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Abstract

Background: Liver fibrosis is a hallmark of clonorchiasis suffered by millions people in Eastern Asian countries.
Recent studies showed that the activation of TGF-B/Smad signaling pathway can potently regulate the hepatic
fibrogenesis including Schistosoma spp. and Echinococcus multilocularis-caused liver fibrosis. However, little is known
to date about the expression of transforming growth factor-3 (TGF-f3) and other molecules in TGF-/Smad signaling
pathway which may play an important role in hepatic fibrosis caused by C. sinensis.

Methods: A total of 24 mice were individually infected orally with 45 metacercariae, both experimental mice and
mocked-infected control mice were anesthetized at 4 week post-infection (wk p.i.), 8 wk p.i. and 16 wk p., respectively.
For each time-point, the liver and serum from each animal were collected to analyze histological findings and
various fibrotic parameters including TGF-3,, TGF-3 receptors and down-stream Smads activation, as well as fibrosis
markers expression.

Results: The results showed that collagen deposition indicated by hydroxyproline content and Masson’s trichrome
staining was increased gradually with the development of infection. The expression of collagen type al (Col1a)
mRNA transcripts was steadily increased during the whole infection. The mRNA levels of Smad2, Smad3 as well as
the protein of Smad3 in the liver of C. sinensis-infected mice were increased after 4 wk p.i. (P < 0.05, compared with
normal control) whereas the TGF-3,, TGF-B type | receptor (TGFBRI) and TGF-{3 type Il receptor (TGFBRI) mRNA
expression in C. sinensis-infected mice were higher than those of normal control mice after 8 wk p.i. (P < 0.05).
However, the gene expression of Smad4 and Smad7 were peaked at 4 wk p.i. (P < 0.05), and thereafter dropped to
the basal level at 8 wk p.i, and 16 wk p., respectively. The concentrations of TGF-f3; in serum in the C. sinensis-infected
mice at 8 wk p.i. and 16 wk p.i (P < 0.05) were significantly higher than those in the control mice.

Conclusions: The results of the present study indicated for the first time that the activation of TGF-3/Smad signaling
pathway might contribute to the synthesis of collagen type | which leads to liver fibrosis caused by C. sinensis.
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Background

Clonorchis sinensis is a food-borne zoonotic parasite,
which is epidemic in some Eastern Asian countries in-
cluding China, Korea, Japan, and Vietnam. In humans, it
is assumed that approximately 15-20 million people
were suffering from clonorchiasis whereas the number
of infected people was 12.5 million in China according
to a report based on a nationwide survey [1,2]. Human
become infected by ingestion of freshwater fish contain-
ing C. sinensis metacercariae. The metacercariae develop
into C. sinensis juveniles in the duodenum by the stimu-
lation of trypsin, and then rapidly move to the intrahe-
patic bile duct where the juvenile worms become mature
and survive for decades [3,4]. C. sinensis infection can
induce significant cholangitis, adenomatous hyperplasia
mechanical obstruction of the hepatobiliary duct and
cholelithiasis [5]. Furthermore, C. sinensis is considered
as a group I carcinogen-metazoan parasite to potentially
induce cholangiocarcinoma in humans [6]. Chronic in-
fection with C. sinensis can also potently lead to liver fi-
brosis which is marked with excessive accumulation of
extracellular matrix components (ECM) due to an im-
balance between its synthesis and degradation [2,7,8].
Moreover, some components of worms and its excre-
tory/secretory products (ESP) which can probably par-
ticipate in the development of hepatic fibrosis have been
widely investigated in the lab of Professor Yu [9-13].
However, molecular mechanism underlying fibrotic re-
sponses of hosts to these virulence factors is not fully
elucidated.

