Chainer: a Next-Generation Open Source
Framework for Deep Learning

Seiya Tokui Kenta Oono Shohei Hido
Preferred Networks Preferred Networks Preferred Networks America
Tokyo, Japan. Tokyo, Japan. San Mateo, CA.
tokuilpreferred. jp oono@preferred. jp hidoQpreferred. jp
Justin Clayton

Preferred Networks America
San Mateo, CA.
jclayton@preferred-america.com

Abstract

Software frameworks for neural networks play key roles in the development and
application of deep learning methods. However, as new types of deep learning
models are developed, existing frameworks designed for convolutional neural net-
works are becoming less useful. In this paper, we introduce Chainer, a Python-
based, standalone open source framework for deep learning models. Chainer pro-
vides a flexible, intuitive, and high performance means of implementing a full
range of deep learning models, including state-of-the-art models such as recurrent
neural networks and variational autoencoders.

1 Introduction

Deep learning is driving the third wave of artificial intelligence research [13]]. Recent papers indicate
that deep learning is moving beyond its early successes in pattern recognition and towards new
applications in diverse domains and industries. In order to put these research ideas into practice, a
software framework for deep learning is needed.

Implementing neural networks (NNs) requires a set of specialized building blocks, including mul-
tidimensional arrays, activation functions, and autonomous gradient computation. To avoid dupli-
cating these tools, many developers use open source deep learning frameworks such as Caffe 9] or
Torch [6]. Because deep learning was first used successfully in the areas of computer vision and
speech recognition, existing deep learning frameworks were designed mainly for feed-forward net-
works such as convolutional neural networks (CNNs), which are effective for analyzing data samples
of fixed length, such as images.

More recently, new types of deep learning models other than CNNs have become major topics of
research. Following the epic results in game playing presented by Google DeepMind at the NIPS
Deep Learning workshop 2013 [16], deep reinforcement learning has become an important and
promising area of research. In addition, after recurrent neural networks (RNNs) showed promising
results on variable-length data such as natural language text, the use of these models has increased.
RNNs with Long Short-Term Memory (LSTM) are currently being used successfully for machine
translation [20] and conversation models [24]].

However, the new deep learning architectures have moved beyond the original and mostly unchanged
deep learning frameworks. This makes implementation of new models difficult. As most of the ex-
isting deep learning frameworks were designed for image processing using CNNss, their methods for

abstracting data structures and training models are not optimal for implementing the newer genera-
tion of deep learning models. In addition, most existing frameworks use a domain specific language
for representing deep learning models, along with an interpreter to translate them into a data structure
stored in memory. Therefore, developers using these frameworks cannot use standard programming
language debuggers—a significant problem as debugging is a major part of developing and tuning
deep learning models.

In this paper, we introduce Chainer [22]], a versatile open source software framework for deep learn-
ing that provides simple and efficient methods for implementing complex algorithms, training mod-
els, and tuning model parameters. The remainder of the paper is organized as follows. Section 2
describes the standard architecture on which most existing deep learning frameworks are built and
its drawbacks. Section 3 introduces a novel architecture, used in Chainer, that avoids these limita-
tions. Section 4 shows benchmark results obtained using Chainer, and Section 5 gives a summary
and directions for future work.

2 Deep Learning Framework

In typical NN frameworks, models are built in two phases, a paradigm we name Define-and-Run
(Figure|[Ta). In the Define phase, a computational graph is constructed; in the Run phase, the model
is trained on a training data set. The Define phase is the instantiation of a neural network object
based on a model definition that specifies the inter-layer connections, initial weights, and activation
functions. After the graph is built on memory and the forward computation is set, the corresponding
backward computation for back propagation can be defined by automatic gradient functionalities. In
the Run phase, given a set of training examples, the model is trained by minimizing the loss function
using optimization algorithms such as stochastic gradient descent.

Under the Define-and-Run paradigm, static NN models, such as CNNs, can be easily implemented.
The model definition may be written in a specific markup language, such as Protobuf for Caffe or
YAML for PyLearn2 [8]]. The deep learning framework then acts as an interpreter and processes the
model definition as an object of a single class, which can be regarded as an independent NN pro-
gram. The NN program receives inputs (data examples), processes these inputs (forward/backward
computation), changes the models internal state (updating), and outputs the results (predictions).

Although the Define-and-Run paradigm works well for implementing CNN models, when it is used
for implementing other types of NN models three major problems become evident.

The first is inefficient memory usage. Because the computational graph is built before the model
is trained, all layers of the NN must remain in memory even if some layers are needed only at
the beginning or end of the training process. For example, RNN models are usually trained with
backpropagation through time (BPTT) [25], which uses a heuristic to threshold the propagation for
computational efficiency. However, in Define-and-Run frameworks, the entire computational graph
must remain in memory regardless of whether certain layers are no longer being used in BPTT.

