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Abstract

In regularized kernel methods, the solution of a learningpfgm is found by minimizing func-
tionals consisting of the sum of a data and a complexity tdmthis paper we investigate some
properties of a more general form of the above functionaishicth the data term corresponds to
the expected risk. First, we prove a quantitative versiothefrepresenter theorem holding for
both regression and classification, for both differengadoid non-differentiable loss functions, and
for arbitrary offset terms. Second, we show that the casehitiwthe offset space is non triv-
ial corresponds to solving a standard problem of reguldoman a Reproducing Kernel Hilbert
Space in which the penalty term is given by a seminorm. Rinak discuss the issues of existence
and uniqueness of the solution. From the specializationuofamalysis to the discrete setting it
is immediate to establish a connection between the solptioperties of sparsity and coefficient
boundedness and some properties of the loss function. Earabe of Support Vector Machines
for classification, we also obtain a complete charactadmaif the whole method in terms of the
Khun-Tucker conditions with no need to introduce the duahialation.
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1. Introduction

The problem of learning from examples can be seen as the problem of #@stirma unknown
functional dependency given only a finite (possibly small) number of ios&nThe seminal work
of Vapnik Vapnik (1988) shows that the key to effectively solve this pnobie by controlling the
complexity of the solution. In the context of statistical learning this leads to igees known
asregularization networkgEvgeniou et al., 2000) aregularized kernel method¥apnik, 1988;
Cristianini and Shawe Taylor, 2000; Sitkopf and Smola, 2002). More precisely, given a training
setS= (x;,i)!_, of ¢ pairs of examples, the estimator is defined as

¢
fs eargmin{%_zlvwi,f(onMf\|§[}, ()
feH i=

whereV is the loss function/ is the Hilbert space of theypotheseandA > 0 is the regulariza-
tion parameter. As shown by Evgeniou et al. (2000) the above minimizatidmegpnocan also be
seen as particular instance of Tikhonov Regularization (Tikhonov asdnim, 1977; Mukherjee
et al., 2002) for a multivariate function approximation problem which is wedvkmto be ill-posed
(Bertero et al., 1988; Evgeniou et al., 2000; Poggio and Smale, 2003).

In this paper we study the generalization of the above problem todignuous settinghat is,
given a probability distributiop defined onX x Y whereX is the input space and is the output
space, we study the properties of the estimator

("¢ € argmin { v<y,f<x>+g<x>>dp<x,y>+A|rf||§[}, @)
(f.g)eH xB LIXXY

where# andB are reproducing kernel Hilbert spaces (RKH®):is the space of penalized func-
tions and3 is the offset space (Wahba, 1990).

Considering the continuous setting is meaningful for several reasamss. iHs useful in order
to study the problem of the generalization properties of kernel methods\@re, 2002). To this
purpose, one associates with each funcfiorX — R its expected risk,

f]= [ V(y, f(x)dp(x.y),
XxY
wherep is the unknown probability distribution describing the relation between the ingX and
the outputy € Y. Following Cucker and Smale (2002), for regularized kernel methoddisiceep-
ancy between the expected risk of the estima@,r,and the minimum obtainable risk, if 1[f],
can be decomposed as

18] inf 117 = (121119 + (1191 jnf117]).

—inf |
feH feH

where the first term represents the sample error and the second tenpptbgiaation error (Niyogi

and Girosi, 1999). Clearly, insight on the form & can be useful to obtain better bounds on

both errors. Second, considering the continuous megswearesponds intuitively to finding a

stable solution to the learning problem in the case of infinite number of exampdebence, gives

information about the best we can do in the hypothesis spageB (Mukherjee et al., 2002). Third,
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we can treat both the empirical measure and the ideal unknown probabitifipati®n in a unified
framework.

The contribution of our work is threefold. First we provide a complete attarization of the
explicit form of the estimatoff*, g*) given by Eq. (2) by exploiting a convexity assumption on the
loss functions. Our result can be interpreted as a quantitative versithre oépresenter theorem
holding for both regression and classification and in which explicit car&&ntaf the offset space
B. Then, we discuss the role of the offset sp&c& he starting point of our discussion is the obvious
observation that the estimator given by Problem (2) is noptiie(f*,g") but thesum # 4-g. In
other words the natural hypothesis space issti@# + B instead of theoroduct# x B (which is
not even a space of functions froxnto R). For arbitrary loss function we prove that Problem (2)
is equivalent to a kernel method defined&nt- B, which is a RKHS, with a penalty term given by
a seminorm. Finally, for sake of completeness, we study the issues of thenerignd uniqueness
for Problem (2). WherB is not the empty set, both issues are not trivial. In particular,Hor
equal to the set of constants, we prove existence under very rédsaumditions: for example,
for classification, one needs at least two examples with different labblsutAiniqueness we show
that, for strictly convex loss functions, one has uniqueness if and onlg gghceB is small enough
to be separated by the measprdor example, in the discrete setting, this last condition means that
a functiong € B is equal to 0 if and only if(x;) = O for alli. For the hinge loss function, which is
convex but not strictly convex, we give ad hoccondition in terms of number of support vectors
of the two classes.

The plan of the paper is as follows. In Section 2 we discuss our contrilsutiith respect to
previous works. In Section 3 we introduce some basic concepts of lgatimdory and state the
assumptions we make on the loss funcband hypothesis spacét andB. In Section 4 we study
the form of the solution of Problem (2). In Section 5 we discuss the thealetiganing of the offset
spaceB. We discuss the problem of existence and uniqueness in Section 6. tiorSéeve apply
our results to the discrete setting and focus on the case of Support Mextbines. In the appendix
we recall some notions from convex analysis in infinite dimensional spaces.

2. Putting Our Work in Context

We now briefly discuss the relation between our results and the previolks warthis subject.
Results about the form of the solution of kernel methods are known in thatliteragepresenter
theoremgif B is not trivial they are calledemiparametric representer theoréms

The first result in this direction is due to Kimeldorf and Wahba (1970) forstipgared loss
function (see also Wahba, 1990). However, the structure of the pobd$ for arbitrary loss function
as shown by many authors such as Cox and O’Sullivan (1990). In #meefvork of statistical
learning, Scblkopf et al. (2001) give a proof of the representer theorem thaslifoldan arbitrary
loss function and for any penalty term, being it a strictly increasing functidineonorm. This kind
of results shows that, if the/ is a RKHS with kerneK, the estimatorf defined by Eq. (1) can be

written as
¢

f2(x) = ;aiK(x,xi).

