10 Gbit/s Line Rate Packet Processing Using Commodity
Hardware: Survey and new Proposals

Luigi Rizzo, Luca Deri, Alfredo Cardigliano

ABSTRACT pps rate by a factor of 20..50, which is great on end

The network stack of operating systems has been designec?oStS only concerned in bulk data transfer. Monitor-
for general purpose communications. Network drivers are 28 Systems an_d traffic generators,' l}owever, mUSt. be
responsible for bridging network adapters with kernel pack 2Pl to deal with worst case conditions. In particu-
management facilities. While this approach is pretty flaxipl 12t they should be able to both handle efficiently mini-
and general, it makes it unsuitable for high-speed network ™M packet size and absorbe traffic spikes that can oc-
applications. This is because the journey of a packet betwee €W at any time on the network through smart bUff?fS~
the network adapter and the target application is prettg,lon VY ith the introduction of multi-core systems, applica-
as packet have to cross several kernel layers that in specifidions can efficiently process packets if they are able to
cases could be circumvented. properly exploit such architectures. Since packet cap-

This paper presents a survey of techniques used to achievélre is the core activity of network monitoring applica-
fast packet capture and generation on commodity hardware.tlor}S’ Pamtlomng them into multiple concurrent exe-
Then it shows in detail how two solutions developed by the cution threads might not be enough. In fact the stan-
authors can be used effectively to improve some previous d2rd mechanisms provided by general-purpose operat-
proposals, not only reaching line rate but also exploitidg a 128 systems are unsuitable for granting good perfor-
vanced features of the NIC and limiting the number of cpu ance in packet capture. Non-Uniform Memory Access
cycles spent for moving packets between the wire and the (NUMA) is a multi-processor computer design which is
application. now.w1dely used in symmetr.lc multiprocessor (SMP)

The validation on both FreeBSD and Linux operating sys- 2rchitectures. In NUMA design, each processor is di-
tems has confirmed that legacy applications can signifigantl ectly connected with separate memory, thus avoiding
improve their performance when using our solutions, and Petformance hit when several processors attempt to ac-
new applications can benefit from the exposure of hardware €S the same memory. This means that threads active

features usually hidden by standard APIs such as pcap. ~ ©i@ CPU can efficiently access memory allocated on the
directly connected memory, whereas accessing memory

1. INTRODUCTION on a non-local CPU is significantly slower as this hap-
pens by means of the Quick-Path Interconnect (QPI)

In the evolution of computer systems there has always bus. The result is that when applications are parti-
been a race between the speed of communication links,

and the ability of systems to cope with the maximum
packet rates achievable by the link. The tension comes
from the fact that processing costs have a constant per-
packet component which becomes dominant on smaller
packets. Taking as a reference a 10 Gbit/s link, the

tioned into several execution threads, it is important
to preserve memory locality thus access via QPI bus is
minimized. This is even more important for network
activities, as whenever a packet is received some mem-
ory (skb in Linux, and mbuf on FreeBSD) needs to be
allocated. The consequence is that packets should be

raw throughput is well below the memory bandwidth of
modern systems (between 6 and 8 GBytes/s for CPU to
memory, up to 5 GBytes/s on PCI-Express x16). How-
ever a 10Gbit/s link can generate up to 14.88 million
Packets Per Second (pps), which means that the system
must be able to process one packet every 67.2 ns. This
translates to about 200 clock cycles even for the faster
CPUs, and might be a challenge considering the per-
packet overheads normally involved by general-purpose
operating systems. The use of large frames reduces the

allocated and consumed on the same physical processor
where they have been received, as otherwise the per-
packet QPI penalty will significantly reduce the overall
application performance if packet memory is allocated,
accessed, and released on different physical processors.

In order to expoit multi-core architectures, network
cards manufacturers have changed the design of net-
work adapters by logically partitioning them into sev-
eral independent RX/TX queues. Usually the number



Thread Thread Thread Thread ]
{ or or or or |
{ Process Process Process Process i
- AN j

User
Space

Kernel
Space

RSS (Resource Side Scaling)
[Hardware per-flow Balancing]