The second problem is that frameworks designed around the Define-and-Run scheme have lim-
ited extensibility. In order to maintain backward compatibility, the developers of the initial deep
learning frameworks do not have the freedom to extend the Define-and-Run scheme to accomodate
more complex models. Therefore, users who want to implement original NN architectures have

< Define >
< Define-by-Run >
Model Computational Gradient
definition graph function Model
definition Parameters
S

Auto gradient Update

< Run> Parameters Update

Training Computational Gradient Dynamic] change
data graph function

Loss & gradient

graph function

Computational :I Gradient |

(b) Define-by-Run: new approach
(a) Define-and-Run: existing approach

Figure 1: Relationships between computational graph construction and training

two choices: extend the framework by forking the repository, or impose implementation by hacking
the existing code base. Unfortunately, these options are sub-optimal for both the community and the
developers. Forking divides contributions and efforts while hacking decreases efficiency of develop-
ment and may create difficulties in source code maintenance. For example, many forked versions of
Caffe exist for implementing specific algorithms, but these versions are mutually incompatible and
cannot be merged. In addition, although Theano [2], on which PyLearn and other Python frame-
works depend, supports variable-length inputs and loops in NNs with a special operation called
scan(), many users find this operation insufficient to implement complex NNs more complex than
standard RNNss.

The third problem is that under the Define-and-Run scheme, the inner workings of the neural net-
work are not accessible to the user. This presents several difficulties in the creation of an effective
model. For example, in order to debug and tune a model effectively, a user needs to be able to see
what is happening inside the model. However, as a large object of a single class, the computational
graph contains the entirety of the model’s information—its structure, weights, gradients, and inter-
node operations—meaning that it is essentially a black box. Consequently, development tools such as
Profiler and Debugger cannot determine what is wrong with the model or how it could be improved.

A new example of the use of the Define-and-Run scheme is TensorFlow [[1], an open source deep
learning library recently released by Google. Although TensorFlow is designed to enhance perfor-
mance by optimizing the allocation of computations between multiple nodes and GPUs, the initial
version still has some of the limitations found in other Define-and-Run frameworks. For example, it
still constructs the computational graph before training, which can lead to inefficient memory usage
when using naive implementation.

3 Chainer

In this section, we introduce Chainer, a second-generation deep learning framework based on a novel
paradigm. Compared to existing frameworks, Chainer provides an easier and more straightforward
way to implement the more complex deep learning architectures currently being researched. Python
was chosen as the programming language for Chainer due to the simplicity, popularity, and benefits

(1) Function Set definition # (4) Training loop

model = FunctionSet (for epoch in xrange (n_epoch) :
11=F.Linear (784, 100), for 1 in xrange (0, N, b_size):
12=F.Linear (100, 100), x = Variable (to_gpu(...))
13=F.Linear (100, 10)).to_gpu() t = Variable(to_gpu(...))

(2) Optimizer Setup opt.zero_grads ()

opt = optimizers.SGD () loss = forward(x, t)

opt.setup (model) loss.backward/()

(3) Forward computation opt .update ()

def forward(x, t):
hl = F.relu(model.1ll (x)
h2 = F.relu(model.1l2 (hl))
y = model.13(h2)
return F.softmax_cross_entropy(y, t)

(a) Multi-layer perceptron

(1) Function Set definition # (4) Full RNN forward computation
model = FunctionSet (def forward(seq)
emb=F .EmbedID (1000, 100), h = vVariable() # init state
x2h=F.Linear (100, 50), loss =0
h2h=F.Linear (50, 50), for curw, nextw in zip(seq,seq[l:]):
h2y=F.Linear (50, 1000)).to_gpu() w = Variable (curw)
(2) Optimizer Setup t = Variable (nextw)
opt = optimizers.SGD () h, new_loss = fwdlstep(h, w, t)
opt.setup (model) loss += new_loss
(3) One step forward return loss

def fwdlstep(h, w, t):
x = F.tanh (model.emb (w))
h F.tanh (model.x2h(x) + model.h2h (h))
y = model.h2y (h2)
return h, F.softmax_cross_entropy(y, t)

(b) Simple RNN

Figure 2: Code examples of Chainer

of using the existing multi-dimensional array library (NumPy [17]). To allow GPU use for faster
computation, Chainer implements CuPy, which is partially compatible with NumPy. Chainer also
supports popular optimization methods, such as stochastic gradient descent (SGD) [3], AdaGrad [7],
RMSprop [21], and Adam [10] as well as other frameworks do. Automatic gradients can also be
computed for back propagation. Many numerical operations for building neural networks, such as
convolutions, losses, and activation functions are implemented as Function.

