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Abstract

A major goal of landscape ecology is to understand the formation, dynamics, and maintenance of

spatial heterogeneity.  Spatial heterogeneity is the most fundamental characteristic of all landscapes,

and scale multiplicity is inherent in spatial heterogeneity.  Thus, multiscale analysis is imperative for

understanding the structure, function and dynamics of landscapes.  Although a number of methods

have been used for multiscale analysis in landscape ecology since the 1980s, the effectiveness of

many of them, including some commonly used ones, is not clear or questionable.  In this paper, we

discuss two approaches to multiscale analysis of landscape heterogeneity: the direct and indirect ap-

proaches.  We will focus on scale variance and semivariance methods in the first approach and 17

landscape metrics in the second.  The results show that scale variance is potentially a powerful method

to detect and describe multiple-scale structures of landscapes, while semivariance analysis may often

fail to do so especially if landscape variability is dominant at broad scales over fine scales.  Landscape

metrics respond to changing grain size rather differently, and these changes are reflective of the

modifiable areal unit problem as well as multiple-scale structures in landscape pattern.  Interestingly,

some metrics (e.g., the number of patches, patch density, total edge, edge density, mean patch size,

patch size coefficient of variation) exhibit consistent, predictable patterns over a wide range of grain

sizes, whereas others (e.g., patch diversity, contagion, landscape fractal dimension) have nonlinear

response curves.  The two approaches to multiple-scale analysis are complementary, and their pros

and cons still need to be further investigated systematically.

I. INTRODUCTION

Spatial heterogeneity is ubiquitous in nature across all scales, and its formation and interactions with

ecological processes are the central issue in landscape ecology.  It is intriguing, however, to note that

the spatial dimension has long been ignored or purposefully avoided in ecology given that all eco-

logical phenomena take place in spatially heterogeneous environments and that the relationship be-

tween organisms and their environment is the very subject of ecology.  This ignorance has had much

to do with the background assumption of balance of nature and the traditional equilibrium paradigm

in ecology (Wu and Loucks 1995).  Besides, several reasons are attributable to the slow progress in
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spatial ecology, i.e., the spatially explicit study of the interactions between pattern and process in

ecological systems.  

The first is the lack of recognition of the importance of the interactions between space and other

factors that together give rise to ecological patterns or processes.  Although plant ecologists have long

been interested in the geographical distribution of communities since the 1800s, the interactions be-

tween space and ecological processes have not been well studied.  It was not until the 1980s that the

interaction among pattern, process and scale began to occupy a central place in ecological studies,

especially, with developments in patch dynamics and hierarchy theory  (O’Neill et al. 1986, Levin

1992, Wu and Levin 1994, Wu and Loucks 1995).  The second reason concerns the lack of effective

statistical and modeling methods for studying spatial phenomena.  Many, if not most, statistical meth-

ods traditionally used in ecological research assume the independence of the observations.  Spatial

autocorrelation and spatial dependence, however, are extremely common for ecological variables

(Legendre 1993), which violate this fundamental assumption, thus impairing methods that are based

on it.  Although there are ways of removing spatial structure in data, doing so may not be ecologi-

cally sensible if space is considered an integral part of ecological phenomena.  Only in recent years,

new methods in spatial statistics (particularly geostatistics) began to be introduced in ecology to alle-

viate this problem (e.g., Legendre and Fortin 1989, Robertson 1987, Rossi et al. 1992, Legendre

1993).  