1 Gbit / 10 Gbit NIC

Figure 1: Multi-Queue Network Adapters

of queues is limited to the number of available processor
cores; thus a 8 core system can access up to 8 RX/TX
queues. Packets are distributed across queues by means
of Receive-Side Scaling (RSS) [4] that is implemented
in hardware by network adapters. Incoming packets
are decoded and a hash value is computed on specific
header fields such as IP address, protocol and port. This
value is used to decide on which queue a specific packet
will be assigned. RSS uses a one-way hash that does
not guarantee that all packets belonging to the same
communication flow (e.g. a TCP connection) will be
assigned to the same RX queue. From the operating
system point of view, it is now possible to simultane-
ously poll and send packets per queue thus maximizing
the overall throughput. Unfortunately, these queues
are not exposed to applications as the operating sys-
tem presents multi-queue network adapters as legacy
single-queue adapter. The result is that multi-threaded
applications cannot poll/transmit packets by accessing
directly the available queues, but they still need to se-
rialize the operations as all threads need to access the
same ethernet device.

Due to all these changes in computer architectures,
the only way to achieve good performance on multi-core
systems is to redesign the application. As stated before,
wisely partitioning applications into multiple threads is
a prerequisite for spreading the load across cores, but
this might not be sufficient unless threads can indepen-
dently receive and transmit packets. On the other hand,
due to the one-way RSS hash, applications that need to
process bi-directional traffic (also known as flow-based
applications) cannot be bound to a specific queue, as
the two traffic directions of the same connection will
be sent to different queues. In a nutshell, it is possible
to maximize performance of packet-based applications
just spawning one application per RX queue, as they
process each packet independently. Whereas flow-based
applications cannot benefit from RSS traffic balancing
as they need to maintain the flow state observing both
flow directions and process packets according to it.

Packet-based Applications Flow-based Applications

Network Bridges and Firewalls | Intrusion Detection Systems
NetFlow and sFlow Probes Intrusion Protection Systems
VoIP (Voice over IP) Probes Network Performance Analyzer
Packet-to-Disk Applications HTTP(S) Traffic Analyzers
Network Latency Monitors

Table 1: Packet and Flow-based Applications

As the price per port is below 5008, 10 Gbit net-
work adapters are not becoming very common in data
centers. Considered all the recent advances in com-
puter and network architectures, we decided to analyze
whether available packet processing frameworks can en-
able applications to cope with high-speed traffic analy-
sis. In this paper we do not want to focus on specific
applications, nor consider per-packet processing time as
this changes significantly according to the application.
The goal is to analyze how the various frameworks han-
dle network packets, whether they can exploit modern
network adapters, and also if they offer an application
programming interface (API) for simplifying the devel-
opments of packet-processing applications.

In the first part of this paper, we present a survey of
line rate packet capture and generation techniques on
high speed (1 to 10 Gbit/s) links. In the second part, we
focus on a couple of systems developed by the authors,
showing when they can be useful, and how they improve
the state of the art, in the context of packet capture and
generation.

In more detail, the paper is structured as follows.
In Section 2 we briefly describe how network cards are
managed in operating systems, the basic techniques used
to implement packet capture and generation, and the
performance issues that they have. Section 3 presents
solutions based on dedicated hardware, traditionally
used to provide reliable performance for dedicated cap-
ture and generation systems. Software based solutions
are presented in Section 4. Section 5 covers the design
and implementation of two packet processing frame-
works developed by the authors.

2. BACKGROUND

2.1 Limitationsin Operating System Design

The network support on operating systems has been
designed for general purpose networking. While this
solution is flexible enough to accommodate all the var-
ious networking needs, it is suboptimal for high-speed
network processing. Both network drivers and the net-
work stack have been designed to be generic allowing
new protocols to be accommodated by means of ker-
nel modules. The drawback is that the packet journey
from the network adapter to the user-space application
is pretty long. Packets have to traverse several layers
including the firewall and traffic shaper, that increase



latency and limit the overall performance as they add
per-packet processing overhead.

In a similar fashion, network drivers have also been
designed for general purpose networking. Operating
systems allocate memory for storing incoming packets
and queueing them into the networking stack. This
memory is then freed as soon as the packet has been pro-
cessed. Although memory allocation for small packet
buffers is a relatively fast operation, it has a cost and
operating systems try to minimize it by applying vari-
ous memory recycling techniques [14, 18]. Avoding at
all memory allocation is not possible as long as packets
need to be queued in kernel datastructures and nor pro-
cessed immeditely as they leave the driver. Please note
that in order to preserve a good performance, NUMA
systems must free the packet memory on the same core
on which the original memory was allocated.

