
Overview of the TREC 2016 Open Search track

Academic Search Edition

Krisztian Balog
University of Stavanger

Norway
krisztian.balog@uis.no

Anne Schuth
Blendle

The Netherlands
anneschuth@blendle.com

Peter Dekker
University of Amsterdam

The Netherlands
peter.dekker@student.uva.nl

Narges Tavakolpoursaleh
GESIS – Leibniz Institute for

the Social Sciences, Germany
narges.tavakolpoursaleh

@gesis.org

Philipp Schaer
TH Köln (University of Applied

Sciences), Germany
philipp.schaer
@th-koeln.de

Po-Yu Chuang
Pennsylvania State University

USA
pxc5210@psu.edu

ABSTRACT
We present the TREC Open Search track, which represents a new
evaluation paradigm for information retrieval. It offers the possi-
bility for researchers to evaluate their approaches in a live setting,
with real, unsuspecting users of an existing search engine. The
first edition of the track focuses on the academic search domain
and features the ad-hoc scientific literature search task. We report
on experiments with three different academic search engines: Cite-
SeerX, SSOAR, and Microsoft Academic Search.

1. INTRODUCTION
Two keywords that have been coming up more and more promi-

nently at information retrieval (IR) conferences over the past years
are users and impact (of academia on industry). To undertake mean-
ingful research, IR researchers need to consider real users (as op-
posed to simulated users or professional assessors) in their natural
environments. Another key ingredient, that allowed search technol-
ogy to be taken to the next level in many domains, is the availability
of large-scale historical usage and interaction data. Currently, this
type of data is only available to those working within organizations
that operate a search engine used by sufficiently many users. We
believe that IR research should be more open and we, as a commu-
nity, are in need of a paradigm shift. TREC Open Search promises
to be exactly this.

Open Search is a new evaluation paradigm for IR. The
experimentation platform is an existing search engine.
Researchers have the opportunity to replace compo-
nents of this search engine and evaluate these compo-
nents using interactions with real, unsuspecting users
of this search engine.

This definition is generic, on purpose, to allow for the replacement
of, and experimentation with, any part of a search engine (includ-
ing, e.g., result presentation). Our immediate focus, however, lies
at the very core of a search engine: the ranking method.

Unlike most other tracks at TREC—though somewhat in the
spirit of the Crowdsourcing Track—we see our initiative as a pro-
posal for an evaluation paradigm rather then a proposal for a new IR
task. Nevertheless it is vital, for this to be a meaningful exercise,
that our experimental platform provides an interesting real-world
IR task. The first edition of the TREC Open Search track sets its
focus on the academic search domain and features ad-hoc scientific
literature search as the task.

The remainder of this paper is organized as follows. In Section 2
we introduce the “living labs” evaluation methodology. Section 3
presents the scientific literature search task, followed by a discus-
sion of three specific use-cases; each of Sections 4–6 corresponds
to a particular academic search engine. We conclude in Section 7.

2. LIVE EVALUATION METHODOLOGY
We evaluate rankings provided by participants in the context of

an actual search engine (referred to as site from now on), by serving
precomputed runs, for a given set of queries, to the users that enter
one of these queries in the real-life search engine.

The track operates as follows. A set Q of queries is taken from
the logs of a site. These queries are chosen such that they appear
frequently enough, making it likely that they will be issued again
in the near future by users of this site. This selection of queries is
a crucial ingredient of our approach and we discussed this in more
detail in earlier work [1].1 Additionally, for each query q ∈ Q,
the site prepares a set of candidate documents Dq and some histor-
ical interaction data Id for each document d ∈ Dq . TREC Open
Search operates an infrastructure, called the Living Labs API, that
allows the site to share Q, D, and I with the participants. Once the
site uploads the data to the API, it can be downloaded by partici-
pants. This way participants are provided with very much the typ-
ical TREC-style collection, consisting of queries and documents
and additionally historical interactions. Queries are strings and
documents are represented as JSON documents with all the fields
common in literature search (e.g., author, title, abstract, full text).