The third reason has to do with the insufficient capacity of computers.  Spatial analysis usually re-

quires enormous memory space, high computing speed, and complex software development.  All of

these have been limiting factors in much of the history of ecology as well as statistics.  Fortunately,

these problems are now greatly eased with rapid advances in computer technologies, including the

availability of GIS.  The fourth reason involves problems arising from data aggregation, which often

lead to error propagation and controversial results.  Ecological studies frequently use area-based in-

formation, derived from field surveys, aerial photography, or remote sensing sources.  The bounda-

ries of the areal units, however, are usually arbitrary.  As Greig-Smith (1983) pointed out, there is an

“element of subjectivity in sampling procedure because the boundaries within which a set of samples

is taken are fixed by the ecologist on the basis of his judgment of what can suitably be described as

one unit for the purpose at hand.”  The arbitrariness in the definition of areal units can affect the

results of a number of statistical analyses.  This problem has been known as the modifiable areal unit

problem (MAUP) in the geographical literature (Openshaw 1984), and has recently been studied in

the context of landscape ecology (Wu and Jelinski 1995, Jelinski and Wu 1996). MAUP consists of

two closely related aspects: the scale problem and the zoning problem.  The scale problem concerns

changes in the results of spatial analysis with changing scale (usually grain size), whereas the zoning

problem results from the variations of the results of spatial analysis due to different zoning systems or

spatial configurations of areal units at the same scale.  The studies of MAUP have shown that a wide
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variety of spatial analyses and simulation models are susceptible to both scale and zoning problems

(Jelinski and Wu 1996, Marceau 1999).  As a result, the composition of a landscape (e.g., patches,

gaps, edges, and corridors) may also vary with changing grain size and extent.

To understand the dynamics of patterns and processes and their interactions in a heterogeneous land-

scape, one must be able to accurately quantify the spatial pattern and its temporal changes of the

landscape.  Recent studies have shown that one of the most important and universal characteristics of

spatial heterogeneity is its scale multiplicity in space (e.g., Miller 1978, Kolasa and Pickett 1991, Wu

and Loucks 1995, Cullinan et al. 1997, Werner 1999).  This scale multiplicity of landscapes has sev-

eral important ecological implications: (1) landscapes may be, though not necessarily, hierarchically

structured; (2) landscapes exhibit distinctive spatial patterns at different scales which may be caused

by different processes, and thus the scale of observation significantly influences what is to be ob-

served; (3) understanding landscape functioning requires a multiple-scale characterization of spatial

pattern and processes, and single-scale descriptions are doomed to be partial and misleading; and (4)

models developed at one particular scale are not likely to apply at other scales, thus we need to either

link models developed at different scales, or develop multiple-scaled or hierarchically structured

models.  

The process of extrapolating or translating information from one scale to another, scaling, undoubt-

edly is a fundamental challenge in both theory and practice across all earth sciences.  In particular,

scaling is essential for addressing a wide range of ecological and environmental problems concerning

biodiversity loss and global change in part because most ecological studies to date have been carried

out at very local scales in both time and space (van Gardingen et al. 1997, Wu 1999).  Scaling often is

a difficult task due primarily to landscape heterogeneity and nonlinearity, and understanding the

scale multiplicity in pattern and process is a key to the success of scaling (Wu 1999).  

This paper, therefore, discusses two approaches to multiscale analysis of landscape pattern: the direct

and indirect approaches.  Specifically, we demonstrate how to use scale variance analysis and land-

scape metrics as methods for detecting and describing multiple-scale or hierarchical structures in

landscapes.  Through a series of analyses, we address several specific questions, including: Is scale

variance effective in detecting multiple-scale patterns?  How does it compare with semivariance?  How

do landscape metrics change over a broad range of grain sizes?  Are these changes predictable?

Which landscape indices are sensitive to multiple-scale structures?