The above result holds for arbitrary loss function and for a large cdfpenalty terms. However,
the form of the coefficientg; is unknown.
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For the squared loss function, the form of the coefficients is well knowimarontext of inverse
problem, see, for example, Tikhonov and Arsenin (1977), and rediocsolve a linear system of
equations. For arbitrary differentiable functions, this problem was siuoyePoggio and Girosi
(1992); Girosi (1998); Wahba (1998) where the coefficientare solution of a system of algebraic
equations.

This approach cannot be applied to hinge axdsensitive loss function (Vapnik, 1988), since
they are not differentiable: the form of the coefficieatss recovered only through the usual dual
Lagrangian formulation of the minimization problem, see, for example, Vap®&§)t Cristianini
and Shawe Taylor (2000).

Recently, Zhang (2001) gives a quantitative representer theoremdtad®fication setting that
holds for differentiable loss function and Steinwart (2003) extends #sislt for arbitrary convex
loss function, without using the dual problem. In these papers the fothe @oefficients; is given
in terms of a closed equation involving the subgradient of the loss functioneder, they are able
to extend the representer theorem to the continuous setting (a study oflutiersof Tikhonov
regularization in the continuous setting when the square loss is used canrukdlso in Cucker
and Smale, 2002).

This paper, using techniques similar to those of Steinwart (2003), exteadshove result in
the following directions:

e our result holds both for regression and classification;

e we provide a general result that holds also when the offset term isdevad. The presence
of the offset space forces the coefficieatdo satisfy a system of linear equations;

e we do not assume that input spa€end the output spacé are compact. In particular, for
regression we can assufvie= R;

e we provide a simpler proof than the one of Steinwart (2003) by using Rrmesults about
integral convex functionals.

A discussion of the role of the offset terms can be found in Evgeniou &G00) and in Poggio
et al. (2002) when the spa@reduces to the set of constant functions. The results are close to our
Theorem 6, but they are proved assuming that the unit constant is in tleeiMiEcomposition of
the kernel and for the discrete setting, while our result holds true feeoférm living in arbitrary
RKHS.

The problem of the existence and uniqueness is discussed in Waht®) (d9%he discrete
setting and with differentiable loss functions. For arbitrahe papers by Steinwart (2002, 2003)
study the existence for the classification setting with offset space redmtiael constant functions.
For the hinge loss anglinsensitive loss, the problem of uniqueness is treated in Burges arm Cris
(2000, 2003). Their proof is based on the dual problem and on th@-Kubker conditions. Our
results subsume the cited results as special cases, but are all obtairedhoréhgeneral continuous
setting. In particular our results on uniqueness of SVM solution are similaptetim Burges and
Crisp (2000, 2003) but do not make use of the dual formulation.

3. Notation and Assumptions

In this section we first fix the notation and then state and comment upon theasasimptions
needed to derive the results described in the rest of the paper. Weiitartput and output spaces.
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3.1 Input and Output Spaces

As usual, we denote witK andY the input and output spaces respectively. We assumeXtisat
a locally compact second countable space (this assumption is satisfiedtémcmg X is a closed
subset ofR%) andY is a closed subspace Bf

We letZ = X x 'Y and endow it with a probability distributiom defined on the Bores-algebra
of Z. We recall that, sincp is a bounded measure adds second countablg,is a Radon measure.
In practice,p will be either the unknown distribution describing the relation betweandy or the
empirical measure

S iYi)?

associated with thezaining set S= {(xi,yi)}/_; drawn i.i.d. with respect tp. We now deal with
loss functions.

3.2 Loss Functions

We collect the mathematical assumptions on the loss function in the following defiaitid we
comment on the purpose of each assumption.

Definition 1 Given pe [1,+o[, a function V: Y x R — [0, 40| such that
1. forallyeY the function \{y, ) is convex orR;
2. the function V is measurable onxYR;
3. there are ke [0,+[ and a: Y — [0, +oo[ such that
V(y,w) < a(y) + bjw|P YweR,yeY (3)
[, adeicy) <+ @

is called a p-loss function with respectgo

If the context is clealy is simply called a loss function. The convexity hypothesis is not restrictive,
being satisfied by all the loss functions commonly in use. Moreover, it is golfeom a technical
point of view: it allows for the use of subgradient techniques withoutiragsgy differentiability
of V and makes it possible to use convex analysis tools in the study of existethemigeness
of functional minimizers. Finally, this requirement ensures stronger kotordthe sample error
(Bartlett et al., 2002; Bartlett, 2003; Bartlett et al., 2003).

Assumption 2is a minimal requirement for defining the expected risk and it is usually satisfied
since loss functions commonly in use are continuouZ.on

Condition 3 is a technical hypothesis we need in order to use results from convexahteg
functional analysis. For example, it is satisfied in the following cases

1. for p=2,if V is the square loss functiow,(y,w) = (y—w)>?, and

/ yPdp(X,y) < +oo;
XxY
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2. forp=1,ifV(y,-) is Lipschitz onR with a Lipschitz constant independentyoénd
[, V(:0)dp(xy) < e
XxY

We now restrict our analysis to some functionals studied in statistical learning.

3.3 Learning Functionals

Theexpected rislof a measurable functioh: X — R is defined as

f]= | V(y, f(x)dp(y,x),
XxY
and can be seen as the average error obtained by the furi¢tiginere f is a possible solution of
the learning problem and the probability measpiis unknown.
Given a training se§, a possible way to estimatgf]| is to evaluate thempirical risk

S 1 :
lempl f] = Z_;V(Yia f(xi)).

The problem of learning is to find, given the training Seanestimator feffectively predicting the
label of a new point. This translates in finding a functiosuch that its expected risk is small with
high probability.

A possible way to efficiently solve the learning problem is provideddgylarized kernel meth-
odswhich amounts to solving a problem of functional minimization as Problem (1) ereral-
ization of Problem (1) to a continuous setting is provided by Problem (2) iolwthe continuous
measure replaces the empirical measiyein the first term. In what follows we will refer to the
functionals to be minimized in both Eq. (1) and Eq. (2)ldsonov functionalaind to the solutions
as theregularized solutions

The second term of a Tikhonov functional is@oothnessr acomplexityterm measuring the
norm of the functiorf in a suitable Hilbert spac#&’. The minimization takes place in thgpothesis
space# x B. We now collect the assumptions on the hypothesis space at the basisaniadysis.

3.4 Hypothesis Space

First of all, we recall the definition of reproducing kernel Hilbert spaéeRKHS # on X with
kernelK : X x X — R is defined as the unique Hilbert space of real valued functioné surch that,
forall f € A,

f(X)=(f,Ke)s WX€EX, (5)

whereKy is the function orX defined byKy(s) = K(x,s).
Given a probability meausueon Z and p € [1,+[, we say that the kernd is p-bounded
with respect t@ if the functionK is measurable oK x X and

K(x,X)2dp(x,y) < +oo. (6)
XxY

Clearly the above condition depends only on the marginal distributignasf X and ensures that
H is a subspace dfP(Z,p) with continuous inclusion (see Lemma 4 in Section 4). This fact is
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essential for proving our results. In particular, gadoundedness of the kernel is fulfilled for all
p € [1,4o]if X is compact and the kernel is continuous or if the kernel is measurableoandéd.

