Two benzenoid graphs

It is easy to check that
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H(G,z) = 14+ 162 + 222 + 212° + 142" + 102° + 62° + 227 and
H(Gy, ) = 14+ 16z + 2227 + 222° + 162" + 102° + 42° + 27

Note that neither the coefficients of H(G)) dominate those of H(G3) nor vice versa.
However, the equality d(G),2) = d(G2,2) is no coincidence. From the first part of
the next result it follows that this happens for all catacondensed benzenoid graphs

with equal number of hexagons.

Proposition 1. Let G be a benzencid graph with h hexagons, n; internal vertices
and b bay regions [11]. Further, let d be the number of pairs of adjacent hexagons of
G. Then

(i) d(G,2)=8h—2—m ;
(i) d(G,3)=3h+6d+b .

Proof. (i) In triangle-free graphs (such as the benzenoid graphs) two vertices are at
distance 2 if they have a common neighbor. The number of vertex pairs having vertex
i as a common neighbor is (52‘) , where §; is the degree of the vertex i. Benzenoid

graphs have only vertices of degree two and three. Thus

d(G, 2) = i (‘;‘) =Ny (z) + N3 (g) =n,+3n3

where n, and nz are the numbers of vertices of degree 2 and 3, respectively. It is
known that [11]
ng=2(h-1) ; ng=2h+4-—mn;

from which formula (i) follows directly.

(i2) Note first that in every hexagon there are 3 pairs of vertices at distance 3.
In addition, for each pair of adjacent hexagons there are precisely 6 pairs of vertices
(not belonging to the same hexagon) at distance 3. Moreover, the only possibility
for two vertices being at distance 3 and not lying in the same hexagon or in adjacent
hexagons is that they belong to a bay. Since each bay corresponds to exactly one

such pair we are done. g

‘We wish to add that the number d from the above proposition is also equal to the
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number of 10-cycles of G, i.e., the number of naphthalene units. Also note that the
second part of the Proposition 1 implies that d(G, 3) is minimal (among catacondensed
benzenoid graph with h hexagons) for linear polyacenes with h hexagons.

For a graph G, k > 0, and a vertex v € V(G), let d(G, v, k) be the number of
vertices of G at distance k from v. This time, d(G,v,0) = 1, and for k£ < 0 we set
d(G,v,k) = 0. We now define H(G,»,z) as

H(G,v)= H(G,v,z) = Zd(G,'v,k)xk i
k20

With this definition, we have the following easy identity.
Proposition 2. For any graph G,

S H(G,v,2) =2H(G,z) - [V(G)] .
veV(@)

Proof. Just observe that

ST d(G v, k)=

vEV(G)

d(G,k) if k=0,
2d(G,k) if k>0 °

3. ANNELATING 6-CYCLES

We are interested in graphs that can be recursively constructed from smaller ones
by attaching cycles. In graph theory such an operation is usually called “amalgama-
tion” of (two) graphs over a common subgraph. In our case, the common subgraph
will always be an edge, and one of the amalgamated graphs will be a 6-cycle, cf. Fig.

2. In chemistry “amalgamation of a cycle” is referred to as “annelation”.

Proposition 3. Let the graph G be obtained by annelating a 6-cycle to the graph
Gy over an edge un. Then
H(G,z) = H(Gy,z)+ (z+2*)H(Go,u,z) + (z + 2°) H(Go, v, 1)

+ 443z +22% + 2%
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Figure 2: G is obtained by annelating a 6-cycle to Gy over the edge uv
Proof. We first write the Hosoya polynomial of G as:

H(G,x) = d(G,0) + d(G, 1)z + d(G,2)z* + d(G,3)z® + Y d(G, k)z* . (3)

k>4

Denoting the expression
d(Go, k) + d(Go,u, k — 1) + d(Go, u, k — 2) + d(Go, v, k — 1) + d(Gp, v,k — 2)

by d(G, k,u,v) we infer that

d(Go, k,u, v) if k>3,
d(Go, k,u,v)+1 if k=3,
d(G, k) =< d(Go, k,u,v)+2 if k=2,
d(Go, k,u,v)+3 if k=1,
d(Go, k,u,v)+4 if k=0.