Another design principle of the network stack, is that
packets can be consumed by multiple applications. This
happens for instance in case of multicast communica-
tions or packet capture. In order to reduce memory
usage, operating systems do not duplicate packets but
use references to the original packet. The drawback
is that this practice delays memory release until the
slowest packet consumer has processed the packet, and
also might cause out-of-memory faults in case of traffic
spikes when the memory allocator needs fresh memory
for incoming packets, while the actual memory cannot
be released as still in use by packet consumers.

Network device drivers are responsible for both re-
ceiving and transmitting packets, interfacing network
adapters with the kernel. Incoming packets are copied
into memory buffers that are then queued into kernel
datastructures, outgoing packets are placed into net-
work adapters memory until they are transmitted on
the wire. Ideally packets directed to user-space appli-
cations should be delivered directly, using the shortest
possible path. In practice these packets are first copied
in kernel and then passed to user-space. In order to re-
duce the packet journey, several packet capture frame-
works [5, 2] have adopted memory-map techniques for
reducing the cost of copying packets from kernel to user-
space though system calls. Although the performance
has been greatly improved with respect to solutions like
Linux PF_PACKET, many CPU cycles are wasted as in-
coming packets are copied from the driver to the kernel,
and then to specific memory datastructures mapped to
user-space. These solutions address just the problem
of passing efficiently packets from kernel to user-space
but do not tackle other issues including packet memory
allocation/deallocation.

2.2 Legacy DeviceDrivers

Network device drivers allocate two circular buffers,
one for RX and one for TX, on which packets are copied.

Whenever a packet is received, the network adapter
copies the packet in DMA inside the first available slot
of the RX ring and notifies the driver by means of an
interrupt. When packets need to be transmitted, the
network driver copied the packet inside the first avail-
able slot of the TX ring and it initiates the transmission
by usually updating a card register. In order to mini-
mize memory allocations, the circular buffers memory
slots point to packet memory buffers; adding/removing
packets from the ring can be achieved by setting the
circular buffer slot pointer to the address of the packet
memory buffer.

In modern operating systems, network device drivers
usually rely on a flexible packet representations (mbuf,
skbuf, NdisPacket) to support a variety of requests
from the OS: arbitrary data fragmentation, buffer shar-
ing, offloading of tasks to the network adapter. This
approach however causes large per-packet overheads,
impacting performance in many ways, including energy
efficiency and the ability to work at wire speed (up to
14.8 Mpps on 10 Gbit/s interfaces).

Dedicated appliances avoid this overhead by taking
direct control of the hardware, or removing all unnec-
essary software layers. Following a similar approach,
researchers have used modified Click drivers [11, 8], or
export packet buffers to user space [9], to reach process-
ing speeds of millions of packets per second per core. A
limitation of this approach is that the application (even
though through libraries) must take full control of the
hardware, which makes the system extremely vulnera-
ble in case of a crash of the application itself, and often
prevents the use of some convenient OS system primi-
tives (e.g. select/poll).

2.3 Improving Packet Processing

As described in the previous sections, the design of
operating systems is limiting the packet processing per-
formance. Tests performed in our lab have shown that
most state of the art packet processing frameworks, as
those listed on 4, can very seldom process more that
50% of the capacity of a 10 Gbit/s ethernet link when
using minimal size packets. Even if some packet pro-
cessing applications such as NetFlow /IPFIX probes can
operate with sampled packets, beside the fact that packet
sampling might reduce measurement accuracy, on most
packet capture frameworks its usage does not reduce the
load on the system. This is because discarding sam-
pled packets is still a costly activity as device drivers
capture and copy packets on memory buffers prior to
discard them, and free the memory used to store the
packet. All these facts demonstrate that in order to im-
prove packet processing performance it is not enough
to just address selected issues such as packet memory
allocation, but the overall packet process infrastructure
has to be redesigned. Furthermore, most packet pro-



cess frameworks limit their scope to just packet capture
without offering specific packet transmission facilities,
preventing them from being used in systems that re-
quire packet transmission, such as IPSs and OpenFlow
switching [16]. In fact, an area that is mostly unex-
plored, is the use of 10 Gbit commodity hardware for
packet transmission. Besided rare exceptions [17] based
on commercial hardware cards, the only available alter-
native are commercial traffic generators. Considered
that modern computer systems are pretty fast, we be-
lieve that it is now time to see whether this niche mar-
ket could be filled using commodity network adapters
for generating traffic at 10 Gbit/s wire-rate.