We are now ready to discuss the assumptions on the hypothesis space thiéegdiobability
measure onZ and p € [1,+o[ such thal is p-bounded with respect tp. We require that the
space of penalized functio® and the space of offset functiomsare RKHS onX such that the
corresponding kernel andK? are p-bounded with respect tp. We denote the corresponding
norms by||-||,, and|-||z. Finally, we notice that, in general, the product spatex B is not a
RKHS.

In learning theory usuallX is compactK is continuous and is the one dimensional vector
space of constant functions

B={f:X >R|f(x)=b, beR} =R

with kernelK?® simply given byK?(x,s) = 1. Another example of offset space, which arises in
approximation problems in RKHS on a bounded interval, is the space of splimmedern, whose
corresponding kernel is continuous (Wahba, 1990). In both casp-fioeindedness assumption is
satisfied for allp. Our framework allows to treat arbitrary (possibly infinite-dimensionalyetff
spaces with the possibility to incorporate jumps in the offset term.

Finally, the requirement that the hypothesis space is a RKHS is due to thkdastinimization
of a convex functional in a Hilbert space is easier to treat than in an agbBemach space since in
the former case the subgradient of the functional is an element of the #épelf. Moreover, in the
proofs we use extensively the reproducing property given by Bg. (5

4. Explicit Form of the Regularized Solution

In this section we determine the explicit form of the minimizer of the Tikhonov tional intro-
duced in the previous section. We first state the main theorem and commeataltdined result,
then we provide the mathematical proof.

4.1 Main Theorem

Theorem 2 Letp be a probability measure on XY where X is a locally compact second countable
space and Y is a closed subseffofLet V be a p-loss function with respectgpp € [1,+[. Let

#H and B reproducing kernel Hilbert spaces such that the correspondingeterk and K are
p-bounded with respect fm Define g=] 1, 4] such thaté + % =1

LetA > 0and(f* ") € H x B, then

(g € argmin { v<y,f<x>+g<x>>dp<x,y>+Mf||§[} @)
(f.9)eHxB LIXXY

if and only if there isn € L9(Z, p) satisfying

ax,y) € @)y P )+dx) (xy) eXxYae (8)
P9 = 5 [ Ksxakydpixy) seX ©
0 = 8 Yqu(s,x)cx(x,y)dp(x,y) seX. (10)
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The proof of this theorem is given in the following subsection. A few impdrtamarks are in
order.

First, the theorem gives a general quantitative version of the refiegsbeorem. The generality
is obtained by considering the continuous setting which subsumes the dsssitetg if the measure
p is the empirical measums. In this case, the integral reduces to a finite sum and we recover the
well known result tha1f§ = zleo(iKXi, where thex; form the training set. Moreover, the solution is
guantitatively characterized since the coefficiamt@re given by Eq. (8) involving the subgradient.
For differentiable loss functions in the discrete setting, Eq. (8) reduces to

ai = V' (yi, F&(xi) + 98(xi)),

whereV’ denotes the derivative with respect to the second variable (Girosi; Y@8#a, 1998).
Second, if{ i} ; is a base fom, the offset part of the solution can be writterghs= ™ , diy;,
where the coefficientd; are again constrained by Eq. (8). A discussion on how to solve explicitly
Eqg. (8) can be found in Wahba (1998). Furthermore, the presenBdrafuces a system of linear
constraints on the coefficients expressed by Eq. (10) that, f& = R, reduces to the well known

condition
¢

i;ai =0.

We stress that, unlike previous works, the above equation has beeadieithout introducing the
dual formulation.

Finally, we discuss the role of Assumption 3) in Definition 1. From the prod§ #&pparent
that this assumption is needed to ensure the continuity of the first term in thenbklunctional
which in the discrete setting is trivially guaranteed. Therefore, for theatssetting Theorem 2
holds for any convex loss function. In particulaf(Z, ps) = R’ and the conditiom € L%(Z, ps) is
always satisfied. Back to the continuous settiny,(¥, -) is Lipschitz onR with a Lipschitz constant
independent oy and

V(y,0)dp(X,y) < +oo,
XxY

one can choosp = 1, so thag = 4 and conditioro € L*(Z, p) means thatr is bounded. For the
square loss, clearlg = 2, so thatg = 2 anda is square-integrable. As shown by Steinwart (2003),
for classification and compaxt, one can again remove Assumption 3) of Definition 1 using the fact
that a convex function is locally Lipschitz and the range of possilisdoounded.

The following corollary is the restatement of the representer theorem witlfilset space.

Corollary 3 With the assumptions of Theoré@ylet f* € # then

e argmin{ V(. 100)dp(xy) + A HE{}
feH XxY

if and only if there isa € L9(Z, p) satisfying

ax,y) e (@V)(y, FAx)) (x,y) e X xY ae.
M) = —% XXYK(s,x)a(x,y)dp(x,y) seX.
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4.2 Proof of the Main Theorem

Before giving the proof of the theorem we discuss the proof structuhéch aside from some
technicalities is very simple, and is based on two lemmas. The Tikhonov funictidna g] +
Alf Hﬁ{ is a convex map orH x B, so (f* g) is a minimizer of the Tikhonov functional if and
only if (0,0) is in its subgradient, which is a subset®fx B. Using linearity, the computation of
the subgradient of the Tikhonov functional reduces to the computatior subgradient of] f + g]
and ||f|]§{ respectively. Since the latter functional is differentiable, the subgradieuation is
straightforward. Some care is needed for the subgradient of the foffiret, we rewrite it as an
integral functional orLP(Z,p) and then use a fundamental result of convex analysis to interchange
the integral and the subgradient.

Proof [of Theorem 2] Clearly || f Hﬁ[ is continuous and, by Lemma 4, the functiohg + g] is
continuous and finite. So, from item 5 of Proposition 14, one has that

O (1F+al+AIIFIZ) =30 [F +]) +A3(] 13-

Now, the map
(£.9) = 1115
is differentiable with derivativé2f,0) and, therefore, by item 1 of Proposition 14,

ol f1I%,) = {(2f,0}. (11)

The main difficulty is the evaluation of the subgradient of the i{dpt+ g] given in Lemma 5. By
means of this lemma we obtain that the elements of the subgradiéfft-efg] at (f,g) are of the
form

(/. KoxIatydpte). [ K2 atxy)doix) ). 12)
XxY XxY

wherea € L9(Z, p) satisfies

a(x,y) € (QV)(y, f(x) +9(x)) (13)
for p-almost all(x,y) € X x Y. Now, by combining Eq. (11) and Eg. (12), we have that the elements
of the subgradient dfff +g] +A || f ||§{ at point(f,g) are of the form

(., KxIateydntey) + 241, [ KE(x Jaixy)dpxy) ) (14)
XxY XxY

wherea € L9(Z, p) satisfies Eq. (13).