Inserting this into (3) we find that H(G, z) can be expressed as

S d(Go, k,u,v)z* + 4+ 320+ 227 + 2
k>0

which, in turn, is equal to

H(Gy, 1) + 2H(Go, u, ) + 22H(Go, u, ) + tH(Gy, v, 2) + 22 H(Gy, v, )

+4+3z+20% +2°. o

Let G be obtained by annelating a 6-cycle to Gy and let the vertices of this 6-cycle
be labeled by u,v,s,7,q, and p, as indicated in Fig. 2. In order to compute I (G, x)
we also need to express H(G,p,z), H(G,s,z), H(G,q,z), and H(G,r, x) recursively.

This is achieved in the following:

Proposition 4. Let G, Gy, u,v, s,7,q, and p be as in Fig. 2. Then



() H(G,px)=zH(Gouz)+1+x+2"+2%,
(i) H{(G,s,x)=zH(Go,n, 2} +1+z+ 22+ 2%,
(i) H{(G,q,z) = 2*H(Gp,u,z) + 1 + 2z + 1*,
V) B8 ) = G, o) 4 1 4 0u a8,

Proof. By symmetry it is sufficient to prove (¢) and (i7i) . For (i) note first that

| d(Go,uk 1) if k>3,
“’(G’p*k)*{d(Go,u,k-1)+1 if 0<k<3.

Then we have
H(G,P»’J) 7 Z d(G)Py k)zk
k20

= Y dlGo,u,k—1)zk +1+a+2% +2°
k20

= zH(Go,u,x) +1+zx+2" +2°.

Similarly, in order to obtain recursion (#%) we first observe that

G, 1, ke — 2) i k>2,
HGou,k -2 +1 il k=2,
HGo,u,k -2} +2 if k=1,
d(Goyu,k—2)+1 if k=0,

d(G,q,k) =

from which we conclude that

H(G,q,7) > d(G, g, k)at

k20

= Y d(Go,u,k—2)7* +1 42z +1°
k20

= 22 H(Gy,u,z}+1+2z+12 . o

At this point it should be mentioned that the results presented here as Propo-
sitions 3 and 4 are fully analogous to the formulas earlier obtained for the Wiener
index [14]. In fact, these earlier results can be deduced, as special cases, from Propo-
sitions 3 and 4, by computing the first derivatives of the respective polynomials, by

setting = = 1 and by using Eqs. (1) and (2). Tn a similar manner, the applications
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of the Propositions 3 and 4, outlined in the subsequent section, can be viewed as

generalizations of the results for the Wiener index, communicated in [15].

4. APPLICATION TO HEXAGONAL CHAINS

‘We now apply the previous recursive relations to hexagonal chains. Let By, be a
hexagonal chain with h hexagons obtained by adding a 6-cycle to B,_, over an edge
Up-1Vp—1 . Then by Proposition 3 we have

H(By,x) = H(Buy,2) +(z +a®)[H(Bur, unor, z) + H(Bar, vhor, )]
+ 443z + 222 4 2.
Furthermore, let u,vy, be the edge that will be used in the subsequent annelation,

that is, in the process By — Bp4). There are three possibilities for the edge ujvy

and these are shown in Fig. 3.

Case 1

Up
Up—
Uh
Bh —
h—-1

Case 2
Up— Un=
Up
= — By, R
Uh
Uh— Uh—1
Case 3

Up—
3 i @
Uh
h=1
Vh
By

Bryi

Figure 3: Three possible ways of attaching a 6-cycle to a hexagonal chain

For these three cases Proposition 4 implies:
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Case 1:
H(By,up, &) = aH{By.1,up-1,0)+1+z+2"+ 2
H(Bp,vn,2) = 2H(Bn_1,up-1,2) + 1+ 2z + 22
Case 2:
H(Byup,z) = 22H(Bp1,up, @) + 1422 + 22,
H(By,vn,x) = s"H(Bp_r,vp-1,2) + 1422 + 2%
Case 3:

H{(Bpun,x) = 2°H(Byo1,vp-1,7) + 14 20+ 27,

H(Bp,vp,z) = rH(By_1,m5-1,2) +1 + 2+ 22 + 23

We write the above recurrences in a more concise form by setting a, = H(Bs, ),

B = H(By, up, ), and vy, = H(Bj, tp, z). Then we have:

Proposition 5. Let B, be a hexagonal chain with A hexagons. Then the Hosoya

polynomial ap of By, satisfies the following recurrence
o =1+ (T + ) (Bhor + 1) +4+ 32+ 220 + 57,

where ag = 2+ 2, fy = v = 1+ 2. Moreover, 8, and 7, obey the following

recurrences, depending on the cases shown in Fig. 3:

Casel: Gp=zxfh +1l+z+22+12% mm=2Boi+14+20+22.
Case 2: Oy = 2281 + 1 + 2z + 2% oo 22 + 14 22 + 22

Case 3: 8 = 2%y, + 1+ 22 + 2% =2y +1+z+ 2%+ 25,

5. HOSOYA POLYNOMIALS OF PERIODIC HEXAGONAL CHAINS

A hexagonal chain By, consisting of n > 1 hexagons corresponds to a walk of length
n—1 on the inner dual of the respective chain, where each next step is either straight,

a 60-degree turn to the left, or a 60-degree turn to the right (relatively to the previous



step). We encode such a walk by a string of length n over the alphabet {1, 2,3} where
1, 2, and 3 mean “turn left”, “go straight”, and “turn right”, respectively. The first
and the last symbol of this string are immaterial - they are included in order for this
encoding scheme to cover all B, with n > 0. For example, By is encoded by the
empty string, By by any string of length one, and B, by any string of length two.
The graphs G; and G, of Fig. 1 are encoded by x2y and zly, respectively, where =
and y are arbitrary elements of {1,2,3}.

Take any nonempty finite string s over {1,2,3}, and repeat it infinitely often
to obtain the infinite string S = sss.... Let B, denote the hexagonal chain cor-
responding to the initial substring of S of length n, and let H(B,,z) denote its
Hosoya polynomial. From Proposition 5 it follows that the sequence of polynomials
H(By, z), together with the corresponding sequences §, and 1, , satisfies a system of
linear recurrences with constant coefficients, where the structure of each individual
recurrence depends on the remainder of n modulo the length of 5. Such sequences
are said to be conditional recurrent and are known to satisfy a single (unconditional)
linear recurrence with constant coefficients (cf. [16]). Therefore H(B,,z) are expo-
nential polynomials in n (i.e., H(B,, z) has the form X, Pi(n)c} where Pi(n) are
polynomials in n with coefficients that are rational functions of z, and ¢;’s are rational

functions of z which are independent of n), and their generating function
o0
f(z,2) =} H(B,,z)2"
n=0

is a rational function of z and z. It can be computed as follows: Let d denote the
length of s, and let B = B,k and 4% = y4 44, for 0 < k < d—1. Then we have

the following system of 2d initial conditions

A =l =142

A =4 =0 (1<k<d-1)

and 2d (unconditional, as far as n is concerned) recurrences

T )(1d—)1 +p, si=1

55;0) = 12,5,‘:2 +q, $=2
2 4, 5 =3,
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BN +p, sa=1

BE = 228V 4g sy =2 (1<k<d-1),
2?4 g, s =3
35913\‘(1"-)1 +q, s1=1

W o= e s=2
x'y,(,d,)] +p s =3
22BEN 4 g, sp =1

AW = 2y, =2 (1£k<d-1),
sV 4p, s =3

where p=14 x4 2% +2*, ¢= (1+2)?, and s, denotes the k-th symbol of s. Given
the string s, one can routinely compute from this system the generating functions
of A and 4{¥). These can easily be combined to yield the generating functions of
their interlacings 3, and v, , from which we finally compute the desired generating
function f(x,z) of o = H(Bp,x).

We wrote a Mathematica package' (based on the standard package RSolve.m)
which, given a nonempty string s over {1,2,3}, in the way just described, computes
the corresponding rational generating function f(x,z), and (if the denominator of
f(z, z) factors nicely, which unfortunately is not necessarily the case) also the formula
giving the n-th Hosoya polynomial H(B,,z) as a function of n. It seems however,
that for the class of problems studied here the denominator of

%
fz,2,k) = %H(B,m.,k,x)z"
where d is the length of s and 0 < k < d, does always factor nicely. If so, then our
package can always compute the d formulas giving H B4k, ©) as functions of n, for
0 <k < d. It can also compute the corresponding Wiener indices W (B,) = H'(B,, 1)
and W(Byn4x) = H'(Bantk, 1) as functions of n, for 0 < k < d.