II. TWO APPROACHES TO MULTISCALE ANALYSES

To quantify multiple-scale characteristics of landscapes, multiscale or hierarchical approaches must

be employed.  While a hierarchical approach is by definition multiple-scale, a multiple-scale ap-
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proach is not necessarily hierarchical in the sense of the nested hierarchy (Wu 1999).  It is worth

noting that the term, "scale", here is used to denote the grain size and extent of a data set, not neces-

sarily corresponding to the "characteristic scale" of landscape pattern or processes.  We may distin-

guish between two general approaches to multiscale analyses: (1) the direct multiscale approach that

uses inherently multiple-scale methods, and (2) the indirect multiscale approach that uses single-scale

methods repeatedly at different scales.  Frequently used multi-scale methods in landscape ecology

include semivariance analysis (Robertson and Gross 1994, Burrough 1995), wavelet analysis (Brad-

shaw and Spies 1992, Saunders et al. 1998), spectral analysis (Platt and Denman 1975, Ripley 1978),

fractal analysis (Krummel 1987, Milne 1991, Nikora et al. 1999), lacunarity analysis (Plotnick et al.

1993, Henebry and Kux 1995), and blocking quadrat variance analysis (Greig-Smith 1983, Dale

1999).  All these methods contain multiple-scale components in their mathematical formulation or

procedures, and thus are either hierarchical or multiscaled.  

On the other hand, the indirect approach to multiscale analyses can use methods that are designed for

single-scale analysis, such as the wide variety of landscape metrics (e.g., diversity, contagion, perime-

ter-area ratios, spatial autocorrelation indices) as well as statistical measures (e.g., mean, variance, cor-

relation or regression coefficients).  The scale multiplicity in the indirect approach is realized by re-

sampling the data at different scales, albeit grain or extent, and then repeatedly computing the metrics

or statistical measures using the resampled data at different scales.  One particular way of resampling

data is to systematically aggregate the original fine-resolution data set and produce a hierarchically

nested data set, which leads to a hierarchical analysis using single-scale methods.  Note that hierarchi-

cal analysis does not have to assume, a priori, the existence of a hierarchical structure in the landscape

under study, but can be used to detect it.

In general, there are two related but distinctive goals for conducting a multiscale analysis in a land-

scape ecological study.  The first is to characterize the multiple-scale structure of a landscape.  The

second is to detect or identify "scale breaks" or hierarchical levels in the landscape which often can be

studied as a spatially nested hierarchy (O'Neill et al. 1991, Wu and Loucks 1995, Wu 1999).  In both

cases, a better understanding is achieved of how spatial heterogeneity changes with scale.  However, a

description of landscape pattern at different scales may be necessary or desirable even if scale breaks

do not exist or the landscape is not hierarchical.  On the other hand, scale breaks often lead to the

identification of characteristic scales of patterns which may frequently facilitate understanding un-

derlying processes.  A series of methods for analyzing landscape heterogeneity have been reviewed

recently (e.g., Turner et al. 1991, Burrough 1995, Gustafson 1998, Dale 1999, Fortin 1999).  In the

following, we demonstrate two multiscale approaches with specific examples.  In particular, we focus

on the use of scale variance analysis and several landscape metrics as they are used in multiscale

analysis.
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III. MULTISCALE ANALYSES WITH SCALE VARIANCE

Scale variance analysis is a hierarchical analysis that was first developed by Moellering and Tobler

(1972). The initial goal of the method was to determine the relative variability at each level in a

known nested hierarchy, and to evaluate each level's relative, independent contribution to the total

variability of the whole system.  However, the use of scale variance analysis does not necessarily re-

quire or even assume the existence of a nested hierarchy in the landscape under study. To conduct

scale variance analysis, one only needs to systematically aggregate spatial data by increasing grain

size progressively so that a nested data hierarchy is formed (see Figure 1).  Each grain size is termed

a “scale level” (Moellering and Tobler 1972).  Most spatial data can be reconstructed hierarchically

by resampling, then scale variance analysis can be applied (Moellering and Tobler 1972, Townshend

and Justice 1990, Wu et al. 1994, Barnsley et al. 1997).  

The statistical model of scale variance can be expressed as:

  XijkLz = + i + ij + ijk +L + ijkLz (1)

where Xijk…z is the value of a spatial unit (e.g., a pixel) at the hierarchical level that corresponds to the

finest grain size (scale level 6 in Figure 1), µ the grand mean over the entire data set, αi the effect of

the α level (scale level 1 in Figure 1), βij the effect of the β level (scale level 2 in Figure 1), γijk the ef-

fect of the γ level (scale level 3 in Figure 1), and ωijk…z the effect of ω level (scale level 6 in Figure 1).