Transforming growth factor-p (TGF-f) as one of major
pro-fibrotic cytokines plays a crucial role in orchestrating
fibrogenesis and it is demonstrated that active TGEF-p;
motivates its downstream signaling pathway, leading to
phosphorylation of Smad2 and Smad3 (also called R-
Smad) which is meditated by TGF- type I (TGEBRI) and
type II receptors (TGFBRII), phosphorylated Smad2 and
Smad3 rapidly combine with a common mediator called
Smad4 and subsequently migrates to the nucleus, result-
ing in massive fibrotic genes expression (such as collagen
type I) [14-17]. TGF-B/Smad signaling pathway has been
proved as a canonical pathway that can potently regulate
the hepatic fibrogenesis [18,19], and a few studies have ad-
dressed about the activation of TGF-f/Smad signaling in
fibrogenesis caused by parasitic infection, such as Schisto-
soma spp. and Echinococcus multilocularis, which sug-
gested that TGF-f/Smad signaling play important roles in
the development of liver fibrosis [20-22]. However, to our
best knowledge, little is known of the expression and po-
tential roles of TGF-B/Smad signaling pathway which may
be involved in process of hepatic fibrosis caused by C.
sinensis. In the light of this background, the objectives of
the present study were to investigate the expression
dynamics of TGF-f/Smad pathway and analyze their
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possible roles in the development of hepatic fibrosis in
BALB/c mice infected by C. sinensis.

Methods

Parasites

Pseudorasbora parva, the second intermediate hosts
which were naturally infected with C. sinensis, were col-
lected in Guangxi Autonomous Region, People’s Republic
of China. And the fish were transported to our laboratory
by air. Metacercariae of C. sinensis were collected by
digesting fish with a pepsin-HCI (0.6%) artificial gastric-
juice. The collected metacercariae were preserved in cold
Alsever’s solution with antibiotics until use.

Animals

Female BABL/c mice (6 ~8 weeks old, 22 +2 g) were
purchased from Shanghai Laboratory Animal Co., Ltd
(SLAC, Shanghai, China). The mice were housed in an
air-conditioned room at 24°C with a 12 h dark/light
cycle and permitted free access to standard laboratory
food and water. All animal experiments were approved
by the Animal Care and Use Committee of Xuzhou
Medical Collage. The mice were individually infected or-
ally with 45 metacercariae. Mock-infected control mice
were similarly administered with 50 ul of sterile normal
solution. Both experimental mice (n=24) and control
mice (n=15) were divided into 3 groups and anesthe-
tized at 4 week post-infection (wk p.i.), 8 wk p.i. and 16
wk p.i., respectively. For each time-point, the liver and
serum from each animal were harvested to analyze
histological findings and various fibrotic parameters.

Histological examination and evaluation of hepatic
fibrosis in mice caused by C. sinensis

For histological evaluation, all liver samples were fixed
in formalin, embedded in paraffin. 4 pm thick sections
were prepared and then stained with hematoxylin and
eosin (H&E) and Masson’s trichrome (MT). These speci-
mens were observed and photographed under an inverted
microscope. Collagen depositions from 5-8 images of
each specimen were quantified using Image-Pro Plus soft-
ware (Media Cybernetics, Rockville, MD, USA).

Determination of hydroxyproline content

Collagen was also determined by evaluating the concen-
tration of the hydroxyproline (Hyp), an amino acid char-
acteristic of collagen. The lysates were used to measure
hydroxyproline contents using commercially available kits
according to the manufacturer’s instructions (Jiancheng
Institute of Biotechnology, Nanjing, China). In this kit, hy-
droxyproline concentration was determined by the reac-
tion of oxidized hydroxyproline with 4-(Dimethylamino)
benzaldehyde (DMAB), which was measured spectro-
photometrically at 560 nm.
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Quantitative real-time PCR analysis