In the rest of this scction we list the formulas (obtained by our package) for
f(z,z), and either H{B,,z) and W(B,), or H(Bunsk, z) and W (Bunyx) , for various
strings s encoding periodic hexagonal chains as described in Section 5. Even though
H(B,,,x) appear to be rational or even algebraic functions of z, they simplify to a
polynomial in z for each specific value of n. The formulas that follow are valid for

all n > 0, unless stated otherwise.

'available at http://www. fmf .uni-1j.si/~petkovsek/software.html in the notebook
Hosoya.nb
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The straight-line chain: s =2

(z°—22%) 22+ (—22° — 42’ —dz -2z -2 -2
(z—-1)*(z2z-1)

flz,2) =

2z + 1)z — 23— 222 3z +n(z—1)(a®+1) (22 —x —4)+2
@-1

H(B,,z)=

1|
W(B,) = -3-(16n3+36n2+26n+3)

The spiral chain: s =1

f@,2) = oy ((— 27 = 22° + 22 +2%) 22+
(—22° -3z 4222+ 22) 22 +(—32° - 522~ 22— 2)z — 71— 2)

n2ls
H(By,z) = (x+1)"2"*2 4+ 2% —42° —42° - 32* — 323 — 222 - 32—

n{z—-1)@?+1) (2 +22' +2* -2+ +4) +2)

1
=1

n>1: W(B,) == (8n*+72n" - 26n+27)

1
3
The zig-zag chain: s =13
[z, 2) =

(£ +225 — 22 - 2¥) 224+ (2% - 22%) 22+ (-22° —42® — 42— D)2 -2z -2
(z— 1) (22z-1)

n>1: H{B,z)=2 1) o ((z 4+ 1) 22" — 27 4 32° — 32® 227 — 3z +
nlr— )b +2° -22% - 322 — 2 —4)+2)

n>1: W(B,) == (16n®+24n? 4+ 62n - 21)

2
3
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The double-step zig-zag: s = 2123

Sl 2) = ((a" + 225 — 225 — 2%) 25 4 (27 + 228 + 27— 22% — 32%) P +
(2 —42® —d42? —4x-2)2+ (—22° — 42 — bz —4)z—x—2)/
((z= 1 (z+ 1) (z22 - 1))

n>»2:
H(Bu, ) = sriprld e+ 1% 5 4 11" 328+ (-1)"(z - 1) (=
+ 122 72 - 822 - 122+ 2n(z— 1) (&% - 2) (z2 + 1) (=*

+@* +2% +3+4)+8)

n>2: W(B,)= % (16n% + 24n? + 7dn + 6 (—1)* — 51)
The triple-step zig-zag: s = 221223

Jzz)=({(z" + 220 - 22° —27) 2" + (z* + 22% + 27 — 22 - 35%) ' +
(2% — 42 40?42 -2) P + (2% —42% — 42?52 -4) 2 +
(-22° -4z’ bz —4)z2—z-2)/

z= D (22— 1)(2+2+1)

n>1:
H(Bgs,z) = (;1—151((:5+1)21““+1 —a 22— 25 -2 222 32+

2n(r—1)(z¥+2* + 22 —47* - 922 - 32 -12) +2)

n>1:
H(Bws1,2) = im((z + 1)%z2nts g 4249 929 — 343 — 62+

2n{z - 1) (e + 2%+ 20 ~ 423 -~ 922 — 32— 12) +6)

n>1:

H(Bgnyo, @) = ﬁ;((:ﬂ+ 1222045 _ gl 1 349 — 227 4245 — 4t — 553+
22~ 9z +2n(z—1) (=0 + 2% + 22 - 423 - 922 ~ 32—
12) + 10)

bl

2n(z —1) (20 +2® + 22" —42° - 92® - 32— 12) + 14)

H{(Bonss, @) = e (@ + 1) 212747 4 g% 27 4 325 — 62t — Tad+ 427 — 122+



H(Benst, 7) = (@ + 1)22"2m49 4 29 1 245 — 82! — 823+ 622 — 150 +

2n(z ~ 1) (2" +2° + 221 —42° - 927 —~ 32— 12) + 18)

