
Journal of Machine Learning Research 5 (2004) 1363–1390 Submitted 12/03; Revised 7/04; Published 10/04

Some Properties of Regularized Kernel Methods

Ernesto De Vito DEVITO@UNIMO .IT
Dipartimento di Matematica
Universit̀a di Modena
Modena, Italyand
INFN, Sezione di Genova
Genova, Italy

Lorenzo Rosasco ROSASCO@DISI.UNIGE.IT
Andrea Caponnetto CAPONNETTO@DISI.UNIGE.IT
DISI
Universit̀a di Genova,
Genova, Italy

Michele Piana PIANA@DIMA .UNIGE.IT
DIMA
Universit̀a di Genova,
Genova, Italy

Alessandro Verri VERRI@DISI.UNIGE.IT
DISI
Universit̀a di Genova,
Genova, Italy

Editor: Alexander J. Smola

Abstract
In regularized kernel methods, the solution of a learning problem is found by minimizing func-

tionals consisting of the sum of a data and a complexity term.In this paper we investigate some
properties of a more general form of the above functionals inwhich the data term corresponds to
the expected risk. First, we prove a quantitative version ofthe representer theorem holding for
both regression and classification, for both differentiable and non-differentiable loss functions, and
for arbitrary offset terms. Second, we show that the case in which the offset space is non triv-
ial corresponds to solving a standard problem of regularization in a Reproducing Kernel Hilbert
Space in which the penalty term is given by a seminorm. Finally, we discuss the issues of existence
and uniqueness of the solution. From the specialization of our analysis to the discrete setting it
is immediate to establish a connection between the solutionproperties of sparsity and coefficient
boundedness and some properties of the loss function. For the case of Support Vector Machines
for classification, we also obtain a complete characterization of the whole method in terms of the
Khun-Tucker conditions with no need to introduce the dual formulation.
Keywords: statistical learning, reproducing kernel Hilbert spaces,convex analysis, representer
theorem, regularization theory
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1. Introduction

The problem of learning from examples can be seen as the problem of estimating an unknown
functional dependency given only a finite (possibly small) number of instances. The seminal work
of Vapnik Vapnik (1988) shows that the key to effectively solve this problem is by controlling the
complexity of the solution. In the context of statistical learning this leads to techniques known
as regularization networks(Evgeniou et al., 2000) orregularized kernel methods(Vapnik, 1988;
Cristianini and Shawe Taylor, 2000; Schölkopf and Smola, 2002). More precisely, given a training
setS= (xi ,yi)

`
i=1 of ` pairs of examples, the estimator is defined as

f λ
S ∈ argmin

f∈H

{

1
`

`

∑
i=1

V(yi , f (xi))+λ‖ f‖2
H

}

, (1)

whereV is the loss function,H is the Hilbert space of thehypothesesandλ > 0 is the regulariza-
tion parameter. As shown by Evgeniou et al. (2000) the above minimization problem can also be
seen as particular instance of Tikhonov Regularization (Tikhonov and Arsenin, 1977; Mukherjee
et al., 2002) for a multivariate function approximation problem which is well known to be ill-posed
(Bertero et al., 1988; Evgeniou et al., 2000; Poggio and Smale, 2003).

In this paper we study the generalization of the above problem to thecontinuous setting, that is,
given a probability distributionρ defined onX×Y whereX is the input space andY is the output
space, we study the properties of the estimator

( f λ,gλ) ∈ argmin
( f ,g)∈H ×B

{

Z

X×Y
V(y, f (x)+g(x))dρ(x,y)+λ‖ f‖2

H

}

, (2)

whereH andB are reproducing kernel Hilbert spaces (RKHS):H is the space of penalized func-
tions andB is the offset space (Wahba, 1990).