Participants are expected to produce their runs, as they normally
would, and upload these through the API. When an unsuspecting,
real user then issues a query q ∈ Q against the site’s search engine,
the site will ask the API to provide them with a run for that query.
The API then selects uniformly randomly from among the runs that
have already been upload by participants. This run is then returned
to the search engine. The site will interleave2 the run with its pro-
duction system and show this to the user. The user may or may not
1Note that while we have called these queries head queries in the
past, these do not need to be head queries per se. Queries can be
taken from the torso as well when the number of queries is in-
creased such that the total expected query volume, of the whole
query set Q, is large enough.
2Interleaving [3] is a highly sensitive online evaluation method that
is often used at large scale commercial (web) search engines. Inter-
leaving combines two rankings that are to be compared into a single
ranking. This interleaved ranking is shown to a user and the ranker
that contributed more documents that were clicked is preferred.

Table 1: Overview of use-cases and evaluation rounds. The numbers refer to the number of test queries, with the number of training
queries in parentheses.

Use-case Eval. Round #1 Round #2 Round #3
method Period #Queries Period #Queries Period #Queries

CiteSeerX online Jun 1 – July 15 107 (100) Aug 1 – Sep 15 107 (100) Oct 1 – Nov 15 871 (100)
SSOAR online Jun 1 – July 15 74 (57) Aug 1 – Sep 15 74 (57) Oct 1 – Nov 15 1062 (57)
MS Academic offline Oct 1 – Nov 1 480

interact with this ranking. When there is an interaction, the site will
send this back to the API. And the API then makes it available to
the participant. The participant can then (or at any moment for that
matter) choose to update their ranking.

The procedure described above holds for train queries. Next to
train queries, there is also a set of test queries. Test queries are
treated differently. During dedicated evaluation rounds, the runs
that are submitted for test queries can not be changed (but they
can be changed any number of times before the test period starts).
The reason for this freeze is that it makes it possible to compare
systems in fair way: during the same period, without the impact
of a sudden update by only one of the participants. Outside of
evaluation rounds, test queries act just like train queries, except
that it is never possible to obtain individual feedback for them, for
test queries, only aggregated feedback is available.

We acknowledge that the above setup has limitations. These in-
clude that only a selection of queries is considered (all queries are
reasonably frequent, so no long tail) and there is no contextual in-
formation available about the current user (meaning that personal-
ization is not possible). On the positive side, this approach avoids
the privacy concerns and lowers the barrier to entry: participants
prepare their runs offline and partake in an online experiment, with-
out having to build and maintain a live service.

3. TASK AND ORGANIZATION
The track focuses on ad-hoc scientific literature search as the

task: given a keyword query, return a ranked list of documents (sci-
entific articles).

This task is evaluated on three different academic search engines:
CiteSeerX, SSOAR, and Microsoft Academic Search. We will refer
to these as sites, each representing a separate use-case. In all cases,
sites make available a set of queries and a set of candidate docu-
ments for each query. Participants need to generate a (re)ranking
of a set of candidate documents for each query and upload these to
our API. It is important to emphasize that participants submit a sin-
gle ranking for each query; they might not submit rankings for all
queries (and this does not affect their outcome apart from receiving
a lower number of total impressions in the live evaluation).

CiteSeerX and SSOAR use interleaved comparisons with their
production systems on the live sites, following the exact procedure
that we have described in Section 2. Specifically, Team Draft In-
terleaving (TDI) is implemented and performed by the sites them-
selves; see Appendix B for TDI. Microsoft Academic Search ad-
heres to the more traditional TREC-style evaluation, where there is
no live training involved (i.e., all queries are test queries), and rank-
ings are to be uploaded to the API by a given deadline. The submit-
ted rankings are then evaluated offline, using both online implicit
feedback (clicks) and offline human judgments.

The track involves three evaluation rounds. The first is meant as
a “mock round,” to test the whole procedure; the official results will
be based on the last round, which is still underway (results will be
announced at the TREC conference). Table 1 presents an overview.

4. CITESEERX USE-CASE
CiteSeerX is a digital library search engine that focuses on schol-

arly documents, such as conference papers, journal papers, books,
and posters. The major focus of the CiteSeerX collection has been
Computer and Information Sciences but it has been expanding to
other areas. By the end of October, 2016, CiteSeerX has ingested
more than 10 million documents, 32 million author mentions, and
240 million citations. After author disambiguation, and document
conflation, this reduces to 8.7 million unique papers, 1.3 million
unique authors, and 71 million unique citation records. The site
has over 2.3 million hits daily on average. There are 500 thou-
sand documents download per day in which over a quarter is from
Googlebot. CiteSeerX receives nearly a hundred thousand search
queries per day.3

4.1 Documents
The documents uploaded to Open Search API server are the text

body of PDF files extracted by the CiteSeerX ingestion pipeline. If
for some reason, the full text of a document was not extracted, the
abstract is used instead. A example document in JSON format is
shown in Listing 2.