From the above model, the total variance of the landscape can be partitioned hierarchically at differ-

ent grain sizes.  Moellering and Tobler (1972) derived the scale variance components for a 3-level (α,

β, γ) hierarchy as follows.  First, the total variation of the system is expressed as the total sum of

squares:

SSTotal = (X ijk − X ••• )2

k =1

Kij

∑
j =1

Ji

∑
i =1

I

∑
(2)

where I is the number of α level units, Ji is the number of β level units in each ith α level unit, and Kij is

the number of γ level units in each ijth β level unit.

The total sum of squares is partitioned into different parts that are attributable to the various scale lev-

els (here α, β, γ), so that

SSTotal = SS + SS + SS . (3)

SSα, SSβ, and SSγ are calculated based on the following formulas:

SS = (X i •• − X ••• )2

k =1

Kij

∑
j =1

J i

∑
i =1

I

∑
 (4)
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SS = (X ij • − X i•• )2

k =1

Kij

∑
j =1

J i

∑
i=1

I

∑
(5)

SS = (X ijk − X ij• )2

k =1

Kij

∑
j =1

Ji

∑
i =1

I

∑
(6)

Dividing the partitioned sums of squares by their respective degrees of freedom results in the corre-

sponding mean square estimates, i.e.:

MS =
SS

I −1 (7)

MS =
SS

(J i −1)
i =1

I

∑
(8)

MS =
SS

(Kij −1)
j =1

J i

∑
i=1

I

∑
(9)

When dealing with regular lattice data sets as shown in Figure 1 (Moellering and Tobler’s “even

case”), the scale variance components are simply:

SV = MS / JK (10)

SV = MS / K (11)

SV = MS (12)

Scale variance analysis starts with the construction of nested data hierarchies (Figure 1), and then the

above equations are used to compute the total sum of squares, partitioned sums of squares, and scale

variance at each scale level.  Finally, scale variance or the percent total sum of squares is plotted

against scale levels, resulting in the scale variance graph, from which one can readily visualize the

presence of peaks or the lack of them.  A peak implies that high variability occurs at the corre-

sponding scale level (grain size), which is indicative of the average size of dominant patches in the

landscape.  The height of the peak reflects the relative contribution of that particular scale level to the

total variability of the landscape.

Let’s take a look at two simple examples of how scale variance works, and compare it with semivari-

ance analysis.  Figure 2 shows two artificially constructed “landscapes” with multiple-scale patterns

in which patches of different sizes form spatially nested hierarchies, i.e., larger patches are composed

of smaller patches.  The left column in Figure 2 is the pictorial version (for facilitating visualization)

of the numerical map on the right (actually used in the following analyses).  Can scale variance reveal
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this hierarchical structure?  Is it more effective than, say, the simple variance, spatial autocorrelation,

and semivariance analysis?  

1x2

2x2

2x4

2x1 1x2

4x1 1x4

8x1 1x8

4x4 8x2 2x8

4x8 4x88x4

8x8 8x8 8x8

1x1 1x1 1x1

Zoning Alternatives

Scale Level 

Level 0 

Level 1 

Level 2 

Level 3

Level 4 

Level 5 

Level 6 

Figure 1.   Illustration of spatial aggregation that leads to a spatially nested hierarchy of data.  Columns show that
the data set becomes coarser and coarser as grain size increases, whereas rows demonstrate that at each grain size there
are multiple ways to aggregate the same number of basic spatial units (BSUs) - the pixels in the original fine-
resolution data set.  The numbers in the figure denote grain sizes (the number of rows x the number of columns of
BSUs).