Considering the continuous setting is meaningful for several reasons. First, it is useful in order
to study the problem of the generalization properties of kernel methods (Steinwart, 2002). To this
purpose, one associates with each functionf : X → R its expected risk,

I [ f ] =
Z

X×Y
V(y, f (x))dρ(x,y),

whereρ is the unknown probability distribution describing the relation between the inputx ∈ X and
the outputy∈Y. Following Cucker and Smale (2002), for regularized kernel methods thediscrep-
ancy between the expected risk of the estimator,f λ

S, and the minimum obtainable risk, inff∈H I [ f ],
can be decomposed as

I [ f λ
S]− inf

f∈H
I [ f ] =

(

I [ f λ
S]− I [ f λ]

)

+

(

I [ f λ]− inf
f∈H

I [ f ]

)

,

where the first term represents the sample error and the second term the approximation error (Niyogi
and Girosi, 1999). Clearly, insight on the form off λ can be useful to obtain better bounds on
both errors. Second, considering the continuous measureρ corresponds intuitively to finding a
stable solution to the learning problem in the case of infinite number of examples and, hence, gives
information about the best we can do in the hypothesis spaceH ×B (Mukherjee et al., 2002). Third,
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we can treat both the empirical measure and the ideal unknown probability distribution in a unified
framework.

The contribution of our work is threefold. First we provide a complete characterization of the
explicit form of the estimator( f λ,gλ) given by Eq. (2) by exploiting a convexity assumption on the
loss functions. Our result can be interpreted as a quantitative version ofthe representer theorem
holding for both regression and classification and in which explicit care is taken of the offset space
B. Then, we discuss the role of the offset spaceB. The starting point of our discussion is the obvious
observation that the estimator given by Problem (2) is not thepair ( f λ,gλ) but thesum fλ +gλ. In
other words the natural hypothesis space is thesumH +B instead of theproductH ×B (which is
not even a space of functions fromX to R). For arbitrary loss function we prove that Problem (2)
is equivalent to a kernel method defined onH +B, which is a RKHS, with a penalty term given by
a seminorm. Finally, for sake of completeness, we study the issues of the existence and uniqueness
for Problem (2). WhenB is not the empty set, both issues are not trivial. In particular, forB

equal to the set of constants, we prove existence under very reasonable conditions: for example,
for classification, one needs at least two examples with different labels. About uniqueness we show
that, for strictly convex loss functions, one has uniqueness if and only if the spaceB is small enough
to be separated by the measureρ: for example, in the discrete setting, this last condition means that
a functiong∈ B is equal to 0 if and only ifg(xi) = 0 for all i. For the hinge loss function, which is
convex but not strictly convex, we give anad hoccondition in terms of number of support vectors
of the two classes.

The plan of the paper is as follows. In Section 2 we discuss our contributions with respect to
previous works. In Section 3 we introduce some basic concepts of learning theory and state the
assumptions we make on the loss functionV and hypothesis spacesH andB. In Section 4 we study
the form of the solution of Problem (2). In Section 5 we discuss the theoretical meaning of the offset
spaceB. We discuss the problem of existence and uniqueness in Section 6. In Section 7 we apply
our results to the discrete setting and focus on the case of Support VectorMachines. In the appendix
we recall some notions from convex analysis in infinite dimensional spaces.

2. Putting Our Work in Context

We now briefly discuss the relation between our results and the previous works on this subject.
Results about the form of the solution of kernel methods are known in the literature asrepresenter
theorems(if B is not trivial they are calledsemiparametric representer theorems).

The first result in this direction is due to Kimeldorf and Wahba (1970) for thesquared loss
function (see also Wahba, 1990). However, the structure of the proofholds for arbitrary loss function
as shown by many authors such as Cox and O’Sullivan (1990). In the framework of statistical
learning, Scḧolkopf et al. (2001) give a proof of the representer theorem that holds for an arbitrary
loss function and for any penalty term, being it a strictly increasing function of the norm. This kind
of results shows that, if theH is a RKHS with kernelK, the estimatorf λ

S defined by Eq. (1) can be
written as

f λ
S(x) =

`

∑
i=1

αiK(x,xi) .

The above result holds for arbitrary loss function and for a large classof penalty terms. However,
the form of the coefficientsαi is unknown.
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For the squared loss function, the form of the coefficients is well known inthe context of inverse
problem, see, for example, Tikhonov and Arsenin (1977), and reduces to solve a linear system of
equations. For arbitrary differentiable functions, this problem was studied by Poggio and Girosi
(1992); Girosi (1998); Wahba (1998) where the coefficientsαi are solution of a system of algebraic
equations.