From item 3 of Proposition 14, we have that an eleniéhig®) € # x B is a minimizer ofl [ f +
g +A|f ||§{ if and only if (0,0) belongs to the subgradient evaluated &, g*). Using Eq. (14),
one has that

o= [ axyKxsdp(xy)

_5 XxY
/. alyK? (x 9dp(x.y) =0.
XxY
where, by means of Eq. (13),€ LY(Z,p) satisfies Eq. (8). This ends the proof. |
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Before computing the subgradient of the miép+ g] in Lemma 5, we need to extend the definition
of expected risk ohP(Z,p). First of all, we let

lo[u = | V(%u(x,)) dp(x,y) ueLP(Z,p),

so thatl [f +g] = lo(J(f,g)) whereJ : H x B — LP(Z,p) is the linear map

J(f,9)=f+g,

(the functionf 4 g is viewed in a natural way as a function g
The following lemma collects some technical factsigand .

Lemma 4 With the above notations,
1. the functionald : LP(Z,p) — [0,+ [ is well-defined and continuous;

2. the operatory : H x B — LP(Z,p) is well-defined and continuous.

Proof Since the loss functio can be regarded as function @nx R, that is,V(z,w) =V (y,w)
wherez= (X,y), one has thap[u] is the Nemitski functional associated with(see Appendix), that
is,

olu = [V@Uu@)dp@ uel?(Z.p).

We claim thatlp[u] is finite. Indeed, givem € LP(Z,p), by Eq. (3),

Viu@)deixy) < [ ay)+blu@|Pdp(xy) <+

XxY

The proof thalg is continuous can be found in Proposition 111.5.1 of Ekeland and Turr{h@B3).
In order to prove the second item, we fe€ #. Then, by Eq. (5),

[ JT00Pdp0y) = [ (T K Pdp(xY)

< I, [ KxoxEdp(x.y)
XxY
= C|]fH§{<+oo.
whereC = fXXYK(x,x)g dp(x,y) is finite sinceK is p-bounded (see Eqg. (6)). In particular, the

function (x,y) — f(x) is in LP(Z,p) and| f||_, < ¥/C|/f|,. The same relation clearly holds for
g € B. It follows that 7 is well defined and

1 +glle < VCIIF 4+ VT llgll -

Sinceld is linear, it follows that is continuous. [ |

Finally, the following lemma computes the subgradient eflgo 7.
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Lemma 5 With the above notations, 1€f,g) € H x B, then(@,P) € d(lgo 7)(f,qg) if and only if
there isa € L9(Z, p) such that

ax,y) € (V)(y, f(x)+9g(x)) (x,y) e XxY ae.

®s) = [  Kxaxyldpxy) seX

W(s) = XXYKg(s,x)a(x,y)dp(x,y) se X.

Proof Sincely is finite and continuous in & 7(0), by point 6 of Proposition 14, we know that

d(loo 7)(f,9) = 77(dl0)(J(f,9)), (15)

whereJ* : L9(Z,p) — H x B is the adjoint off, that is,

<]*u7(fvg)>}[><8 = AXYG<X7y)](f7g)(X7y) dp(X7y)

First of all, we comput@ly. Sincelp[0] < +0, we can apply Proposition 15 so that, given
ue LP(Z,p), thena € (dlp)(u) if and only ifa € L9(Z,p) and

a(2) € (V) (Y, u(x,y)),

for p-almost all(x,y) € X x Y.
We now compute the adjoint gf. Leta € L(Z,p) and (@) = J*a € H x B. Using the
reproducing property af/ and the definition of/* we can write

os) = <(p7Ks>}[
= (J70,(Ks,0)) gy = <0(7](KS70)>L2(Z7P) :

Writing the scalar product explicitly we then find

®s) = [ _K(sx)a(x,y)dp(x,y).

XxY

Reasoning in the same way we find that

W(s) = XxYKﬂ(S,X)G(x,y)dp(x,y)-

Replacing the above formulas in Eqg. (15), we have the thesis. |

5. Dealing with the Offset SpaceB

In this section we deal with the offset term which often appears in regathsnlutions. We first
motivate our analysis, then state and discuss our main result on this issalty, ke give the proof
of the results.
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5.1 Motivations

In the previous section we minimized a Tikhonov functional on thefset B, dealing explicitly
with the possible presence of an offset term in the form of the solutioricdlypxamples in which
offset spaces arise are Support Vector Machine algorithms (Vap@8)lwhere the offset term is
a constant accounting for the translation invariance of the separatireggigpe, and penalization
methods (Wahba, 1990), where the offset space is the kernel siptheepenalization operator.

However, the fact that the séf x B is not a RKHS (in fact, it is not even a function space)
makes it cumbersome to extend of typical statistical learning results to theatjeatting in which
the offset term is considered. For example a separate analysis, withignoditthe offset term, is
needed for measuring the complexity of the hypothesis space or studyor@taiy consistency.

In this section we show that under very weak conditions the presenceddfisgt term is equiv-
alent to solving a standard regularization problem with a seminorm (WaBb@).1

The fact that the estimator &' (x) +g*(x) (for regression) or sgrf*(x) +g*(x)) (for classifi-
cation) suggests to repladé x B with the sum

S=H+B={f+9g|feH, ge B}.

The hypothesis spacgis a space of functions 0¥ and, in particular, a RKHS, the kernel being
the sum of the kernels off and‘B. In this section we show that the minimization of a Tikhonov
functional on# x B is essentially equivalent to the minimization of an appropriate functional on

This provides a rigorous derivation of the following facts.

1. The equivalent functional afiis also a Tikhonov functional. The penalty term is a seminorm
penalizing the functions i§ orthogonal taB only.

2. The estimator given by the minimization of the Tikhonov functionalSotkepends only on
the kernel sum.

Moreover, since the hypothesis spatis a RKHS, a number of classical results of learning theory
follows without further effort.
Finally, we notice that the norm @ (hence the kernd{®) plays no role in the functional

[f 0]+ Al F]5,

that is, all kernels, whose corresponding RKHSBisis a vector space, give rise to the same mini-
mizers(f*,g"). This fact is confirmed by Eq. (18) below (see also Eq. (20)).