Total RNA was extracted from liver tissues using TRIzol
reagent (TIANGEN Biotech, Beijing, China) as described
by the manufacturer. RNA was reverse-transcribed using
the Reverse Transcription Kit (TIANGEN Biotech, Beijing,
China). To investigate the expression of TGF-B/Smad
pathway in the liver, relative quantitative RT-PCR (qPCR)
was performed using the LightCycler FastStart DNA Mas-
ter SYBR Green I kit (Roche Applied Science, Mannheim,
Germany) according to the manufacturers’ protocol with
primer sequences shown in Table 1. The optimal light
cycler conditions were: initial denaturation at 95°C for
5 min, followed by 40 cycles with denaturation at 95°C
for 30 s, annealing at 60°C for 30 s and elongation at 72°C
for 30 s (Table 1). Quantification of target gene expression
was evaluated in the terms of the comparative cycling
threshold (C,) normalized by B-actin with the 27°°“*
method.

Western blot

Total protein was extracted from liver tissues and ana-
lyzed with bicinchoninic acid protein concentration
assay kit (Beyotime Biotech, Beijing, China). Sample pro-
tein was separated by electrophoresis in 12% SDS-PAGE
with a Bio-Rad electrophoresis system (Hercules, CA,

Table 1 Primers used in the present study
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USA). The primary antibodies (rabbit anti-Smad3
antibody, UCallM biotech Co., Ltd, Wuxi, China, 1:1000
dilutions) were incubated at 4°Covernight. The corre-
sponding horseradish-peroxidase-conjugated secondary
antibodies (anti-rabbit IgG, 1:5000 dilutions) were incu-
bated for 1 h at room temperature. The membrane con-
taining antibody-protein complexes were visualized with
an enhanced chemiluminescence detection system on
radiograph film. The brands were scanned and analyzed
by the software Quantity ONE (Bio-rad, Hercules, CA,
USA). The expression of protein in each sample was
normalized by a-Tublin(Santa Cruz Biotechnology, CA,
USA).

Enzyme linked immunosorbent assay (ELISA)

Serum from each mouse was immediately used to evalu-
ate the concentration of TGF-; by a specific ELISA kit
(eBiosciences, CA, USA). In brief, samples were firstly
activated by 1 mol/L HCI, and then samples as well as
serial dilutions of standards were added to 96-well plates
pre-coated with anti-TGF-B; and pre-blocked with PBS
containing 10% fetal bovine serum (FBS), after samples
were washed, horseradish peroxidase (HRP)-conjugated
streptavidin A in PBS containing 10% FBS was added for
30 min at room temperature. After final washes, the

Gene Genbank accession Primer sequences Annealing temperature  Expected size (bp) Ref.

a-SMA NM_007392.3 F:5’-AAGAGCATCCGACACTGCTGAC-3' 60.0°C 300 Present study
R:5’-AATAGCCACGCTCAGTCAGG-3’

Colla NM_007742.3 F: 5'-CAGGGTATTGCTGGACAACGTG-3' 60.0°C 107 Present study
R: 5’-GGACCTTGTTTGCCAGGTTCA-3’

CollIl NM_009930.2 F: 5'-TGGCACAGCAGTCCAACGTA-3’ 60.0°C 122 Present study
R: 5"-AAGGACAGATCCTGAGTCACAGACA-3’

TGF-B, NM_011577 F: 5'-GTGTGGAGCAACATGTGGAACTCTA-3"  60.0°C 143 20
R: 5’-TTGGTTCAGCCACTGCCGTA-3’

TGFBRI NM_009370.2 F: 5'-TGCAATCAGGACCACTGCAATAA-3’ 60.0°C 133 20
R: 5'-GTGCAATGCAGACGAAGCAGA-3’

TGFBRII NM_009371.2 F: 5'-AAATTCCCAGCTTCTGGCTCAAC-3! 60.0°C 100 20
R: 5’-TGTGCTGTGAGACGGGCTTC-3

Smad2 NM_010754 F: 5'-TGCATTCTGGTGTTCAATCG-3’ 60.0°C 198 20
R: 5’-CGAGTTTGATGGGTCTGTGA-3’