Figure 3 shows that scale variance is indeed able to correctly and clearly identify three peaks corre-

sponding to the three patch sizes (i.e., 1x1, 8x8 and 16x16 BSUs, where BSU stands for the basic

spatial unit that is defined as the pixel in the original data set).  Simple variance exhibits a staircase
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curve, also indicative of a hierarchical structure in the landscape, but not as conspicuous as scale vari-

ance (especially for the scale level of 16x16 BSUs).  The graph of spatial autocorrelation against

scale levels (similar to, but not the same as, a correlogram) also indicates a multiple-scale structure,

but is not as easy to interpret as scale variance.  Results for the second landscape (pattern 2) for the

three methods further support the above observations.  Here, three zoning alternatives are used, and in

each case scale variance unambiguously reveals two or three hierarchical levels in the data set.  Note

that changing zoning systems affects the results of all three methods, which is part of MAUP (Jelinski

and Wu 1996).  At the same time, by knowing how the zones are oriented during the data aggrega-

tion, scale variance can provide information on the directionality of dominant elongated patches (see

pattern 2 in Figure 2 and the scale variance graph for zoning system 2 in Figure 4).

P
A
T
T
E
R
N

1

P
A
T
T
E
R
N

2

Figure 2.  Two artificially constructed landscapes that exhibit multiple-scale patterns.  The left column is the
pictorial version of the numerical map on the right.
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Figure 5 summarizes the results of a semivariance analysis of these two contrived landscapes.  The

graph at the top in each column shows that semivariance exhibits cyclic fluctuations, indicative of the

periodic pattern in the two landscapes.  While this periodicity is not specious, it is difficult to discern

whether there exist hierarchical scales in these landscapes and how many from these semivariograms.

We also divided the landscapes into four horizontal transects (8x32 pixels each), with transect 1 at the

top and transect 4 at the bottom.  The semivariogram for the top transect in each landscape seems to

indicate a scale break at the lag of 8 pixels, whereas the other three transects exhibit rather similar

semivariograms without obvi-

ous scale breaks.  In all cases,

semivariance analysis does not

seem to be able to clearly

identify the hierarchical levels

that apparently exist in the two

landscapes.  We further com-

pare scale variance with

semivariance analysis using a

real landscape data set (a map

of NDVI, normalized differ-

ence vegetation index), with

300x300 pixels each of which

has a 30 m linear dimension.

The landscape is a boreal for-

est region, composed of a

large number of patches of

different vegetation types that

vary greatly in size.  In Figure

6, scale variance and the per-

cent total sum of squares (top)

both show several peaks, in-

dicative of the existence of a

multiple-scale structure in the

landscape.  However, for real

landscapes scale variance does

not drop to near zero between scale levels, as for the contrived landscapes, because patch sizes may

vary continuously, although not evenly; i.e., the nested patch hierarchies are not “neatly" organized.

The variance plot (bottom) seems to corroborate this result, but is much less conspicuous.  On the

other hand, the semivariogram  shows that semivariance increases rapidly initially with increasing lags

and then gradually levels off (Figure 7).  The multiscale structure of the landscape does not become

Scale Level

1x1 2x2 2x4 4x4 4x8 8x8 16x168x16 16x32

0

2

4

6

8
(A) 

0

1.6

3.2

4.8

6.4

8.0

1x1 2x2 2x4 4x4 4x8 8x8 16x168x16 16x32

(B) 

-1

-0.5

0

0.5

1

1.5

2

Geary’s c

Moran’s I 

1x1 2x2 2x4 4x4 4x8 8x8 16x168x16 16x32

(C) 

Figure 3 . Scale variance analysis of the artificially constructed landscape
(pattern 1) in Figure 2.  Variance and spatial autocorrelation indices are also
provided for comparison.  The horizontal axis for all three graphs is scale
level, representing a hierarchy of grain sizes progressively increasing from 1
by 1 to 16 by 32 BSUs.
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discernable from either the semivariogram for the entire landscape (top) or for the three transects

(bottom three).