5.2 Main Theorem

We recall that the norm if is given by

If+als= it (715 +lo7) 16)
f+g:.fg’+g’

and, with respect to this norns,is a RKHS onX with kernelK + K? (Schwartz, 1964).
We are now ready to state the following result.
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Theorem 6 Let Q be the orthogonal projection on the closed subspace of
So={s€S|(s9)s=0 vVge B},

that is the subset of functions orthogonat®ow.r.t. the scalar product its. We have the following
facts.

1. If (f*,@") € H x B is a solution of the problem

min  {I A2},
(N {[ +0] +A [ f][5}

then ¢ = f» + ¢ € S is a solution of the problem
in{l[s] + A [|Qs|3
min{I[g +A[Qs(s}

and f* = Q3.

2. If 8 € S is a solution of the problem
in{I[s| + A [ Qs
minil[s +AfQs(}
let f* = Qs and ¢ =s* —Qs), then

P+ @A P = it e g AR,
H  (f,g)eHxB

In particular, if ¢* € B, then(f*,g*) € # x B is a minimizer of If +g] + A || f||3,.

Before giving the proof in the following subsection we comment on this result.
First, notice that it N B = {0} then$s = #H x B and

If+gl5 =115+ all5-

In this case the theorem is trivial. However, in the arbitrary case careededebecause there are
functions in# not orthogonal taB. Moreover, the norni-|| ; restricted ta?/ and B could be dif-
ferent from||-|| ,, and||-||5: in particular, it could happen théB+)* = B, where the orthogonality
L is meant with respect to the dot productdn This pathology is at the root of the fact that there
are cases in which the problem

min{l [+ A Qs{3}

has a solution, whereas the functiohdl+g] + A || f |]§{ does not admit a minimizer aff x B (see
example below). In practice, sindé N ‘B in most applications is finite dimensional, this pathology
does not occur and the minimization problem&nx B is fully equivalent to the one os.

Second, the advantage of using the penalty t¢fﬂﬁ;{ instead ofHQQ@ is that one can solve
the minimization problem without knowing the explicit form of the projectionConversely, the
spaces is the natural space to address theoretical issues.
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Third, we observe that since the proof does not depend on the dgneéxhe loss function,
the theorem holds for arbitrary (positive) loss functions. Howeva(, satisfies the hypotheses of
Definition 1, from Theorem 2 it follows that the minimizeg of 1[s] + A ||Qs1|§ is of the form

) = [ abuy) (Kxs+KAxs) dp(xy) +a'( an

_ /X  OYK(x,9)dp(xy) +6\(9 (18)

whereg* € B anda € L9(Z, p) satisfies
a(x,y) € (V) (y,8'(x) (19)
/x ch(x,y)Kg(x, s) = 0. (20)

In particular, this implies that, given e B, one can replace the kern€lwith K(x,s) +h(x)h(s),
without changing the form of the minimizet. For example ifB is the set of constant functions,
the two kernel& (x,s) = x-sandK(x,s) = x- s+ 1 are equivalent since both penalize the functions
orthogonal to 1, that is the space of linear functions.

5.3 Proof

Before giving the proof of Theorem 6 we need to prove the followingnewt lemma. For this
purpose we recall thafy was defined as

So={se€ S| (s,0)s=0 Vge B},

and Q was the corresponding orthogonal projection frgnonto Sp. Moreover we letHy be the
closed subspace of given by

Hy={f € H|(f,h),, =0 Vhe HNB}

andP be the corresponding orthogonal projection frégfronto #j.
In order to prove the main theorem we need the following technical lemma thedatbrizes
the spacey.

Lemma 7 Lets= f+ge S with f € # and ge B, then

Qs = Pf (21)
1Qsls = [Pflls (22)

and there is a sequencé,, g,) € # x B such that

m [Pf—foll, = O 23)

with f,+gn =s.
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Equations (21) and (22) show thsg and # are the same Hilbert space and, in particu@se #.
However, in general, it could happen tlsat Qs¢ B. Equation (23) is a technical trick to overcome
this pathology.

Proof [of Lemma 7] To give the proof of the lemma we need some preliminary factsklUe¢ the
closed subspace i x B

K={(f,9) € HxB|(f,h), =(9,h)g Yhe HNB}.

It is known (Schwartz, 1964) that, givere S, there is a uniquéf,g) € K such thats= f +g.
Moreover for all(f’,d) € H x B,

(st +d)=(f, 1), +(0.9)s- (24)
From Eg. (16) one has that
Iflls <[l feH (25)

First of all we claim thatty C Sp. Clearly, if f € #, then(f,0) € K and, by Eq. (24), for all
d e B,
<f +0,0—|—g/>5 = (f,0>5{+<0,g'>$ = O,

thatisf € Sy. This shows the claim. Moreover,

)5 = (F+0,f+0)5=(f, )y =|f]5. (26)

Lets= f +gwith f € # andg € B. Clearly,f = Pf+hwhereh € #5- = (HNB)1)*+ = HNB
(here denotes the orthogonal complement with respect to the scalar prod#Qt diffollows that
there is a sequendg € A N B such that

fim [ = 0. @)

Since, by Eq. (25)jh— hy|| ¢ < |[[h—hql|, andQ is continuous, it follows tha®h = limp_.. Qhy =
0, sinceQh, = 0. The statements of the theorem easily follow from the above facts. Indeed

Qs=Q(Pf+h+g) =QPf=Pf,

sincePf € Hy C Sp, and Equation (21) is proved. Equation (22) follows from Eg. (26).afn
let now f, = Pf+h—h,andg, =g+ h,. Clearly, f,+gn=f+g=s, f, € # andg, € B and
moreover Eq. (23) follows from Eq. (27). |

We are now ready to prove the main theorem of this section.
Proof [Theorem 6] First of all we note the following facts. Léte #,ge Bands=f+ge S.
By Eq. (22)
Is]+ M |QslS = I [f + ]+ IPFI[5, (28)

Let (fn,0n) € H x Basin Lemma 7, then

[ +]+ NP5 = tim (1]fa+gn] +Al foll5 ) -
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From the above equalities it follows that
18]+ A Qs 3 =tim (1Tfa+ gl + A fall) (29)

We can now prove the first part of the theorem. Assume (fatg}) € # x B is a minimizer of
I[f+g]+A| f]|3 and lets* = f» +g*. From Eq. (29) and the definition of minimizer, one has that,
forallse S,

I8 +AlsiE = 11+ g+ (30)