3. HARDWARE SOLUTIONS

In 2001 Endace has created the market of FPGA
(Field Programmable Gate Array)-based card introduc-
ing the DAG card [1, 10]. Recently an open-source
FPGA-based adapter named NetFPGA [13] has entered
this market. These cards leverage on FPGAs to reduce
load on the CPU during packet capture and transmis-
sion. The result is that even at minimum size pack-
ets it is possible to capture and transmit traffic with
a modest CPU load. Other advantages of these cards
are the ability to precisely timestamp in hardware in-
coming packets, features that is available just on a few
commodity network adapters such as Intel 82580-based
NICs. These adapters receive and transmit packets
in DMA (Direct Memory Accees) by reading/writing
packets into the memory banks installed on the network
adapter. Incoming packets can be tagged according to
filtering rules (available only on selected card models),
so that they can be balanced across virtual network
queues, similar to what happens with multi-queue com-
modity network adapters. The ability to synchronize
the card clock used for packet timestamping via a GPS
makes these cards able to satisfy advanced packet pro-
cessing needs.

4. SOFTWARE SOLUTIONS

Software based solutions become popular whenever
the performance of CPUs and I/O buses matches or
exceeds that of network hardware. As of this writing,
we are in this situation, with 10 Gbit/s data rates be-
coming manageable in software with modern multicore
CPUs and multiqueue devices. As a consequence, re-
cent literature has presented a number of solutions that
range from custom Click drivers [11] to memory mapped
packet buffers [12, 9, 15] to PF_RING and DNA [5, 6].

4.1 Polling Click drivers

Click [11] is a modular software architecture devel-
oped long ago to build packet processing systems, and
widely used in research and production systems. Click
makes it easy to connect software “elements” to build

a packet processing chain connecting sources (typically
the receive side of a network card) to sinks (the transmit
side of those cards). Some special Click elements im-
plement custom device drivers which, through the use
of Polling mode and a variety of performance optimiza-
tions, reduce the per-packet overhead.

4.2 Memory mapped packet buffers

A number of solutions try to provide direct access to
the packet buffers managed by the network card. UIO-
IXGBE [12] is a custom kernel driver and user-space
library developed by Qualcomm for Intel 82598-based
10 Gbit adapters, that creates a transparent memory
mapping layer. User-space applications can expoit its
API to both send and receive packets at very high-speed
in DMA based on an abstraction layer developed as
part of the project. Unfortunately the driver is not
just a patch of the Intel driver but it has been recoded,
thus support of new 82599-based NICs is not present.
Netslice [15] is another such solution that falls into this
category.

5. TOWARDSI10GBIT LINE RATE PACKET
PROCESSING

In this section we present the design principles and
performance evaluation of two proposals developed by
the authors for achieving line rate at 10 Gbit/s speeds
and more.

5.1 Performancemetrics

A packet processing system usually exercises many
system components, and it is important to identify in-
dividual contributions to the performance of the overall
system. CPU cycles are one of the main resources that
we account for, but of course depending on the sys-
tem under test there might be other resources that are
in short supply, such as memory or I/O bus bandwidth.
Even just limiting at software considerations, we should
clearly distinguish between two cost factors:

e system costs, which account for the resources con-
sumed in bringing packets from the network to
the application, and vice-versa. This category in-
cludes, as an example, interrupt processing and
system call overhead (including data copies);

e application costs, which accounts for the specific
processing done by applications. As an example,
timestamping, classification, checksumming etc. all
fall into application costs.

In many systems, one of the factors is dominating over
the other, so mixing the two would hide a lot of informa-
tion on the behaviour of the system under analysis. In
this paper, the focus is on mechanisms to support fast
access to network traffic, thus we are almost exclusively



interested in determining the system costs. It follows
that we will structure our tests in a way that makes
application costs negligible or at least clearly defined.

In an orthogonal dimension, cost factors can be split
into per-packet and per-byte components. The latter
are usually simple to deal with, because they are pro-
portional to the memory bus bandwidth of the system.
Modern CPUs easily reach 4..10 Gbytes/s on the mem-
ory bus, meaning that the per-byte costs are in the mi-
crosecond range even for the largest packets. Only on
slow CPUs or systems with slow memory or I/O buses
the per-byte costs can become important. On the con-
trary, per-packet costs are highly variable depending on
the system and the application.