IV. MULTISCALE

ANALYSES WITH

PATTERN INDICES

The indirect multiscale

analysis is closely re-

lated to the study of

the problem of spatial

aggregation in general

and MAUP in par-

ticular (Wu and Jelin-

ski 1995, Jelinski and

Wu 1996).  Here we

focus on the question:

how different land-

scape pattern indices

respond to systematic

changes in grain size

as a spatial data set is

progressively aggregated with its extent kept constant.  We compute a series of landscape metrics us-

ing FRAGSTATS (McGarigal and Marks 1995) based on a land cover classification map of an ur-

ban-rural-desert landscape in Nevada, USA, occupying an area of 900 km2.  The classification was

conducted using a 1984 Landsat TM scene.  The landscape was dominated by different arid vegeta-

tion types (e.g., different types of shrublands and woodlands) as well as burned, agricultural, and ur-

ban areas.  

In total, seventeen commonly used landscape metrics are examined systematically.  The total amount

of edge, number of patches, edge density, and patch density all show a remarkably consistent power-

law relationship with increasing grain size, suggesting that these indices can be predicted over a wide

range of grain sizes with high accuracy (the first four graphs in Figure 8).  As data become more and

more aggregated, the number of patch types (patch richness) and patch diversity (Shannon-Weaver

diversity index) both decrease monotonically (the two graphs at the bottom in Figure 8).  While the

staircase-like decline in patch richness is readily understandable, decreasing patch diversity is a result

of the combined decrease in both the number of patch types and the evenness of each type.  Com-

Scale Level

Grain Size 
(for 3 Zoning 
Systems) 

1 

1x1 2x2 2x4 4x4 4x8 8x8 16x168x16 (BSUs/grain)16x32 32x32

1x1 2x2 4x2 4x4 8x4 8x8 16x1616x8 (BSUs/grain)32x16 32x32

1x1 2x2 2x4 2x8 4x8 4x16 8x328x16 (BSUs/grain)16x32 32x32

Unit2 3 4 5 6 7 8 9 10 

Zoning System 1

0
1
2
3
4
5

0 1 2 3 4 5 6 7 8 9 10

0

20

40
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80
100

0 1 2 3 4 5 6 7 8 9 10

Scale Level

-1
-0.5

0
0.5

1
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2

0 1 2 3 4 5 6 7 8 9 10

Zoning System 3

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

Scale Level

0 1 2 3 4 5 6 7 8 9 10
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Geary’s c

Zoning System 2

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

Scale Level

0 1 2 3 4 5 6 7 8 9 10

Geary’s c

Moran’s I Moran’s I 

1

2

3

Figure 4 . Scale variance graph (top row) of the artificially constructed landscape (pat-
tern 2) in Figure 2.  Variance (middle row) and spatial autocorrelation indices (bottom
row) are provided for comparison.  Three columns represent three different zoning alter-
natives.  The horizontal axis for all graphs is scale level, representing a nested hierarchy
of grain sizes.
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paring patch richness and diversity graphs reveals that the initial rapid decrease in diversity is due to

decreasing evenness, whereas later changes in diversity closely resemble those in patch richness.  The

exact pattern of patch richness and diversity with increasing grain size is determined significantly by

the details of landscape heterogeneity (Turner et al. 1989, Wickham and Riitters 1995, Wu et al.

1997).
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Figure 5 . Semivariance analysis of the artificially constructed landscape (pattern 1, left column; pattern 2, right
column) in Figure 2.  The top graph in each column is for the entire landscape, and the other four represent four
evenly divided horizontal transects from top to bottom (8x32 BSUs each).
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Contagion index has been widely used to measure the extent to which patches of the same type are

clumped (O'Neill et al. 1988, Li and Reynolds 1993, Riitters et al. 1996).  One may expect that con-

tagion should increase monotonically with increasing grain size simply because of the progressive

agglomeration of smaller patches into larger ones of the same type.  However, this is not the case

here.  Figure 9 shows that contagion increases up to a certain grain size and then begins to decline.