In particular with the choice = s", by means of Eq. (22), one has that
_ A A
josts =[P, = ],
and, hence, tha®s' = Pf» = f*. Therefore, it follows that
2
I8 +MQsl3 = 118 +A Qg

that is,s" is a minimizer ofl [g) + A ||Ps|3.
Before proving the second part of the theorem we note that the followagulity follows as
a simple consequence of the definition of projection.
18]+ A [|Qs|S = 1[f+g+A[PF5 <I[f+g +A[f]5. (31)
Assume now thas € § is a minimizer ofi[s] + A |Qg|3. Let f* = Qs andg* = s— f, then, by
Eq. (31) and Eqg. (22), it follows that

|[f)\_|_g)‘]+)\Hf}‘H2< inf  {I[f+g]+A[f]5}.
H~ (f,g)eHxB

However, using Eq. (29) wita= f* +g*, one has that

|[f)\_|_g)‘]+)\Hf}‘H2> inf  {I[f +g -+ A F]I%1.
H~ (f,g)eHxB

Sol[fA+g"]+A|| fAHi[ is the infimum ofl [f +-g]+A || f||3, on # x B. Clearly, ifg* € B, it follows
that(f*,g") is a minimizer of [f +g] + A | f||3/. |

5.4 A Counterexample

The following example shows that in some pathological framework the minimizaticH & B is
not equivalent to the one Qh= # + B.

Example 1 Let H = ¢, = {f = (fa)nen| 3 f2 < +oo}. The spacé; is a RKHS oriN with respect
to the kernel Kn,m) = &, m. Let B = {f € ¢»| 3,n?f2 < +oo} with the scalar product

(f,.0) 3= anfngn-
n
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The space is a RKHS with respect to the kernefkn, m) = Fﬁén,m.
Clearly, B ¢ #, so that# N B = B, which is not closed ir{. SinceB is dense i, P=0
and, by Lemma 7, & 0.
Let V be the squared loss function and choose (n,)nen € H such that iz B. Letp(n,y) =
o(y— hn) so that
IERE

then
I[S + A [Qs]3 = [s—hll3,

and the minimizer is’s= h. Moreover, by our theorem, one has that

nt_ (it g AL} =191 ~o

If (f*,0") € H x B were a minimizer, then’= 0 and, hence, = h, but this is impossible since
he 3.

6. Existence and Uniqueness

We now discuss existence and uniqueness of the regularized solutin Before stating and
proving the main results we summarize our findings and show that if the cifsee is empty
both existence and uniqueness are easily obtained. Our analysis estéstdace to all cases of
interest under some weak assumptions on the kernel and the loss fumctloott regression and
classification.

Uniqueness depends critically on the convexity assumption. For strictlyegdowctions we
prove that the solution is unique if and only if the offset space satisfieduttanditions, fulfilled
in the case of constant offsets. For loss functions which are not stratlyex we limit our attention
to the hinge loss and show that the solution is unique unless some particuthtia@mion the
number and location of the support vectors are met. In Burges and Q0§0,(2003) similar
results were obtained considering the dual formulation of the minimization pnoble

If the offset space is empty, strict convexity and coerciveness ofahalfy term trivially imply
both existence and uniqueness. Indeed, we have the following propositio

Proposition 8 GivenA > 0, there exists a unique solution of the problem
min (1[f]+ N[ f]%) .
min (1[£] /7[5
Proof The function(l [f]+Af ||§{) is strictly convex and continuous. Moreover

L[]+ A F]5 > N[ fl|5, — +oo

if ||f]|5 goes to+oo. From item 4 of Proposition 14 both existence and uniqueness follow. B
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6.1 Existence

We now consider existence. H is not trivial, there are no general results (see Wahba, 1990, for a
discussion on this subject). However4#fis the set of constant functions, we derive existence of
the solution in two different settings.

The first proposition holds only for classification under the assumptiorttiedoss functiorv
goes to infinity whery f(x) goes to—« (see Condition 1 of Proposition 9 below). Similar results
were obtained in Steinwart (2002). We {ebe the marginal measure ¢hassociated witlp and
suppv its support.

Proposition 9 Assume that the following conditions hold
1. limy_ oV (1,W) = 00 andlimy_ 1V (—1,w) = 400
2. there is C> 0 such that,/K(x,x) < C for all x € supp
3. p(Xx{1l})>0andp(Xx{-1}) >0

Then there is at least one solution of the problem
min (1[g) 4+ A 2) ,
min (1[5 +A Qs

where$ = # +R.

We observe that Assumptich is satisfied ifX is compact and is continuous. AssumptioB. has
a very natural interpretation in the discrete setting where it simply amounts ecomaexample for
each class. This condition is need since Assumptiotioes not requires that goes to+c when
yf(X) goes to+e. Typical example of loss function satisfying Assumptibris the hinge loss.

The second result holds both for regression and classification, egutres the loss function
going to infinity whenf (x) goes toto, uniformly iny (compare Assumptiot. of Proposition 10
and Assumptiori. of Proposition 9).

Proposition 10 Assume that the following conditions hold
2. there is C> 0 such that,/K(x,x) < C for all x € suppv.

Then there is at least one solution of the problem
. 2
min (1[5 +2 Qi)
whereS$ = H +R.

We observe that for classification with symmetric loss functions, as theesdjieas function, this
proposition gives a sharper result than Proposition 9.

We now prove Proposition 9 and omit the proof of Proposition 10 since isergiglly the same.
Proof [of Proposition 9] The idea of the proof is to show that the functional weha minimize
goes tot-o when||s|| ; goes to+oco. With this aim, let

a =min{p (X x {1}),p (X x {-1})}.
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By assumptiorB8, a > 0. For a fixedM > 0, we are looking foR > 0 such that for alk € § with
Isls =R,

1S +A Q2 > M.
Due to assumptior, there isr > 0 such that, for alw < —r, V(1,w) > % and, for allw > r
,V(=Lw) > M We now letR = max{2(1+C)\/¥,2r} and chooses € § with ||| > R If
1Qs]s = 11Qs] s > 53y then

g+AIQsS > AQsS
R 2
> .
= Maaroy
> M,
sinceR > 2(1+C)\/¥. If |QS| < z71qy. letb=s—QseR, then
Ib| = [ls—Qs;
> Islls—lQsls
> R R :RZC+1

2(1+C) 2C+2
Assume, for example, that> 0. For allx € suppv

s(x) = (QsKe)s+b

> b—[|Qs| 4 [[Kxllsr
2C+1 R
> R - C
- 2C+2 2(1+C)
S C+1
- +2
- >
2="
sinceR> 5. By definition ofr, one has that for alt € suppy
M
V(-1,8(x)) > e

Integrating both sides, we find

/ V(=1,5(x))dp(x, —1) >
Xx{-1}

from which it follows that

pP(Xx{-1}) =M

Q|Z

I8 +A(|Qs]5 > M.