Listing 1: Document metadata for docid citeseerx-d10.

" s i t e _ d o c i d " : " 1 0 . 1 . 1 . 5 9 . 9 8 3 4 " ,
" t i t l e " : " Seman t i c Wik iped i a " ,
" c o n t e n t " : {

" t e x t " : "ABSTRACT\ nSemant ic Wik iped i a \ nMax . . . "
}

4.2 Queries and Candidate Results
A list of the top the 1000 queries of CiteSeerX was generated

in 2014 by filtering the Tomcat access logs of the frontend servers.
At first, we used the top 200 queries in this list and split them into
two sets – queries with even numbers comprised the training set;
and queries with odd numbers comprised the test set. When we
estimated the impressions of these 200 queries, which means the
number of user queries that match queries in this set, in March,
2016, the measurement shows that there are about 250 matched
queries per week. However, while preparing the Round #1 results
for participants in July, 2016, we found that impressions for these
200 queries are low. The user clicks for these queries are often
lower than 50 per week. Therefore, the other 800 queries are added
and used as a test set in October, 2016. Figure 1 shows the relative
frequencies of the these top 1000 queries.

Each query string was used to query the backend index servers of
CiteSeerX powered by Apache Solr. The returned list of top results
was used as candidate documents for Open Search. For queries in
the training set, the top 100 documents in the Solr query result are

3All stats are based on local access logs between January and July
2016.

Table 2: Results for CiteSeerX. Rows are sorted by Round #2 outcome.

Team Round #1 Round #2
Outcome #Wins #Losses #Ties #Impr. Outcome #Wins #Losses #Ties #Impr.

UDel-IRL 0.86 6 1 2 9
webis 0.75 3 1 1 5
UWM 0.67 2 1 3 6
IAPLab 0.73 8 3 1 12 0.60 3 2 1 6
BJUT 0.33 3 6 1 10 0.60 6 4 1 11
QU 0.50 3 3 3 9 0.50 3 3 1 7
Gesis 0.67 4 2 3 9 0.50 2 2 1 5
OpnSearch_404 0.00 0 0 1 1 0.50 4 4 1 9
KarMat 0.60 3 2 2 7 0.44 4 5 0 9

Figure 1: 1000 most frequent queries on CiteSeerX generated
in 2014

used, and for queries in the test set, top 50 documents are used.
Due to the imperfection of the automatic metadata extractor, the
information of documents indexed in CiteSeerX maybe incorrect.
Since titles are mandatory when uploading documents to the Open
Search API server, we ignore documents without titles. Documents
without corresponding PDF files are ignored as well. We then try
to fetch the extracted full text of documents from the repository
server which will be uploaded to Open Search API server as the
content of the documents. If for some reason, the full text of a
document was not extracted, the abstract will be used instead. This
data preparation stage is shown at the bottom of Figure 2.

4.3 Implementation
We implement a middle layer between the web frontend and Solr

index servers in order to integrate the ranking produced by partic-
ipants of Open Search. It is a web service that appears as a Solr
server to the frontend and forwards requests to both a Open Search
API server and the actual Solr index server and integrates the re-
sults using the Team Draft Interleave algorithm [5]. The session
IDs of the rankings from the participants and the information of
the origin of documents from the query results are returned to the
frontend.

In order to capture the user clicks, the web frontend is modified.
Ranking information including session IDs are embedded into the
URIs of the summary pages of documents. When a CiteSeerX user
clicks a link in search engine result page (SERP) which points to

Figure 2: Architecture of Open Search support at CiteSeerX

a summary page of a paper, the URI of the link is recorded in the
access log of Tomcat. Another program monitors the access logs
of Tomcat by polling log files every second and reports user click
behavior to the Open Search API server. One of CiteSeerX fron-
tend servers has this modified frontend and handles 25% of all traf-
fic. The relationship between the components mentioned above is
shown in Figure 2.