In fact, for a given spatial pattern a finer grain size renders a larger contagion (Frohn 1998).  Because

several factors, including patch diversity, spatial pattern, and grain size, together affect the value of

contagion (see Li and Reynolds 1993, Riitters et al. 1996), it is difficult, if meaningful, to interpret its

response curve.  Square pixel index (Frohn 1998) and landscape shape index are both derived from

the perimeter-area ratio.  As grain size increases, landscape shape index decreases rapidly following a

power law, whereas square pixel, a normalized shape index, decreases linearly (Figure 9).  In contrast

with the assertions by Frohn (1998), the insensitivity of square pixel to changing grain size suggests

that it may not be a good measure for detecting changes in landscape shape complexity across scales

or along a gradient (also see Wu in

review).  The fractal dimension of

the landscape remains constant over

a range of grain sizes, which may

suggest self-similarity, and then be-

gins to fluctuate after grain size ex-

ceeds 50 pixels on a side.  Together

with contagion, the landscape fractal

graph may be indicative of different

landscape features emerging over

coarse grain sizes.  These features

are more than likely "spatial" be-

cause the non-spatial measures, like

landscape shape index and square

pixel index, do not pick up this in-

formation (Figure 9).  

Figure 10 shows the response curves

of mean patch size (MPS), patch size

coefficient of variation (PSCV),

mean patch fractal dimension

(MPFD), area-weighted mean patch

fractal dimension (AWMFD), patch size standard deviation (PSSD), mean patch shape index (MSI),

and area-weighted mean patch shape index (AWMSI).  It is trivial to speculate that MPS will increase

with increasing grain size in any landscape.  Yet, it is interesting to note that the increase in MPS is
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Figure 6 . Scale variance graph (top) showing the multiple-scale
structure of a boreal forest landscape in northern Canada.  Also plot-
ted along with scale variance is the percent total sum of squares.
Variance at each scale level is also shown for comparison (bottom).
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readily predictable and that its pattern seems to indicate multiple-scale patterns existing at grain sizes

of about 60x60 and 80x80 pixels.  This scale multiplicity in landscape pattern again is noticeable in

the response curves of AWMFD, PSSD, MSI, and AWMSI (Figure 10).  While patch size standard de-

viation increases almost linearly

with increasing grain size, patch

size coefficient of variation, i.e.,

patch size standard deviation

divided by mean patch size, de-

creases again in a power-law

fashion (Figure 10).  Mean

patch fractal dimension does

not change notably with grain

size, but area-weighted mean

patch fractal dimension demon-

strates a rapid nonlinear decline

which is similar to that of area-

weighted mean patch shape in-

dex.  Also noticeable is mean

patch shape index which seems

sensitive to changing grain size,

and thus may be used together

with MPS, AWMFD, PSSD, and

AWMSI to detect, in addition to

describing, multiscale patterns

in landscapes.

V. DISCUSSION AND

CONCLUSIONS

The relationship between pat-

tern and scale is extremely in-

triguing and important in ecol-

ogy (Levin 1992), but remains

elusive even when pattern is re-

stricted to spatial pattern and

scale to grain and extent.  Detecting, describing and understanding the multiple-scale structure of

spatial heterogeneity are essential in landscape ecology, or more appropriately, spatial ecology.  Al-

though many methods have been used to achieve this goal in landscape ecology since the 1980s, the
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effectiveness of even the most widely used methods (e.g., correlograms, variograms) remains unclear

or questionable.  

In this paper, we outline two complementary, yet parallel approaches to multiscale analysis of land-

scape pattern: the direct approach that uses multiscale statistical methods and the indirect approach

that usually employs simple synoptic pattern indices with hierarchically resampled data.  In particular,

we illustrate the

use of scale vari-

ance analysis with

contrived land-

scape data as well

as a real landscape

data set.