Smad3 NM_016769 F: 5'-GTCAACAAGTGGTGGCGTGTG-3' 60.0°C 150 20
R: 5'-GCAGCAAAGGCTTCTGGGATAA-3

Smad4 NM_008540 F: 5'-TGACGCCCTAACCATTTCCAG-3' 60.0°C 136 20
R: 5’-CTGCTAAGAGCAAGGCAGCAAA-3

Smad7 NM_001042660.1 F: 5'-AGAGGCTGTGTTGCTGTGAATC-3 60.0°C 126 20
R: 5'-CCATTGGGTATCTGGAGTAAGGA-3’

B-actin NM_007393.3 F: 5'-CGTGGGCCGCCCTAGGCACCA-3 60.0°C 243 Present study
R: 5-TTGGCCTTAGGGTTCAGGGGGG-3'
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HRP substrate TMB (3,3,5,5-tetramethylbenzidine) was
added, and the optical density of the color reaction was
measured at 450 nm. Concentrations of cytokine in the
sera were calculated using standard curves as references.

Data analysis

All values were expressed as mean + SEM. Comparisons
between control and each experimental group were
made by one-way analysis of variance (ANOVA) and
Student’s unpaired t-test using the SPSS 13.0 statistical
package. Differences were considered statistically signifi-
cant at P <0.05.

Results

Histological findings and evaluation of hepatic fibrosis in
mice caused by C. sinensis

In the normal control group, the hepatocyte arranged
tightly and hepatic lobules were observed completely. In
contrast, in the C. sinensis-infected group, fibrotic cords
were observed in the periportal areas of C. sinensis- in-
fected mice at 4 wk p.i. and 8 wk p.i,, and as the infec-
tion developed, collagen fibers were extended from
portal areas to liver lobule of mice at 16 wk p.i.,, the ar-
rangement of hepatocyte was disordered and pseudolo-
bules were observed in some serious cases at this time
point (Figure 1A and Figure 1B). The quantities of
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collagen depositions were increased gradually with the
development of infection, and statistical difference and
significant difference were observed at 8 wk p.i. (P <0.05),
and 16 wk p.. (P < 0.05), respectively, compared with nor-
mal control mice (Figure 1D).

The hydroxyproline which is a major component of
collagen was also evaluated as an indicator of collagen
content. Compared with normal control mice, the levels
of hydroxyproline were significantly augmented at 4 wk
pi. (P<0.001), and thereafter dramatically increased at 8
wk p.i. (P<0.001) and 16 wk p.i. (P <0.001, Figure 1C).

The expression of the pro-fibrotic molecular markers in
livers of mice during C. sinensis infection

qPCR results showed that the mRNA level of alpha-
smooth muscle actin (a-SMA) was dramatically increased
from 4 wk p.i. to 16 wk p.i., and there were statistical dif-
ferences for a-SMA mRNA expression between 8 wk p.i.
or 16 wk p.i. and control animals (P <0.05, Figure 2A).
The results also showed that mRNA levels of collagen al
(Colla) expression were steadily increased from 4 wk p.i.
to 16 wk p.i, and significant differences were found at 8
wk p.i. (P<0.05) and 16 wk p.i. (P <0.05), compared with
normal control animals (Figure 2B). However, collagen
type III (Col III) expression was not changed at 4 wk
p.i., 8 wk p.i. or 16 wk p.., and there were no statistical
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Figure 1 Evaluation of hepatic fibrosis in mice caused by Clonorchis sinensis at 4 week post-infection (wk p.i.), 8 wk p.i. and 16 wk p.i.
(A) Histological examination of liver tissues from C. sinensis-infected mice and normal control mice at different time-points as indicated. (B) Collagen
depositions were specifically stained by Masson’s trichrome at different time-points as indicated. (C) Hydroxyproline (Hyp) concentration was measured
in liver homogenate (0.1 g) in fibrotic or normal livers of BALB/c mice at indicated time-points. (D) Collagen depositions from each specimen were
semi-quantified using Image-Pro Plus software. Data were presented as mean + SEM from 8 C. sinensis-infected mice and 5 normal control (NC) mice
at each time-point, * =P < 005, **=P < 001, *** =P < 0.001 versus control mice.
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Figure 2 The mRNA expression of the pro-fibrotic molecular markers in livers of mice during Clonorchis sinensis infection. Mice were
orally infected with 45 metacercariae of C. sinensis, livers were collected from infected and non-infected mice at indicated time-points and mRNA
levels were determined by gqPCR (normalized to beta-actin transcript levels). (A) a-SMA; (B) Col1a; (C) Col Ill. Data were presented as mean + SEM
from 8 C. sinensis-infected mice and 5 normal control mice at each time-point, * =P < 0.05, ** =P < 0.01, *** =P < 0.001 versus control mice.