There are some issues worth mentioning about the current Cite-
SeerX. One is the way to identify queries. Query strings are nor-
malized by removing punctuation marks and extra spaces, making
them lowercase. These normalized query strings are then converted
to SHA-1 hash values which are used as query IDs. This method is
relatively straightforward to implement but is not perfect because
two query strings with minor differences such as different plurali-
ties or word orders are considered as unique queries, e.g., “social
network” and “social networking.” Therefore, some impressions of
queries will not be considered. In the future we could improve this
by stemming and using a bag-of-words model to identify queries.

The numbers of impressions have not been enough in the testing
periods. There might be several reasons. First, as we mentioned
above, some possible impressions are ignored due to the way we
identify unique queries. Second, the list of top queries was gener-
ated in 2014 and the current top queries could be different from the
the top queries in 2014. It could be useful to generate an up-to-date
top query list instead of using the 2014 one.

4.4 Results
Table 2 presents the results. Six teams submitted rankings for

the first round and three additional teams joined for the second
round. The winner team of Round #1 is IAPLab, for Round #2
it is UDel-IRL. Noticeably, the number of impressions is quite low.
To mitigate this, the number of test queries has been considerably
increased for Round #3.

5. SSOAR USE-CASE
The Social Science Open Access Repository (SSOAR) is a doc-

ument repository that is based on DSpace. It is developed and
maintained at GESIS, Cologne, Germany. With more than 1,350
installations worldwide (as listed by the registry for Open Access
Repositories OpenDOAR) DSpace is one of the de facto standard
repository systems. Its search and browsing functionalities relies
on the Solr search engine.

SSOAR itself contains over 38,000 full text documents from the
social sciences and neighboring fields. Each document is annotated
with a rich set of metadata that can include handcrafted descriptors
from a thesaurus or classification information4

There are around 37,000 unique visitors per month visiting the
homepage and more than 56,000 PDF full text downloads per month.
Both numbers are cleaned from search engine accesses using the
enterprise web tracking software E-Tracker.

5.1 Documents
Each document in the candidate documents (doclist) should have

an entity, including a site_docid, a title, and content description.
DSpace supports documents with rich metadata. We added some of
this metadata such as abstract, author, publisher, etc. to describe the
documents. Our data collector recorded the metadata of each docu-
ment in document lists in a JSON format that is shown in Listing 2.
The metadata in the candidate documents is in English or German.
In general most of the metadata is avaiable in both languages. The
corresponding translation and more metadata are available visa the
OAI-PMH interface of DSpace.5

Listing 2: Document metadata for docid ssoar-d2.

" c o n t e n t " : {
" a v a i l a b l e " : "2014−04−11T08 : 4 3 : 0 3 Z " ,
" p u b l i s h e r " : " Mannheim " ,
" d e s c r i p t i o n " : " P u b l i s h e d V e r s i o n " ,
" l a n g u a g e " : " en " ,
" a u t h o r " : " Wolf , C h r i s t o f " ,
" i s s u e d " : " 2 0 1 4 " ,
" a b s t r a c t " : " As more and more p e o p l e use s o c i a l media . . . " ,
" i d e n t i f i e r " : " u rn : nbn : de :0168− s s o a r −381955" ,
" t y p e " : " working p a p e r " ,
" s u b j e c t " : " d a t a p r e p a r a t i o n "

} ,
" t i t l e " : " S o c i a l Media M o n i t o r i n g o f t h e Campaigns . . . " ,
" s i t e _ d o c i d " : " document38195 "

5.2 Queries and Candidate Results
To compile a set of head queries and candidate documents we

analyzed the log files of SSOAR between August 2013 and June
2015 (712 days or almost 23 months) and extracted the queries that
were called most frequently. In general the impression rates reach a
peak in November and falls sharply in December to its lowest level.
In total we were able to collected 20503 distinct queries.

4The thesaurus and the classification system used in SSOAR are
available as SKOS version via. http://lod.gesis.org.
5http://www.ssoar.info/OAIHandler/request?
verb=Identify

Figure 3 shows the frequency of the first 300 most-searched sim-
ple queries in the above mentioned period. One can observe that
the 70 most common query terms have the frequency of between
20 and 162 impressions during the whole period.