Semivariance

analysis and spa-

tial autocorrela-

tion analysis are

used for the pur-

pose of compari-

son.  The results

show that scale

variance analysis

seems to be a

more robust

method for de-

tecting and de-

scribing multiple-

scale or hierarchi-

cal structures of

landscapes.

Townshend and

Justice (1988, 1990) have shown that scale variance analysis is just as powerful as complicated meth-

ods such as spectral analysis, but much simpler in computation and much more transparent in inter-

pretation.  Although semivariance analysis has been claimed as one of the most effective methods for

detecting the multi-scale or hierarchical structure of landscapes, our results here suggest that this may

not always be true.  In semivariograms of real landscapes, fine-scale variability can be "squeezed" by

broad-scale variability, which makes it less likely for a clearly identifiable staircase curve (e.g., Rob-

ertson and Gross 1994) to emerge.  Meisel and Turner (1998) also pointed out that, although
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semivariance analysis did reveal the hierarchical structure in their artificial maps, it is unlikely to de-

tect multiscale patterns in real landscapes.

The results of our multiscale analysis with seventeen commonly used landscape pattern metrics show

that almost all of them change considerably with increasing grain size.  These changes reflect the

notorious problem known as MAUP and, at least sometimes, the multiple-scale structure in landscape

pattern.  Some metrics (e.g., the number of patches, patch density, total edge, edge density, mean

patch size, patch size coefficient of variation) seem to exhibit consistent patterns over a wide range of

grain sizes, and thus can be predicted accurately with simple regression equations.  On the other hand,

nonlinear response curves are found for other metrics (e.g., patch diversity, contagion, landscape

fractal dimension).  It makes little sense to characterize landscape pattern with any of these indices at

a single scale, be it

grain or extent.

While a multiple-

scale analysis with

several landscape

metrics across

scales is necessary

for meaningfully

describing land-

scape pattern,

doing so can also

render valuable

information on

detecting possible

scale multiplicity

in the pattern.

All spatial data

and all types of

spatial analysis carry errors of one sort or another (Fotheringham 1989).  The usefulness of a spatial

study may be critically affected by the nature and the intrinsic meaningfulness of the objects or units

in the data set (Openshaw 1984).  The multiple-scale analyses discussed here are intimately related to

the problem of spatial aggregation in statistics and human geography in general.  Specifically, MAUP

may have significant influences on the detection of scale, the determination of relationships among

organizational levels, and the translation of information across scales.  Indeed, the modifiable areal

unit problem suggests that results of many past ecological studies based on spatially aggregated data

may be flawed or seriously biased and, therefore, should be reexamined.  There is apparently a lack
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of awareness of the vast literature on MAUP in the ecology community, and ecologists should make a

conscious effort to integrate into their own understanding of pattern and scale the valuable informa-

tion on the issue of scale in geography and social sciences (Marceau 1999, Wu and Qi this issue).

To understand the role of scale in studying spatial heterogeneity, three related but distinctive groups

of research questions must be adequately addressed: (1) How does changing the scale of observation

or analysis affect research results and their interpretation, and are these changes predictable?  (2) Are

ecological systems

multiple-scaled or hi-

erarchically structured,

and if so, how do we

identify and interpret

characteristic scales in

relation to patterns and

processes in a land-

scape?  (3) What scal-

ing laws exist for dif-

ferent patterns and

processes in land-

scapes that are hetero-

geneous in various

ways?  In the case of

no simple and mathe-

matically tractable

scaling laws, how do

we develop systematic

procedures to guide

the translation or ex-

trapolation of infor-

mation from one scale

to another?  The re-

sults of our study shed

light on these issues.  However, these research questions may remain among the most essential and the

most challenging in landscape ecology for a long time, and full answers to them dictate further con-

tinuing theoretical and empirical studies.
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