From these considerations it follows that the correct
way to evaluate the performance of packet processing
systems is often to drive the system with the shortest
possible packets and measure the throughput in packets
per second.

With this in mind we present two solutions, one es-
pecially suited to packet generation, the other to packet
capture and filtering, that improve the state of the art

6. NETMAP

netmap is a recent proposal that falls in the cate-
gory of memory mapped buffer access. In common with
other proposals of this class, netmap reduces the per-
packet overhead through the use of memory mapped
buffers and metadata. However, it goes a step further
in terms of other features, such as device independence,
safety of use, and integration with the operating system.

In netmap, a Network Interface Controller (NIC)

can be dynamically switched between regular mode (where

the NIC exchanges data packet with the host stack as
usual) and netmap mode, where the operating system
remains in control of the configuration of the NIC, but
the data path is disconnected. Adapters in netmap
mode can be controlled by user programs through a few
data structures residing in a shared memory region, and
ioctl() and select() (or poll()) system calls. The shared
data structures contain three types of objects called
packet buffers, netmap rings, and netmap_if. Packet
buffers are fixed size memory blocks, non pageable and
allocated by the kernel, where the NIC reads/writes
packets from/to the network. Each buffer is identified
by a unique index in the range 1... Np, with the up-
per value determined by the kernel depending on mem-
ory availability. A netmap ring is a shadow, device-
independent version of the hardware rings normally used
by the NIC to manage the transmit and receive queue.
A netmap ring, also residing in the shared memory re-
gions where buffers are, contains fields indicates the ring
size, the current read (or write) position, the number of
slots available for read (or write), some flags, and an
array of slots, one for each buffer which is part of the

Application

Figure 2: Netmap Memory Layout.

ring. The slot in turn contains the index of the buffer
associated to the slot, the length of the packet stored
in it, and some flags. The translation between the slot
index and its address in the shared memory is done
thanks to another field of the netmap ring, which in-
dicates the offset (buf-ofs) between the address of the
netmap ring (ring_addr) and the start of the buffer
area in the shared memory region. With these informa-
tion, the address of a buffer can be simply computed as
ring_addr + buf_ofs + index * buf_size

and the computation is position independent, i.e. does
not depend on where, in the process address space, the
shared memory is mapped. Finally, all shadow rings
and other parameters of an interface are described by a
netmap_if, which contains the number of rings and an
array of offsets between the netmap_if and each of the
rings. Once again, the use of offsets permits to reach
the rings in a position-independent way. The switch-
ing of a NIC in netmap mode happens by opening the
special device /dev/netmap and invoking the NIOCREG
ioctl, passing the interface name as a parameter. On
return the ioctl provides the size of the shared memory
region where all data structures reside, and the offset
in this area of the netmap_if. The memory area can be
subsequently mapped into the process’ address space
through an mmap () call.

At this point, processes can issue non-blocking ioctl ()
calls to synchronize the state of the netmap rings with
those of the hardware rings. In particular, on the trans-
mit side, a process can fill the buffers (starting from
the current write position, and up to the number of
available ones) with the content of packets to send,
and call the NIOCTXSYNC ioctl() to tell the kernel
to actually schedule the transmission. The call vali-
dates the parameters (buffer indexes and lengths) in the
netmap ring, updates the hardware rings accordingly,
and possibly starts the NIC for the new transmissions.
On return, the shadow ring will contain updated val-
ues for the current insert position and number of free
slots, also taking into accounts previous transmissions
that have completed. On the receive path, the applica-
tion should first call the NIOCRXSYNC ioctl(), which
checks whether there are newly received packets, copies



the length into the shadow rings, and updates the state
of the NIC, this time reusing any buffers that the ap-
plication has declared as newly available. Besides being
non blocking, none of this calls involves any data copy-
ing (with the exception of the length field), because
the buffers are shared between the the netmap and the
hardware rings. At the same time, a misbehaving appli-
cation cannot cause corruptions in the system because
the content of the rings is checked before being used to
update the state of the NIC.

Blocking until I/O is possible is done through the
poll() system call. In particular, each file descriptor
returned by opening /dev/netmap is associated to one
(or all) queue pair in the NIC — the association is con-
trolled by one field in the netmap_if. This field also de-
termines which queues are used by the NIOCTXSYNC
and NIOCRXSYNC system calls. In the case of poll(),
the file descriptor unblocks when the number of avail-
able descriptor becomes non zero. A blocking descrip-
tor also causes the execution of the body of a TX/RX
SYNC. This further reduces the system call overhead
of a process using netmap: the eventloop requires just
a single system call for each batch of packets to be sent
or received on the various netmap-enable interfaces.