differences between C. sinensis-infected animals and nor-
mal control ones (Figure 2C, P> 0.05).

The mRNA expression of TGF-/Smad in the liver of
BALB/c during C. sinensis-infection

As shown in Figure 3, mRNA expression of TGF-f,
TGEPRI, TGEPRIL, Smad2 and Smad3 were upregulated
in the liver of C. sinensis-infected mice, compared with
normal control mice. And significant differences were
observed from 8 wk pi. to 16 wk pi. for TGF-B;,
TGEPRIL TGEPRII (P < 0.05), whereas the mRNA expres-
sion levels of Smad2 and Smad3 showed statistical dif-
ferences from 4 wk p.i. to 16 wk p.i. compared with
normal control mice (P <0.05). However, Smad4 and
Smad7 mRNA peaked at 4 wk p.i., thereafter decreased
at 8 wk p.. and 16 wk p.i. and there was a significant

difference between C. sinensis-infected mice and control
group at 4 wk p.i. (P <0.05).

The protein expression of Smad3 in livers of

C. sinensis-infected mice and dynamic changes of

serous TGF-B; in mice infected by C. sinensis

The Smad3 protein in the liver of C. sinensis-infected

mice was increased dramatically as the infection devel-

oped, which was consistent with the mRNA expression of

Smad3. Statistical differences were found in expression of

Smad3 in all C. sinensis-infected groups, compared with

normal control group (Figure 4A and Figure 4B, P < 0.05).
As shown in Figure 4C, during the whole experimental

infection, the concentration of TGF-p; in the serum at 8

wk p.i. and 16 wk p.i. was significantly higher than that

of in the control mice (P < 0.05), and the level of TGF-p;
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Figure 3 Gene expression of TGF-B/Smad signaling in the liver fibrosis caused by C. sinensis. Mice were orally infected with 45
metacercariae of C. sinensis, livers were collected from infected and non-infected mice at indicated time-points and mRNA levels were determined
by gPCR (normalized to beta-actin transcript levels). (A) Smad3; (B) Smad4; (C) Smad7; (D) TGF-B+; (E) TGFBRI; (F) TGFBRII; (G) Smad2. Data were
presented as mean + SEM from 8 C. sinensis-infected mice and 5 normal control mice at each time-point, * =P < 0.05, ** =P < 0.01, *** =P < 0.001
versus control mice.
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Figure 4 The protein expression of Smad3 in livers and dynamic changes of serous TGF-B; in sera from C. sinensis-infected and
non-infected mice. Mice were orally infected with 45 metacercariae of C. sinensis, livers and sera were collected from infected and non-infected
mice at indicated time-points and the protein expression levels of Smad3 (A&B) in the livers and TGF-3; (C) in the sera from mice were determined
by western-blot and ELISA, respectively. Data were presented as mean + SEM from 8 C. sinensis-infected mice and 5 normal control mice at each

time-point, * =P < 0.05, ** =P < 0.01, *** = P < 0.001 versus control mice.
A\

were increased from 4 wk p.i. to 16 wk p.i during the de-
velopment of infection.