H(Boass, ) = el(z + 1) 2™ 42 (2P — 27 + 22° — 52 - 5% + 427 -

92+ 11) +2n{z — 1) («" +2° + 22* — 42% — 92% — 3z — 12))

n>1: W(Bs)=1152n%+288n?+172n— 23
n>1: W(Bg1)=1152n° +864n? +364n + 11
n>1: W(Bny2) =1152n° + 1440n? + 748 n + 101
W (Bgnsa) = 1152n° + 2016 n* + 1324 n + 279

W (Bsnta) = 11520° + 2502 n? + 2092 n + 553

W (Bsnys) = 1162n% + 3168 n? + 3052 n + 979

The double-step spiral: s = 21

flz,2)=((—2" - 2204+ 228 + 27) 28 + ( — 2% — 22 + 225+ 3°) 25 +
(—2*—228 22" — 2%+ 2% + 224 + 22%) 2% +
(—2"—28-225 -5 —32%-22%) % +
(—22% 521 —T2% - 822 —dz —2)22 +

(=323 —622—5x—4)z—z—-2}/((z—1)*(z+1) (&322 - 1))

n>2:

H(Bnyz) = (2(z +1)° (2% + 2%2 + VE+1 + (=1)" (a2 — 232 —
VZ+1) P2 450 4100 + 427 - 112" — 222° — 182 —
182% — 267 — 352° — 522° — 542! — (-1)" (2 = 1) (= + 1)* (=22 +
z+1)(z' +1)2® —432° — 822 +4z - 2n(x - 1) (a2 + 1) (2% +
4+ 1) (@ + 228+ 2"+ 2%+ 2° + 827 + 102+ 8) + 8)/
(-1 @+ +1)%)

n>2: W(B,) =4n*+20n2—12n+2(=1)" (n—2) +21



The triple-step spiral: s = 221

flr ) =((—2® =22 4222 4+ 2" 2 + (— 2P — 2212 + 2270 +2%) B+
(—x11—2m10+215+z7)z7+
(—aW =222 — gl — g% — 2f 4 27 4 2254 22%) 284+
(=t — 221 — 5% 4 2% — 27 - 525 - 32% — 22") 2+
(-2 — 2% — 27 —32%-50° - 102* — 72 — 22%) '+
(—2x"—5x%—62°— 8z —92% — 822 — 4z —2) 23+
(—22°-62"—92%— 82 — 5z —4) 2%+
(—323—622—5z—4)z—z—-2)/(z— 1)} (22 +2+1) (x°23 - 1))

2

H(Bgp,z) = ({z + D) (22 =z + 1) (z® + x4+ 1) (2P + 2 + 1) 252 4+ 2™ 4
279 +x® — 225 — 52" — 528 - 522 - Tz — 102" - 152% —
1825 — 2127 — 2225 — 202° — 125" —72® — 22 + 2 —
nle -1+ 1) (" +28 +22 +2+1) (B + 22 + 2" + 2%+
208 + 27 =32 + 2% + 4a? + 1325 + 1222 + 152 + 12} + 2)/
(-1 @ +2*+ 22 +z+1)%)

n>1:

H(Bsni, @) = (@ + 1) (@ 42+ 1) (@ +2° + 1) 2 4 2% 4 2270 4 218
% —4x® ~ 62" — 428 - 522 — 9" — 1320 - 242 — 292° —
2957 — 242° —192° - 22 + 32 + 622 + 6z —n(x — 1) (z*+
Mzt 4+ o +1) (28 + 222 + 2" + 2 + 228 + 27~ 325+
28+ 142t + 132° + 1222 + 152 + 12) + 6)/

(-1 + 2+ 22+ 2+ 1)7)

s

H(Bspsn, ) = ((x+ 1) (@@ + 2+ 1) 255 4 220 4 251° 2217 9510
415 — 62 — 22 — 42?7 — 132 — 18210 — 324% - 3948 —
3627 — 2425 - 1825+ 62 + 1223 + 1422 + 112 -
nz-1)(@+ 1)+ + 2+ + 1) (@B + 222 ol + 2%+
208427 =325 + 2% + 142 + 1327 + 1222 + 152+ 12) + 10)/
((z-1) @+ +22+2+1)")

n>1: W(By)=120%%+ 16802 — 34n + 25

n>1: W(Bsu)=120n%+288n% + 1020 + 43

n>1: Wi{Bys)=1200% +408n2 + 3340 + 117
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s = 1133