Although there is no minimum query frequency we observed that
these numbers are not high enough to guarantee a continuous flow
of impressions and clicks per query during the evaluation phase.
These numbers would drop even lower if we consider the separation
into test and training queries. The long tail of queries exposed on
the right side of Figure 3, in comparison to the small number of
high-frequency queries on the left side reveals the limited high-
frequency search terms to share with the living lab community.

To overcome the lack of head queries we decided to observe the
browsing interface which is an additional search interface offered
by Dspace. This interfaces, together with a faceted search concept,
allows browsing the document set along predefined browsing cat-
egories (according to the classification system mentioned before).
These categories are called collections and communities. Other
browsing categories like author, publisher, and so on are possible,
but were ignored in our setting. After browsing, a user is able to (1)
select the documents to view or download or (2) continue to search
in the result list by entering query terms and/or filtering more items
to make the query more specific. We decided to investigate whether
we can consider the first scenario as an alternative to obtaining the
head queries. We extracted the browsing calls from log files during
the mentioned period.

Extracting the patterns of browse searches from log files from
the mentioned period, we were able to collect 129 distinct brows-
ing categories. Figure 4 shows the absolute number of frequencies
of browsing 100 communities and collections. We can observe that
a third of these have the impressions of more than 5000. We were
convinced that browsing is more popular for SSOAR users than the
simple keyword based search, and that the impressions are promis-
ing for the living labs. Accordingly, we generated the majority of
head queries from the browsing categories besides a few numbers
of the keyword searches.

After Rounds #1 and #2, we noticed that although experimen-
tal runs have had lots of impressions, but they had very few clicks.
That can be explained as follows: (1) The documents were changed
during the test phases. New documents are archived in and con-
sequently, some documents in our ranking lists moved to a lower
rank. We did not update the ranking lists (candidates documents
for each query) during the test phases and that could make the ex-
perimental runs a list of items which may do not exist in the site
ranking, or they might locate later, after the first 100 documents,
taking into account that if a document in an experimental run does
not exist in the list of the first 100 documents of site ranking, it will
be ignored (filtered out) during the interleaving. (2) After browsing
most of the users filter the retrieved results, by selecting special au-
thors, publication dates, or/and add a query term. This again could
remove our candidate documents from the final list where the doc-
uments may be clicked on.

In Round #3, we therefore decided to add more term queries,
which contains also lots of tail queries. We added a list of 988 test
queries to the SSOAR experimental query collection.

5.3 Implementation
The prerequisite for participating in Open Search as a site is to

have a search engine and active users. SSOAR fulfills these re-
quirements. furthermore, participating in the OpenSearch evalua-
tion campaign and transforming the DSpace discovery module to a
living lab environment proceeds by implementing the components
listed in this section (see Figure 5 for an overview).

While implementing the Open Search component we paid atten-

http://lod.gesis.org
http://www.ssoar.info/OAIHandler/request?verb=Identify
http://www.ssoar.info/OAIHandler/request?verb=Identify

Table 3: Results for SSOAR. Rows are sorted by Round #2 outcome.

Team Round #1 Round #2
Outcome #Wins #Losses #Ties #Impr. Outcome #Wins #Losses #Ties #Impr.

Gesis 1.00 1 0 461 462 1.00 1 0 96 97
UWM 0.60 3 2 473 478 1.00 1 0 94 95
QU 0.33 1 2 472 475 0.50 1 1 112 114
webis 0.50 1 1 88 90
KarMat 0.80 4 1 504 509 0.00 0 2 84 86
IAPLab 0.00 0 0 148 148 0.00 0 0 24 24
UDel-IRL 0.00 0 0 11 11 0.00 0 1 84 85
OpnSearch_404 0.00 0 0 2 2 0.00 0 0 2 2

Figure 3: 300 of the most frequently searched queries (term
search) on SSOAR between August 2013 and June 2015

Figure 4: 100 of the most frequently searched (browsed) com-
munities and collections on SSOAR between August 2013 and
June 2015

tion to make it as minimally invasive and encapsulated as possible.
This led to a quite reusable piece of software that might be used
as an official extension for DSpace. We tested the extension with
the stable branches 3 and 5, both within an out-of-the-box vanilla
installation and the specific implementation of SSOAR. We believe
this to be a benefit for the whole repository community as this al-
lows other repository operators to easily be part of the living labs
community.6 The implementation work is documented in [6].