The most unique aspect of Chainer is the way in which a model’s definition is closely related to its
training. In contrast to other frameworks, Chainer does not fix a model’s computational graph before
the model is trained. Instead, the computational graph is implicitly memorized when the forward
computation for the training data set takes place as shown in Figure[Tb] This new approach is called
Define-by-Run.

Figure [2a] shows sample code for implementing a simple multi-layer perceptron (MLP). (1) shows
the initial operations for defining three linear (fully-connected) layers. Note that this consists only
of layer definitions and does not include information about inter-layer connections. The function
to_gpu() indicates that the model will be stored on GPU. In (2), the optimizer is initialized with SGD
and the reference to the MLP model is set. (3) shows the forward() method, the key to defining the
relationships between layers. x are the input variables and ¢ are the corresponding target variables.
Using ReLu as the activation function, layers L1, L2, and L3 are connected, and the softmax entropy
between ¢ and the output y is returned.

(4) represents the training loop, in which a training data set of size N is used for n_epoch epochs
in training, and b_size specifies the number of samples used for each gradient computation in mini-
batch training. Given training samples x and corresponding target variable ¢, opt.zero_grads() ini-
tializes the gradient with zeros. In the next line, the forward computation along the neural network’s
structure as defined inside the forward() method is called. At the same time, the computational
graph is memorized and returned with a Variable class instance of softmax_cross_entropy. The
loss.backward() function executes the gradient based on the loss from the output layer back to the
input layer, for back propagation. Finally, opt.update() adjusts the parameters of the model and
another mini-batch follows.

The following example implementation of a RNN highlights the simplicity of defining a model in
Chainer. Figure [2b]illustrates a simple 4-layer RNN for the prediction of successive elements of a
sequence.

In (1) and (2), the initialization of the model and optimizer is nearly the same as in the earlier
MLP example, with the exception that here the model uses EmbedID, a word2vec type of layer to
transform words into vector representations. The method fwdIstep in (3) is key to implementing a
RNN: the method includes h, the recurrent layer in both the argument and the returned values. In the
second line, h is updated using the current input x and the previous state h. This is a straightforward
method of representing a RNN, a method that is not available in earlier deep learning frameworks
that use text-based model definitions. (4) shows the actual forward computation for input sequence,
seq. By taking the current element as = and next element ¢, fiwdIstep is repeated and losses at each
step are collected. The returned loss contains all of the information necessary for updating the RNN
model using backpropagation through time (BPTT).

These sample codes show that the expression of forward computation, the most important part of
running any NN model, can be written intuitively as simple Python code. The remaining elements,
such as functions, losses, and training loops, are well-abstracted, very simple, and consistent across
most types of models. In addition, because Chainer is written in Python, standard Python debugging
and profiling tools can be used when creating models. The flexibility and simplicity of Chainer
allow users to implement complex algorithms intuitively and efficiently.

4 Benchmark

In this section, Chainer is compared with Caffe using various CNNs. The experimental setting fol-
lows a public benchmark repository [4]] [H For elementary comparison, five standard CNNs are used.
For a more practical comparison, popular CNNs for ImageNet datasets (AlexNet [12], Overfeat [[19]],

!Chainer is submitted to this repository and currently waiting for being added to the result.

and VGG [18])) are used. Table E] summarizes execution times for these models. In Chainer, only
the first batch requires memory pool allocation and kernel transfer on GPU; therefore, the first batch
is considered a special case and its computation time is not included. Accordingly, for Chainer, the
mean computation time for batches 2-11 is shown. For Caffe, since the first batch does not require
longer training time, the mean of computation time for batches 1-10 is shown. Note that these results
are for Chainer v1.5.0.2 with CuPy; measurements for comparison with other frameworks such as
Keras [5] and TensorFlow [1]] will be published in the near future.

Table 1: Mean time for computations on various networks (msec).