In addition to those associated to the adapter’s queues,
two more netmap rings per interface are used to com-
municate with the host stack. Packets coming from the
host stack are made visible in an “RX” netmap ring,
whereas packets written to the extra “T'X” netmap ring
are encapsulated and passed up to the host stack.

netmap is especially useful for applications (such as
traffic generators, monitors, firewalls, etc.) that need
to deal to traffic on a packet-by-packet basis. Such ap-
plications can set the interface in netmap mode, and
use the netmap rings to read incoming traffic or send
locally generated traffic. Passing packets through inter-
faces (or from/to the host stack) can be done by copying
the buffers’ contents from one ring to another. In many
cases, zero-copy operation is possible by just swapping
buffer pointers between rings, so that received buffers
can be sent out on a different interface, while the other
buffer is made available for incoming packets.

At least three factors contribute to the performance
achieved by netmap: i) no overhead for encapsulation
and metadata management; ii) no per-packet system
calls and data copying (ioct1l()s are still required, but
involve no copying and their cost is amortized over a
batch of packets); iii) much simpler device driver oper-
ation, because now all buffers have a plain and simple
format that requires no run-time decisions.

The first prototype of netmap, developed on FreeBSD,
consists of about 2000 lines of code for device func-
tions (ioctl, select/poll) and driver support, and indi-
vidual driver modifications (mostly mechanical, about
500 lines each) to interact with the netmap rings. The

most tedious parts of the driver (initializing, the PHY
interface, etc.) do not need changes. To date, netmap
support is available for the Intel 10G and 1G, and for
the RealTek 8169-based adapters. Support for other
devices is coming.

netmap dramatically reduces the per-packet over-
heads compared to the ordinary host stack. One core
achieves line rate (14.86Mpps) at just 1.3GHz, and even
at 150 MHz can push out 1.76 Mpps. These numbers
correspond to roughly 90 clock cycles/packet. The re-
ceive side gives similar numbers. Using 2 or 4 cores
incurs a modest reduction of efficiency (going from 90
to 100-110 clocks/packet) probably due to memory and
bus contention.

The ability to send or receive traffic bypassing the
protocol stack is very interesting for certain applica-
tions. Finally, but not surprisingly, driver simplifica-
tions are so large that putting an interface in netmap
mode and then using a userspace process to move pack-
ets between the host stack and the device resulted in a
15% increase compared to using the driver in standard
mode.

7. PF_RING DNA
In 2003 PF_RING [5], a framework for accelerating

packet capture and processing, has been released. PF_RING

has been designed to be feature rich and not just accel-
erate packet capture. In particular it supports advanced
packet filtering in addition to legacy BPF, in-kernel
packet processing by means of loadable kernel plugins,
load-balancing across multiple sockets, and ability to
receive-modify-transmit selected packets by combining
filtering rules with kernel plugins.

Contrary to similar solutions available at that time,
PF_RING implements a memory-mapped memory buffer
allocated at socket creation, on which incoming pack-
ets are copied. User-space applications can read pack-
ets simply accessing the mapped memory and incre-
menting the offset of the last read packet. This solu-
tion avoids system calls for reading packets and also
uses a statically allocated memory without any per-
packet memory allocation. In order to further enhance
PF_RING performance, in 2005 a variant of PF_RING
named PF_RING DNA (Direct NIC Access) [6] has been
introduced. Similar to FPGA-based NICs, in DNA
mode the per-socket PF_RING circular buffer, on which
incoming packets are copied, has been replaced with
the memory ring allocated by the device driver to host
pointers to incoming packets. As the memory ring needs
to be mapped to user-space, a modified network driver
allocates it using continuous non-swappable memory.
Similar to netmap, incoming packets are copied in the
ring by the network adapter, and the user-space appli-
cation that manages the buffer is responsible for read-
ing packets and updating the index of the next slot