Collection Provider (1) Living labs require a test collection that
contains head queries and candidate’s documents with their details.
To collect this information from the site, a collection provider is
implemented. This collection provider gets a list of experimental
queries for the lab as the input and records the IR system’s retrieval
result–a list of query-relevant documents–in a specific JSON for-
6https://github.com/narges1212/
DSpace-livingLab

Figure 5: General Schema of the Living Labs Components in
DSpace

mat, which is expected by the Living Lab API. It records also a
document’s metadata, such as its title (in English if available, oth-
erwise in original language), author, abstract, description, identifier
(URN/DOI), issued, language, publisher, subject, and type for each
document in the candidate lists.

Logging For Living Lab (2) We implemented a logger that, in
addition to the queries, records the ranking results retrieved from
Solr at the moment the queries are issued. In this logger, each
viewed (clicked) item is recorded with its referrer which points
to the query that leads to the item. This log enables to track the
user interactions and determine which item in which position in the
ranking is clicked after a query is issued.

The Interleaver (3) The interleaving process on SSOAR site can

https://github.com/narges1212/DSpace-livingLab
https://github.com/narges1212/DSpace-livingLab

be switched on and off through related parameter of the living lab’s
config file. When a SSOAR user issues a query for the first 100
documents sorted by relevance to the query, the living lab compo-
nent in the site checks if the query is an experimental query. If it
is the case, a request for an experimental ranking to the query is
sent to the living labs API. Each session, an experimental query is
issued, the site retrieves a new ranking from the API.

The runs submitted by Open Search participants may include
documents that are removed from the database or moved in a new
position, after the first 100 documents of the site ranking. These
documents need to be removed from the participant ranking list be-
fore the interleaving is performed.

The experimental runs covering 100 documents or less are in-
terleaved with 100 documents ranked at the top level of the SERP.
Finally the generated interleaved ranking is shown to the user of
the corresponding session. In order to show the user stable rank-
ings for each query, we store them in a cache. As it required in the
OpenSearch, we used Team Draft Interleaving in our implementa-
tion for the living lab.

Feedback Extractor (4) Each experimental run is specified by
the living lab with an identity known as session IDs. The feed-
back returned to the API should have this identity with it. A Feed-
back Extractor (Figure 5) is needed to extract the feedback from
the logged data, to format them to a particular JSON, and to upload
them to the API (see Data Uploader in Figure 5).

To obtain user feedback, the viewed items that refer to an in-
terleaved SERP are identified, and the clicked attributes of these
items in feedback list are set to True. In the training phase the
living labs expected the sites to upload user feedback shortly after
they are generated. We created a cron job to extract and upload the
feedback of the previous day every 24 hours.

Data Uploader (5) We need a client which communicates with
the living labs’ API to (1) upload and update the lab collections, (2)
get the experimental rankings, and (3) upload and update the feed-
back. The track organizers provided sample code that implements
clients that talk to the Living Lab API for both participating sites
and researchers. We used these clients to interact with the API.
This code is made available by the Open Search organizers.7

5.4 Results
Table 3 presents the results. Seven teams submitted rankings

for the first round and one additional team joined for the second
round. The best performing team in Round #1 was Gesis. In Round
#2, both Gesis and UWM achieved perfect outcome. For this use-
case the number of impressions is much higher than for CiteSeerX.
However, the vast majority of comparisons result in ties. A large
number of additional test queries has been added for Round #3.

6. MICROSOFT ACADEMIC USE-CASE
Microsoft Academic Search is an experimental research service

developed by Microsoft Research to explore how scholars, scien-
tists, students, and practitioners find academic content, researchers,
institutions, and activities. Microsoft Academic Search indexes not
only millions of academic publications, it also displays the key rela-
tionships between and among subjects, content, and authors, high-
lighting the critical links that help define scientific research.