Discussion
Previous studies showed that liver fibrosis was orches-
trated by a complex network of signaling pathways in-
volved in regulation the deposition of extracellular
matrix, and of these signaling pathways, TGF-/Smad
signaling pathway is considered as the most prominent
mediator in accelerating liver fibrosis [18,23]. Beside
TGE-B, IL-13 and Il-17 were recently demonstrated as
another critical pro-fibrotic cytokines in liver fibrosis,
for example, IL-13 can potently induce the synthesis of
collagen I and other fibrotic markers directly in Schisto-
soma spp. caused liver fibrosis whereas IL-17A can pro-
mote the activation of HSC and drive the mRNA
expression of the IL-6, a-SMA, collagen, as well as TGF-
By in carbon tetrachloride—induced liver fibrosis [24-27].
However, little is known of the molecular mechanism
underlying C. sinensis caused liver fibrosis. In the present
study, we used BALB/c mice to explore the possible
mechanism underlying the liver fibrosis caused by C.
sinensis. Similar with other study, we showed that
BALB/c mice can develop a moderate periductal fibro-
sis at 4 wk p.i. and massive deposition of extracellular
matrix after 8 wk p.i. demonstrated by HE and MT
staining, suggesting that the mouse model for C. sinen-
sis induced-liver fibrosis in the present study was
established successfully [7,8].

Biological functions of TGF-p and its roles in regulat-
ing ECM deposition have been intensively reviewed, and
proteins of the Smads family members are important

mediators that transduce signals induced by TGF-p to
specific target genes in the nucleus, leading to the expres-
sion of pro-fibrotic genes [28,29]. There were also some
studies suggesting that TGF-p; and its downstream Smads
played a central role in parasite-induced liver fibrosis
[20,30,31], for example, in Schistosoma mansoni-infected
mouse, the increased expression of TGF-B; and its recep-
tors led to extensive accumulation of extracellular matrix
proteins and treatment with anti-fibrotic drugs like prazi-
quantel can reduce the concentration of TGF-f signicantly
and led to an reversible liver fibrosis in S. mansoni-in-
fected mice [32,33].

As expected, hepatic mRNA transcriptions of fibrotic
markers such as collagen type I (Colla), TGF-B;, a-SMA
and hydroxyproline contents were increased with the de-
gree of C. sinensis-caused hepatic fibrosis, which was in-
dicated by MT staining. To further investigate whether
TGEF-B/Smad signaling was activated during C. sinensis-
caused liver fibrosis or not, the expression of genes and
proteins within TGF-B/Smad signaling pathway was ex-
amined. In the present study, the mRNA expression of
TGEF-B;, Smad2/3, TGFPRI and TGEPRII was significantly
stronger in the livers of C. sinensis infected-mice than
that in control ones, and these changes were positively
correlated with the degrees of hepatic fibrosis (data is
not shown), suggesting that TGFf/Smad signaling path-
way may be involved in the development of liver fibrosis
due to C. sinensis infection. However, our study showed
Smad4 was found increased at 4 wk p.i., and its expres-
sion decreased with the development of hepatic fibrosis,
which suggested that the effects of Smad4 might occur
at early and middle stage of hepatic fibrosis [34]. Our
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results also showed that Smad7 expression heightened
only at the 4 wk p.i. and the expression of Smad2 was
significantly higher in the livers of C. sinensis-infection
mice, indicating that Smad7 played a negative role in fine-
tuning of TGF-P signals since the increased Smad2 may
suppress the expression of Smad7 conversely [35,36].

Conclusions

In conclusion, our results of the present study suggested,
for the first time, that expression dynamics of TGF-3/Smad
signaling pathway may be involved in the development
of hepatic fibrosis caused by C. sinensis. The further
studies should be warranted to elucidate detailed roles
of TGF-B/Smad signaling pathway in C. sinensis caused
liver fibrosis, which may provide basic information for
control clonorchiasis.
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