Basic convolutional nets ImageNet
convl conv2 conv3 conv4 convs AlexNet | Overfeat VGG
batchsize 64 32 64 128 128 128 128 16
Chainer Ist | 245.62 | 253.08 | 266.21 199.95 199.80 500.77 667.10 | 394.20
forward | Chainer 2-11th 72.31 69.00 85.17 29.14 30.68 222.14 406.91 145.77
Caffe I-10th 47.14 34.66 59.54 25.19 28.48 122.89 368.11 84.54
Chainer Ist 103.01 101.14 90.44 39.00 48.39 293.87 553.65 | 238.88
backward | Chainer 2-11th 85.48 92.33 82.58 27.89 34.74 277.22 545.51 227.08
Caffe [-10th 101.44 105.76 86.46 29.16 31.43 205.05 471.61 191.18

Table |1 shows that the first batch in Chainer is up to 7.0 times slower than subsequent batches.
However, the overhead induced by the first batch becomes insignificant as thousands of mini-batches
are executed. Compared to Caffe, the forward computation time in Chainer is 1.1 to 1.8 times slower,
although the backward computation time is comparable or faster in some cases. The difference in
forward computation time seems reasonable as Chainer is written in Python while Caffe is written
in C++. Because Chainer does not need to recompile after changes are made to the code, the total
time required for trial-and-error testing in implementing and tuning new algorithms is likely to be
similar to that required in Caffe.

5 Conclusion

This paper introduced Chainer, a next-generation deep learning framework that enables the easy im-
plementation of new kinds of algorithms as complex neural networks. Chainer is already being used
successfully in a variety of leading-edge applications, including deep reinforcement learning [[16]],
word2vec distributed representations [15], recurrent neural network language models [14], human
pose estimation [23]], and variational auto-encoders [[11]. Because dedicated developers (includ-
ing the authors) and users from around the world are actively collaborating on Github to improve
Chainer, we anticipate that Chainer will become more versatile and useful in the future. In particular,
the performance improvement gained by improving CuPy allows users to apply many kinds of deep
learning models with CPU/GPU-agnostic code. The authors invite all members of the deep learning
community to try Chainer and to contribute to its development.

References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Joze-
fowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, 1. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasude-
van, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Ten-
sorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available
from tensorflow.org.

[2] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. J. Goodfellow, A. Bergeron, N. Bouchard,
and Y. Bengio. Theano: new features and speed improvements. NIPS Workshop on Deep
Learning and Unsupervised Feature Learning, 2012.

[3] L. Bottou. Stochastic gradient tricks. In Neural Networks, Tricks of the Trade, Reloaded, pages
430-445. Springer, 2012.

[4] S. Chintala. convnet-benchmarks. https://github.com/soumith/convnet-benchmarks.
[5] F. Chollet. Keras. http://keras.io/.

[6] R. Collobert. Torch. NIPS Workshop on Machine Learning Open Source Software, 2008.

[7] J. C. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12:2121-2159, 2011.

[8] I. J. Goodfellow, D. Warde-Farley, P. Lamblin, V. Dumoulin, M. Mirza, R. Pascanu,
J. Bergstra, F. Bastien, and Y. Bengio. Pylearn2: a machine learning research library. CoRR,
abs/1308.4214, 2013.

[9] Y. Jia. Caffe: An open source convolutional architecture for fast feature embedding, 2013.

[10] D.P. Kingma and J. Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980,
2014.

[11] D.P. Kingma and M. Welling. Auto-encoding variational bayes. ICLR, 2014.

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional
neural networks. In NIPS, pages 1106-1114, 2012.

[13] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521:436-444, 2015.

[14] T. Mikolov, M. Karafiat, L. Burget, J. éernock}’/, and S. Khudanpur. Recurrent neural network
based language model. In INTERSPEECH, pages 1045-1048, 2010.

[15] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of
words and phrases and their compositionality. NIPS, pages 3111-3119, 2013.

[16] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing atari with deep reinforcement learning, 2013. NIPS Deep Learning Workshop.

[17] T. Oliphant. Guide to NumPy. Trelgol Publishing, 2006.

[18] T. Sercu, C. Puhrsch, B. Kingsbury, and Y. LeCun. Very deep multilingual convolutional neural
networks for LVCSR. CoRR, abs/1509.08967, 2015.

[19] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat: Integrated
recognition, localization and detection using convolutional networks. CoRR, abs/1312.6229,
2013.

[20] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks.
NIPS, pages 3104-3112, 2014.

[21] T. Tieleman and G. Hinton. Lecture 6.5-RMSprop: Divide the gradient by a running average
of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 4, 2012.

[22] S. Tokui. Chainer. http://chainer.org/.

[23] A. Toshev and C. Szegedy. Deeppose: Human pose estimation via deep neural networks. In
CVPR, pages 1653-1660, 2014.

[24] O. Vinyals and Q. V. Le. A neural conversational model. CoRR, abs/1506.05869, 2015.

[25] P. J. Werbos. Generalization of backpropagation with application to a recurrent gas market
model. Neural Networks, 1(4):339-356, 1988.

	Introduction
	Deep Learning Framework
	Chainer
	Benchmark
	Conclusion