that will host incoming packets. All the communica-
tions with the network adapter happen in DMA, as
PF_RING maps in user-space both the packet memory
ring and card registers. Contrary to netmap that does
not allow user-space applications to manipulate card
registers but rather update the card status by means
of system calls, the DNA approach maximizes perfor-
mance by avoiding un-necessary system calls even if
misbehaved application could potentially set the reg-
isters to invalid values that migh prevent applications
from receiving packets. This is considered a minor is-
sue, as this practice does not result in system crashes
or memory corruption, when compared to the benefit of
completely bypassing the kernel during packet process-
ing. The DNA implementation details are hidden to
user-space applications as they read packets using the
PF_RING API that is responsible for packet manipula-
tion and card registers udpdate. Initially available for
the Intel 1 Gbit/s adapters, recently we have added sup-
port for 10 Gbit/s adapters. As modern adapters fea-
ture multiple RX queues, the 10 Gbit version of DNA,
creates a memory ring per queue, so that applications
can read packets from individual rings. Intel adapters
do not have really independent RX queues, thus the
DNA network driver has to consume packets for those
RX queues on which there is no active application. The
drawback is that the operating system has to perform
minimal packet housekeeping even if not application is
receiving packets. Due to space constraints we have
decided not to present detailed testign reports, as 10
Gbit/s DNA performance figures are similar to netmap
and other memory-mapped solutions, being their design
conceptually similar. Thus even with a low-end dual-
core server it is possible to capture packets at 10 Gbit/s
wire-speed using a limited numer of CPU cycles, or use
a dual-port 10 Gbit card and thus capture about 20
Mpps. What makes DNA unique with respect to other
available solutions is:

e The DNA driver is a pluggable solution that can
be used seamlessly by legacy applications such as
those based on pcap and PF_RING (non DNA).

e Most PF_RING features are available in DNA. The
only difference is that DNA is much faster but
with the limitation that an RX queue cannot be
shared by multiple applications. Multiple threads
living in the same application can instead concur-
rently access the queue as the user-space library is
thread-safe.

e In order to both read packets and update the card
registers for notifying that packets have been read,
DNA uses memory mapping with no need of issue
system call as required by netmap. The complete
kernel bypass makes DNA virtually the fastest avail-
able solution, limiting its speed just on the network

adapter being used.

e The memory buffers are allocated per queue, re-
specting the memory locality principle, and thus
making it NUMA friendly.

e In DNA, when no applications are reading packets
from queues, the kernel is not doing any house-
keeping activity including buffers cleanup, and no-
tification about packet being received. The out-
come is that every CPU cycle is used wisely and
not wasted in activities that could be potentially
avoided. This includes interrupts processing that
is disabled in DNA | and enabled only during po11 ()
calls that are issued only when no packet is avail-
able for processing.

e As queues are completely independent and man-
aged in user-space with no kernel housekeeping,
applications sitting on top of them are fully inde-
pendent can be mapped on different CPU cores
with no cross-dependency. The outcome is that
the system scales linearly with the number of cores,
as each couple {queue, application} is independent
from the others. Tests have validated this claim
when both increasing the number of queues and
ethernet ports.

e PF_RING DNA is not yet another packet process-
ing accelerator, but a comprehensive framework
that simplifies the design of networking applica-
tions.

8. OPEN ISSUESAND FUTURE WORK

Modern network adapters are becoming increasingly
powerful both in terms of speed and features. Intel

82599-based and Neterion X3110 10 Gbit ethernet adapters

feature advanced packet steering configuration that, based
on hardware filtering rules, allow incoming packets to
be diverted to specific RX queues. PF_RING already
supports native Intel packet steering facilities [7], and
its support is also planned for netmap.

Another area where we are focusing is on effective
packet transmission. While TX support is under de-
velopment for DNA, netmap has demonstrated that 10
Gbit/s wire-rate traffic generation is feasible using entry-
level servers. Although open-source software traffic gen-
erators have been available since long time, they are fo-
cusing more on flexibility rather than speed. Recently
the ostinato [17] project has released a flexible software-
based traffic generator that can run on a large number of
platforms including Linux and FreeBSD. We are plan-
ning to modify it so that it can run on top of DNA
and netmap, in order to combine both the flexibility of
ostinato with high packet generation rates.

As the use of virtual machines is becoming increas-
ingly popular for reducing administrative and opera-



tional costs, we are planning to explore how DNA and
netmap could be effectively used in virtualized environ-
ments. The vPF_RING (Virtual PF_RING) [3] project
has demonstrated that the use of memory mapping in-
side virtual machines increases significatly the packet
processing performance with respect to virtualized net-
work adapters. We are currently evaluating how to add
DNA support to vPF_RING in order to further reduce
packet processing costs, while increasing packet capture

rate.