The same proof holds whdn< O replacing the integration od x {—1} with the integration on
X x {1}. SinceM is arbitrary, we have that

18]+ A Q5 = M|Qs|5 — +oo.

Since the functional is continuous, from item 4 of Proposition 14 the existehthe minimizer
follows. |
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6.2 Uniqueness

The first proposition completely characterizes uniqueness for strictiyegdanctions.

Proposition 11 Let $ be a solution of the problem
min (115+ 2 |Qsl3)

1. If § is another solution, then Os- QS".

2. 1fV(y,-) is strictly convex for all y Y then all the minimizers are of the form-s g, with
g € S such that Qg= 0 and g x) = 0 for v-almost all xc X.

Let us comment on this proposition before providing the proof. We recailatsolutiors’ is the
sum of two termsf? = Qs" which is orthogonal t® andg® = s* — f*. The uniqueness df* (item

1) is due to the strict convexity of the penalty term. It@ratates the general conditions that should
be satisfied by offset functions to obtain uniqueness‘oin the discrete setting one has uniqueness
if and only if the conditiong(x;) = O for all i implies thatg is equal to zero. Clearly, iB is the
space of constant functions uniqueness is ensured. We now giveotbfeopthe proposition.

Proof [of Proposition 11]

1. Lets another minimizer and assume tigg # Q<. Then, by the strict convexity qt~||§,
one has that, for atl€]0,1[,

|a —t)QsMrthH (1-t HQS)‘H +t] Q<3
Sincel [g] is convex, one has that
[(1-1)8" +ts] < (1—t)I[s"] +tI[$].

From the above two inequalities we find

[(1-t)s+ts] + A‘(Q((l—t)SA“S')Hz
-0 (181 e2]) e (1A os2)
— min(1[g+A[Qs3).

N

Since this is impossible, it follows th@s' = Qs.

2. Lets = " +g with g as in item1. By straightforward computation we have ttsatis a
minimizer. It is left to show that the minimizers are only the functions written in ther@bo
form. From iteml we have thaQg= 0. LetU be the measurable set

U = {xeX|g(x) £ 0} = {x e X|¢(x) £ (X)}.

By contradiction, let us assume thgt) ) > 0 and, hencep(U x Y) > 0. Fixt €]0,1]. since
V(y,-) is strictly convex, for al(x,y) € U x Y, one has that

V(y, (1-1)8M(x) +t9(x)) < (L—t)V(y,8" (X)) +tV (v, (X)).
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Therefore, by integration,

[ V0 =080 +t5 () dp(x,y) <

<@-0 [ VoS00 deey)+t [ Vs00)dp(xy)

On the complement df x Y, we haveV (y,s*(x)) = V(y,g(x)), so that
(1-1)s* +ts] < (1 —t)I[S] +tl[$].

By the same line of reasoning of iteln one finds a contradiction. It follows thafU) = 0,
that is,g(x) = 0 for v-almost allx € X.

Two important examples of convex loss functions which are not strictlyeoave the hinge
and thee-insensitive loss. The next proposition deals with the hinge loss though arsiesldt can
be also derived for the-insensitive loss, see Burges and Crisp (2000). For the sake of simplicity
we develop our result in the discrete setting for the case of constaet @ffsctions. In this case
uniqueness of the solution is expressed as a condition on the numbelpoftsugctors of the two
classes. Similar but a little bit more involved conditions can be found consg#r@écontinuous
setting.

Proposition 12 LetY = {£1}, V(y,w) = |1 —yw|, and B = R. Let 2 be a solution of

£S5

14
min <%_ZV<yi,s<xi>>+A ||Qq|§> ,

and define

Lo={ilyi =180 <1} L ={ilyi=-19x>-1}
B ={ilyi=18"(x1)=1} B-={i|yi=-18"(x1) = -1}

The solution is unique if and only if
#, A#_+#B_ (32)

and
#_AH#H, +#B,, (33)

where# denotes set cardinality.

Proof Assume that is another solution. From iterhof proposition 11, we have th@s' = Q<
ands = s +b. Since both functions are minimizers, one concludes that

l 14
'Zlyl—yis"\(xi)h:Zl|l—yis’(xi)|+ (34)
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We notice that ifywy < 1 andyws, > 1, then
V(y, (L—t)wy +twz) < (1—t)V(y, W) +tV(y,ws).
Reasoning as in the proof of the previous proposition, one has thatl fer & UI_,
yis(x) <1

and, foralli ¢ (1. Ul_UBLUB._)
yis (xi) > 1.

Using the above two equations, it follows that equality (34) becomes

(1-%s'00) = 5 (@-ystxi)+ 5 [—byls,

iel Ul iel Ul ieB, UB_

(if the index set is empty, we let the corresponding sum be equal to 0).abbtee equation is
equivalent to

byi: z |_bM|+7

ielfI ieBTUB_

that has a not trivial solution if and only if both the following conditions are tru
1. ifb>0,thenyic, i Yi=—3g Vi(thatis, Eq. (32) holds).
2. ifb<0,thenyic. . Yi =Yg, ¥ (thatis, Eq. (33) holds).

Now, if neither Eq. (32) nor Eq. (33) holds, thén= 0 ands" is unique. Conversely, assume for
example that Eq. (32) holds. It is simple to check that thebexs0 such that forali e I, Ul _,

yi(s(xi)+b) <1

and, foralli ¢ (1. Ul_UB,UB._)
yi(s (%) +b) > 1.

Finally, by direct computation one has that
18 =1[s" +b].

If the solution is not unique, the solution family is parameterizesl\asb, wherebruns in a closed,
not necessarily bounded interval. However, if there is at least ormagdor each clasd lies in
the bounded intervdb_, b, | and one can easily show that

1. for the solution wittbh = b_, Eq. (32) holds;
2. for the solution withh = b, Eq. (33) holds;

3. for the solution withb_ < b < b, both Egs. (32) and (33) hold, from which it follows that
#I+ — #I, and -IJ:BJr — #B, — O
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7. Discrete Tikhonov Regularization

We now specialize our results to the case in which the probability measure is tlvcahgistri-
bution ps and B is the space of constant functior${ = 1) and discuss in detail Support Vector

Machines for classification.
We start by recalling that, from item 2 of Proposition 14 it follows that the leét aght deriva-

tives ofV (y, -) always exist and
(OV)(y:w) = V" (y, ), VL (y,W)].
Corollary 13 Let$s =# +R and Q the projection on
{se S| (s1);=0}.
Given) > 0, let f* € 4 and B' € R and define’s= f* +b* € §, then
(fA\ 0N e argmin{ ZV Vi f Xu)+b)+)\\|f|b{}
feH beR

if and only if

$ € argmm{—zv (%, 8( HH%I%}

f)\

= Q¢

if and only if there aren,. .., 0, € R such that

A = ;aini = ;ai(Kxi +1)

Ly PO 4B € o < 2V (v P () +bY)

VAR
l

i;cxi =0

We notice two facts. Firsty; can be zero only if & (aV)(yi, f*(x) + ") —that is, only iff*(x;) +
b* is a minimizer oV (y;, ). Therefore, a necessary condition for obtaining sparsityiateauxin
the loss function. A quantitative discussion on this topic can be found in Saeig2003). Second
if V_ andV, are bounded by a constalt > 0, one has thafo;| < 2A¢/M — that is, a sufficient
conditions for box constraints on the coefficients.