Each document has an abstract, url (web location of the pub-
lished document), and an Entity ID in the Microsoft Academic
Search Knowledge Graph. Additional content can be extracted
through the Academic Knowledge API.8

7https://bitbucket.org/living-labs/ll-api/
8https://www.microsoft.com/
cognitive-services/en-us/

Algorithm 1 Team draft interleave (TDI) [5]
Require: Rankings A = (a1, a2, . . .) and B = (b1, b2, . . .)
1: Init: L← ();TeamA← ∅;TeamB ← ∅; i← 1
2: while A[i] = B[i] do // common prefix
3: L← L+A[i] // append result to L without assigning teams
4: i← i+ 1 // increment i
5: while (∃i : A[i] 6∈ L) ∧ (∃j : B[j] 6∈ L) do // not at end of A or

B
6: if (|TeamA| < |TeamB|) ∨

((|TeamA| = |TeamB|) ∧ (RandBit() = 1)) then
7: k ← mini{i : A[i] 6∈ L} // top result in A not yet in L

8: L← L+A[k] // append it to L
9: TeamA← TeamA ∪ {A[k]} // clicks credited to A

10: else
11: k ← mini{i : B[i] 6∈ L} // top result in B not yet in L

12: L← L+B[k] // append it to L
13: TeamB ← TeamB ∪ {B[k]} // clicks credited to B

14: Output: Interleaved ranking L, TeamA, TeamB

Rankings for Microsoft Academic Search will be evaluated us-
ing both online implicit feedback (clicks) and offline human judg-
ments. Details will follow after the evaluation has been performed.

7. SUMMARY
We have introduced the TREC Open Search track, which repre-

sents a new evaluation paradigm for information retrieval. The first
edition of the track focuses on the academic search domain and fea-
tures the ad-hoc scientific literature search task. This paper reports
on our progress so far. As the final round of the track is still under-
way at the time of writing, the full set of results and their analysis
will be presented in the proceedings paper.

APPENDIX
A. ADDITIONAL AUTHORS

Jian Wu (Pennsylvania State University, USA, email: xw394
@ist.psu.edu) and C. Lee Giles (Pennsylvania State Univer-
sity, USA, email: giles@ist.psu.edu).

B. TEAM DRAFT INTERLEAVING
The Team draft interleave (TDI) algorithm, as we used it in

TREC Open Search, is detailed in Algorithm 1. The algorithm ini-
tializes the interleaved list L with any common prefix of A and B,
if this exists. For this common prefix, no teams are assigned, as
no preferences should be inferred.9 Then, on line 5, the algorithm
continues in phases by adding two documents to L: In each phase,
on line 6, we first flip an unbiased coin to decide if ranker A or B is
given priority. Assuming that ranker A is given priority, A appends
its highest ranked result that is not already in L to L (i.e., l1 ← a1

in the first instance), and assigns it to TeamA. Then, B selects its
first result not already present in L (in the first instance either b1
if it differs from a1, and b2 otherwise) and again appends it to L
and TeamB. This repeats until all results in A or B have been
consumed or until L reaches the desired length.

The interleaved ranking L is then shown to the user. Any clicks
on documents contributed by A (in TeamA) are credited to A.
Clicks on documents in TeamB are credited to B. Over an ob-
served sample of interleaving observations, a preference for A or

academic-knowledge-api
9This was shown to substantially increase sensitivity of the simpler
original TDI algorithm [2, 4].