Finally, netmap support of additional network cards
and its porting to Linux is under development. In order
to make netmap transparent to legacy applications, we
are also coding some glue software for porting libpcap
on top of netmap, similar to the libpcap PF_RING DNA
support. The goal is to speed up legacy applications
without the need to modify them.

0.

FINAL REMARKS

This paper has presented a survey of previous pro-
posals for fast packet capture and generation, followed
by two novel systems proposed by the authors and tar-
geted to smart packet capture (exploiting features of
the hardware) and packet generation, respectively. Al-
though memory-mapping techniques are not novel in
the industry, both netmap and PF_RING DNA have
demonstratated that 10 Gbit/s packet processing at

wire-rate is feasible using commodity hardware.

Our

code, working on commodity hardware and operating
systems, reaches 14.8Mpps with only a modest CPU
usage, leaving most of the CPU cycles available for user
operation.

10.

ACKNOWLEDGEMENTS

We would like to thank Silicom Ltd. that has greatly
supported and contributed to the development of 10
Gbit PF_RING DNA.

11.
1]
2]

REFERENCES

The dag project. Technical report, University of
Waikato.

A. Biswas. A high performance real-time packet
capturing architecture for network management
systems. Technical report, Masters Thesis,
Concordia University, 2005.

A. Cardigliano. Towards wire-speed network
monitoring using virtual machines. Technical
report, Masters Thesis, University of Pisa, 2011.
Microsoft Corporation. Scalable networking:
Eliminating the receive processing bottleneck -
introducing rss. Technical report, Technical
Report, 2004.

L. Deri. Improving passive packet capture:beyond
device polling. In SANFE 2004. Workshop on.

[6]

[14]

[15]

[16]

[17]

[18]

L. Deri. ncap: Wire-speed packet capture and
transmission. In End-to-End Monitoring
Techniques and Services, 2005. Workshop on,
pages 47-55. IEEE, 2005.

L. Deri, J. Gasparakis, P. Waskiewicz, and

F. Fusco. Wire-speed hardware-assisted traffic
filtering with mainstream network adapters.
Advances in Network-Embedded Management and
Applications, pages 71-86, 2011.

M. Dobrescu, N. Egi, K. Argyraki, B.G. Chun,
K. Fall, G. Iannaccone, A. Knies, M. Manesh, and
S. Ratnasamy. Routebricks: Exploiting
parallelism to scale software routers. In ACM
SOSP, pages 15-28. Citeseer, 2009.

S. Han, K. Jang, K.S. Park, and S. Moon.
Packetshader: a gpu-accelerated software router.
ACM SIGCOMM Computer Communication
Review, 40(4):195-206, 2010.

A. Heyde and L. Stewart. Using the endace dag
3.7 gf card with freebsd 7.0. 2008.

E. Kohler, R. Morris, B. Chen, J. Jannotti, and
M.F. Kaashoek. The click modular router. ACM
Transactions on Computer Systems (TOCS),
18(3):263-297, 2000.

Max Krasnyansky. Uio-ixgbe.
https://opensource. qualcomm.com/wiki/UIO-
IXGBE.

John W. Lockwood, Nick McKeown, Greg
Watson, Glen Gibb, Paul Hartke, Jad Naous,
Ramanan Raghuraman, and Jianying Luo.
Netfpga—an open platform for gigabit-rate
network switching and routing. Microelectronics
Systems Education, IEEE International
Conference on/Multimedia Software Engineering,
International Symposium on, 0:160-161, 2007.
E-Con InfoTech Pvt Ltd. Ethernet driver and
optimization techniques, revision 2.0. Technical
report, Technical Report, 2007.

Tudor Marian. Operating systems abstractions for
software packet processing in datacenters. PhD
Dissertation, Cornell University, 2010.

Nick McKeown, Tom Anderson, Hari
Balakrishnan, Guru Parulkar, Larry Peterson,
Jennifer Rexford, Scott Shenker, and Jonathan
Turner. Openflow: enabling innovation in campus
networks. SIGCOMM Comput. Commun. Rev.,
38:69-74, March 2008.

ostinato.org. Ostinato: Packet/traffic generator
and analyzer. Technical report, 2011.

C. Walravens and B. Gaidioz. Receive descriptor
recycling for small packet high speed ethernet
traffic. In MELECON, 2006, pages 1252—1256.
IEEE, 2006.