In the rest of this section we consider Support Vector Machines fositilzstion showing that
through our analysis the solution is completely characterized in the primal Fatiomu

A simple calculation for the hinge loss shows that

-y foryw< 1
VZ(y,w),Vi(y,w)] = [min{—y,0},max{0,~y}] foryw=1 . (35)
0 foryw>1
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To be consistent with the notation used in the literature, w€ I:etz.,\iZ and factorize the labelg
from the coefficientst;. Then, according to the above corollary, the solution of the SVM algorithm
is given by

¢
=5 aiyiKy + b
i; iYikx

where the setay, ...,a,,b") solves the following algebraic system of inequalities
¢
0<qai<C if Z (ijjK(Xi,Xj)—i—b)\ =1
=1

a;i=0

l
if v ZajyjK(xi,xj)erA >1 (36)
=1

ai=C

J—

¢
yi (Z ajyjK(Xivxj)—Fb)\) <1
=1
Yayi =0
|

Interestingly, the above inequalities, which fully characterize the suppotors associated with the
solution, are usually obtained as the Kuhn-Tucker conditions of the deapgfimization problem
(Vapnik, 1988).

Looking at Egs.(35-36), it is immediate to see that the box constraintso(0< C) are due to
the linearity ofV (yf(x)) for yf(x) < 1, whereas sparsitya( = 0) follows from the constancy of
V(yf(x)) foryf(x) > 1.

8. Conclusion

In this paper we study some properties of learning functionals derieed Tikhonov regulariza-
tion. We develop our analysis in a continuous setting and use tools fronexcamalysis in infinite
dimensional spaces to quantitatively characterize the explicit form of thdanézed solution for
both regression and classification. We also address the case with andtwlihoffset term within
the same unifying framework. We show that the presence of an offseisezquivalent to solving
a standard problem of regularization in a Reproducing Kernel Hilbeat&jn which the penalty
term is given by a seminorm. Finally, we discuss issues of existence angemeiss of the solution
and specialize our results to the discrete setting.

Current work aims at extending these results to vector-valued functidicstielli and Pontil,
2003) and exploring possible use of offset functions to incorporagrismces (Girosi and Chan,
1995).
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Appendix A. Convex Functions in Infinite Dimensional Spaces

The proof of Theorem 2 is based on the properties of convex functiefised on infinite dimen-
sional spaces. In particular, we use the notion of subgradient thaidsxtiee notion of derivative to
convex non-differentiable functions. In this appendix we collect theltes/e need. For details see
the book Ekeland and Turnbull (1983) and also Ekeland and Temad)197

Let # be a Banach space atif* its dual. A functionF : # — R U + is convexf

F(tv+ (1—-t)w) <tF(v)+ (1—t)F(w),

for all vw € A andt € [0,1] (if the strict inequality holds fot € (0,1), F is calledstrictly conve.
Let vp € H such that- (vp) < +o. Thesubgradienof F at pointvy € 4 is the subset of{*

given by
OF (Vo) = {we H*|F(v) > F(vo) + (W,v—\Vp), Ve H}. (37)

where(-,-) is the pairing betweed/* and#. If F(v) = 4o, we letoF (vp) = 0.
In the following proposition we summarize the main properties of the subgtadeneed.

Proposition 14 The following facts hold:
1. If F is differentiable at y, the subgradient reduces to the usual gradief{v/f).

2. If F is defined orR and F(vp) < +o, then F admits left and right derivative and
0F (vo) = [F (vo),F} (vo)].
3. Assume that £ 4. A point \s is a minimizer of F if and only i® € 0F ().
4. If F is continuous and
lim  F(v) = 4co.
VIl 3=+

then F has a minimizer. If F is strictly convex, the minimizer is unique.

5. Let G be another convex function 64 Assume that there igy\«e #H such that F and G are
continuous and finite afyv Let ab > 0, then aF+ bG is convex and, for all & #,

d(aF +bG)(v) = a(dF ) (v) + b(aG)(v).

6. Let#’ be another Banach space arfdbe a continuous linear operator frot#” into #.
Assume that there i)« A’ such that F is continuous and finite &t,. For all V' € #’

(OF 0 9)(V) = J"(0F)(JV),
where7* : H* — H'* is the adjoint of7 defined by
VIV = (IV V) gy
forallve #H and Vv e H'.
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Proof We simply give the references to the book of Ekeland and Turnbull (1983

1. Prop. 111.2.8
2. Prop. l11.2.7
3. Itis a simple consequence of Prop. 111.3.1
4. ltis a simple consequence of Prop. 11.4.6.
5. Prop. 111.2.13
6. Prop. 111.2.12

We now recall the definition demitskifunctional, adapted to our framework (Ekeland and Turn-
bull, 1983, p.143). LeE be a locally compact second countable spadee a finite measure af,
andW : Z x R — [0, 4| be a measurable function @ R such thatV(z,-) is convex for alze Z
(sinceW(z,-) is convex orR, it is continuous).

Let pe [1,+o[andLP(Z,p) be the Banach space of measurable functiond — R such that
J7 lu(z)|Pdp(2) is finite.

TheNemitskifunctional associated witlV is defined as the mdp: LP(X,v) — [0, +o[ U {400}
given by

ol = | W(z u(@)de(@) (39

Next proposition provides us with a straightforward method to study theradlemt(dlp). Let
g €]1,+o] such thatt + 1 = 1.

Proposition 15 Assume that there is an elemeptaiLP(Z,v) such thatsup,., |up(2z)| < -+ and
lo[ug] < +o0. Given ue LP(Z,p)

(0lo)(u) = {we LYZ,p) | W(z) € (0W)(z u(2)) p—ae.}. (39)
Proof See the proof of Prop. 111.5.3 of Ekeland and Turnbull (1983). Tiwopis for Z interval of
R, but can be easily extended to arbitrarycompare with Ekeland and Teman (1974). |
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