https://bitbucket.org/living-labs/ll-api/
https://www.microsoft.com/cognitive-services/en-us/academic-knowledge-api
https://www.microsoft.com/cognitive-services/en-us/academic-knowledge-api
https://www.microsoft.com/cognitive-services/en-us/academic-knowledge-api
https://www.microsoft.com/cognitive-services/en-us/academic-knowledge-api
https://www.microsoft.com/cognitive-services/en-us/academic-knowledge-api
https://www.microsoft.com/cognitive-services/en-us/academic-knowledge-api
https://www.microsoft.com/cognitive-services/en-us/academic-knowledge-api
https://www.microsoft.com/cognitive-services/en-us/academic-knowledge-api
https://www.microsoft.com/cognitive-services/en-us/academic-knowledge-api
https://www.microsoft.com/cognitive-services/en-us/academic-knowledge-api
https://www.microsoft.com/cognitive-services/en-us/academic-knowledge-api
https://www.microsoft.com/cognitive-services/en-us/academic-knowledge-api
https://www.microsoft.com/cognitive-services/en-us/academic-knowledge-api
https://www.microsoft.com/cognitive-services/en-us/academic-knowledge-api
https://www.microsoft.com/cognitive-services/en-us/academic-knowledge-api
https://www.microsoft.com/cognitive-services/en-us/academic-knowledge-api
https://www.microsoft.com/cognitive-services/en-us/academic-knowledge-api
https://www.microsoft.com/cognitive-services/en-us/academic-knowledge-api
https://www.microsoft.com/cognitive-services/en-us/academic-knowledge-api
https://www.microsoft.com/cognitive-services/en-us/academic-knowledge-api
https://www.microsoft.com/cognitive-services/en-us/academic-knowledge-api
https://www.microsoft.com/cognitive-services/en-us/academic-knowledge-api
https://www.microsoft.com/cognitive-services/en-us/academic-knowledge-api
https://www.microsoft.com/cognitive-services/en-us/academic-knowledge-api
https://www.microsoft.com/cognitive-services/en-us/academic-knowledge-api
https://www.microsoft.com/cognitive-services/en-us/academic-knowledge-api
https://www.microsoft.com/cognitive-services/en-us/academic-knowledge-api
https://www.microsoft.com/cognitive-services/en-us/academic-knowledge-api
https://www.microsoft.com/cognitive-services/en-us/academic-knowledge-api
https://www.microsoft.com/cognitive-services/en-us/academic-knowledge-api
https://www.microsoft.com/cognitive-services/en-us/academic-knowledge-api
https://www.microsoft.com/cognitive-services/en-us/academic-knowledge-api
https://www.microsoft.com/cognitive-services/en-us/academic-knowledge-api
https://www.microsoft.com/cognitive-services/en-us/academic-knowledge-api
https://www.microsoft.com/cognitive-services/en-us/academic-knowledge-api
https://www.microsoft.com/cognitive-services/en-us/academic-knowledge-api
https://www.microsoft.com/cognitive-services/en-us/academic-knowledge-api
https://www.microsoft.com/cognitive-services/en-us/academic-knowledge-api
https://www.microsoft.com/cognitive-services/en-us/academic-knowledge-api
https://www.microsoft.com/cognitive-services/en-us/academic-knowledge-api
https://www.microsoft.com/cognitive-services/en-us/academic-knowledge-api

B is then inferred based on which ranker was credited with more
clicks. For any given set of results shown to users, the ranker where
more contributed documents are clicked is considered to be pre-
ferred. In Algorithm 1, the results contributed by A are recorded
in a set TeamA and similarly for the results contributed by B. We
refer the reader to work by Chapelle et al. [2] for a more in-depth
discussion of this algorithm.

Suppose the user clicks on Cq = c1, c2, . . . when presented with
the results L in response to query q. Let Cq

A = Cq ∩ TeamA be
the clicked documents in TeamA, and Cq

B = C ∩ TeamB be
the clicked documents in TeamB. If |Cq

A| > |C
q
B |, then ranker A

is considered to have won for this query, and if |Cq
B > Cq

A| then
ranker B is considered to have won. Otherwise, there was a tie.

References
[1] K. Balog, L. Kelly, and A. Schuth. Head first: Living labs for

ad-hoc search evaluation. In CIKM ’14, 2014.
[2] O. Chapelle, T. Joachims, F. Radlinski, and Y. Yue. Large-scale

validation and analysis of interleaved search evaluation. ACM
Transactions on Information Systems (TOIS), 30(1), 2012.

[3] T. Joachims. Evaluating Retrieval Performance using Click-
through Data. In Text Mining. Physica/Springer, 2003.

[4] F. Radlinski and N. Craswell. Comparing the sensitivity of
information retrieval metrics. In SIGIR ’10, 2010.

[5] F. Radlinski, M. Kurup, and T. Joachims. How does click-
through data reflect retrieval quality? In CIKM ’08, 2008.

[6] N. Tavakolpoursaleh. A living lab evaluation environment for
academic document repositories. Master’s thesis, University of
Bonn, Germany, 2016.

	Introduction
	Live Evaluation Methodology
	Task and Organization
	CiteSeerX Use-Case
	Documents
	Queries and Candidate Results
	Implementation
	Results

	SSOAR Use-Case
	Documents
	Queries and Candidate Results
	Implementation
	Results

	Microsoft Academic Use-Case
	Summary
	Additional authors
	Team Draft Interleaving