fla,2) = ((a®+22" —22° —a') 2P+ (~a® - 228 — 2" + 2% + 2 + %) ' +
(=27 —2%—22% 524 —32% - 22%) 2% +
(—22% 52— 728 - 822 —42-2)2% +
(323 -622-bx-4)z—z-2)/((z -1 (z+1)(z*22 - 1))
nz1:
H(Byz)=(2(x+1)* (@2 +1) (@ + 232 + T+ 1+ (=1)" (2% — 232
VE+1)a P g2 — gl — 620 — 72° —62% — 1127 — 3825 —
7325 — (-1)"(z-1)*(z +1)* (22 + 7+ 1) 2* — T12* — 482 — 822 +
dz-2n{z—1)(2®+x+1) (2 +2¥ + 525 + 112! + 1227 + 1627 +
10z +8) +8)/(4(z — 1)’ (@ + 2+ 1)°)

n>1: W(By)=4n*+16n*+8n+2(-1)"(n-2)—3

s = 111333

flz,z) = ((=%+ 228 — 228 - 2%) 2" - (= 2" — 22 — 2 + 27 + 2% + 2*) 5+
(—2°-32%—4x% - 227 — 25— 225 — 29) 2P+
(-2 =227 —42% - 725 - Ta' — 72% - 22%) 24+
(—2"—42%-72%—-82* —102° — 82® — 4z — 2) 23+
(—2z°-61'—92° - 82® — 53— 4) 2%+
(~32°-62"-52-4)z-2-2)/((z-1)° (P +2+1) (=" - 1))

n=1:
H(Bgn, 7) = o {( + D2 (22 + 22 +1)2 a8+ — gl — 458 — 347 —
62°—102° — 421 - 92° + 222 -3z — 2n(x - 1) (z® + 1)

(22 +228 + 227 + 225 + 825 + 112 +92% + 2122 + 3 4+ 12) + 2)
H(Bgni1,7) =
(_45——1)1_;2'71):((:5+ 1)2 (:Erz +z+1) (I3 +2? +,1)z8n+3 -z g% 7 -

507 - 728 —142%+ 324 — 162 + 1222 =6z —2n(z — 1) (z2 + 1)
(22 +22% + 227+ 225 + 825 + 11 a* + 92% + 2122 + 32+ 12) +6)

H(Bsn42, 1) =
erEmplE+ 1) (@ 4z +1) (@ + 22+ 1) 2t - g2 - g
2z - 82% — 527 — 82° - 202° +92* — 2323 + 2222 — 9z —2n(x - 1)
(@ +1)(22% +22% + 227 + 225 + 82 + 112 + 92° + 21 5% + 32 +
12) + 10)



H(Bﬁn+:s.1)=
erEmriEs 1) et 4 1)2 2845 — 212 — g1l _ 2510 — 1028 -
67— 1025 —252° + 162 - 302° + 3222 — 122 — 2n(z - 1) (z? +1)
(a®+ 22+ 227 + 225 +82% + 112 + 9% + 2122 + 32+ 12) + 14)

H(Bgpya, ) =
m({r + 1)2 (@ +a+1)(a® +22 +1) 287 — 2212 3210 —

2% = 132% — 847 — 112° — 292% + 23 2% — 3743 + 4222 — 15z —

2n(z—1) (" + 1) (22° + 228 + 227 + 220 + 825+ 112" + 923 + 2122 +

3x+12)+18)

H(Bspys, 2) =

erErlE+ 1P (@ +2+1) (28 +22 +1) 288 _ 3412 oM
420 —142% — 827 —1225% - 352 4 292 — 4423 + 5222 — 182 —
2n(r—1)(z*+1) (22 + 228 + 227 + 22° + 825 + 1120 + 923 + 21 22 +
3z +12) +22)

n>1: W(Bgs)=T768n+672n*+28n -7

W (Bgny1) = 7680 + 1056 n® + 284 n + 27

W (Bgna) = 768 0% 4 144002 + 732n + 109

W (Bgnia) = 7681 + 182412 4 1276 1 + 271

W(Bgnia) = 76803 + 2208 n” + 1916 1 + 529

W({(Bgnis) = 768 n* + 2592 n? + 2748 n + 931
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