This approach cannot be applied to hinge andε-insensitive loss function (Vapnik, 1988), since
they are not differentiable: the form of the coefficientsαi is recovered only through the usual dual
Lagrangian formulation of the minimization problem, see, for example, Vapnik (1988); Cristianini
and Shawe Taylor (2000).

Recently, Zhang (2001) gives a quantitative representer theorem in theclassification setting that
holds for differentiable loss function and Steinwart (2003) extends this result for arbitrary convex
loss function, without using the dual problem. In these papers the form ofthe coefficientsαi is given
in terms of a closed equation involving the subgradient of the loss function. Moreover, they are able
to extend the representer theorem to the continuous setting (a study of the solution of Tikhonov
regularization in the continuous setting when the square loss is used can be found also in Cucker
and Smale, 2002).

This paper, using techniques similar to those of Steinwart (2003), extendsthe above result in
the following directions:

• our result holds both for regression and classification;

• we provide a general result that holds also when the offset term is considered. The presence
of the offset space forces the coefficientsαi to satisfy a system of linear equations;

• we do not assume that input spaceX and the output spaceY are compact. In particular, for
regression we can assumeY = R;

• we provide a simpler proof than the one of Steinwart (2003) by using known results about
integral convex functionals.

A discussion of the role of the offset terms can be found in Evgeniou et al.(2000) and in Poggio
et al. (2002) when the spaceB reduces to the set of constant functions. The results are close to our
Theorem 6, but they are proved assuming that the unit constant is in the Mercer decomposition of
the kernel and for the discrete setting, while our result holds true for offset term living in arbitrary
RKHS.

The problem of the existence and uniqueness is discussed in Wahba (1998) for the discrete
setting and with differentiable loss functions. For arbitraryρ the papers by Steinwart (2002, 2003)
study the existence for the classification setting with offset space reducedto the constant functions.
For the hinge loss andε-insensitive loss, the problem of uniqueness is treated in Burges and Crisp
(2000, 2003). Their proof is based on the dual problem and on the Kuhn-Tucker conditions. Our
results subsume the cited results as special cases, but are all obtained in the more general continuous
setting. In particular our results on uniqueness of SVM solution are similar to those in Burges and
Crisp (2000, 2003) but do not make use of the dual formulation.

3. Notation and Assumptions

In this section we first fix the notation and then state and comment upon the basicassumptions
needed to derive the results described in the rest of the paper. We startwith input and output spaces.
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3.1 Input and Output Spaces

As usual, we denote withX andY the input and output spaces respectively. We assume thatX is
a locally compact second countable space (this assumption is satisfied for instance ifX is a closed
subset ofRd) andY is a closed subspace ofR.

We letZ = X×Y and endow it with a probability distributionρ defined on the Borelσ-algebra
of Z. We recall that, sinceρ is a bounded measure andZ is second countable,ρ is a Radon measure.
In practice,ρ will be either the unknown distribution describing the relation betweenx andy or the
empirical measure

ρS =
1
`

`

∑
i=1

δ(xi ,yi),

associated with thetraining set S= {(xi ,yi)}`
i=1 drawn i.i.d. with respect toρ. We now deal with

loss functions.

3.2 Loss Functions

We collect the mathematical assumptions on the loss function in the following definition and we
comment on the purpose of each assumption.

Definition 1 Given p∈ [1,+∞[, a function V: Y×R → [0,+∞[ such that

1. for all y∈Y the function V(y, ·) is convex onR;

2. the function V is measurable on Y×R;

3. there are b∈ [0,+∞[ and a: Y → [0,+∞[ such that

V(y,w) ≤ a(y)+b|w|p ∀w∈ R, y∈Y (3)
Z

X×Y
a(y)dρ(x,y) < +∞, (4)

is called a p-loss function with respect toρ.

If the context is clear,V is simply called a loss function. The convexity hypothesis is not restrictive,
being satisfied by all the loss functions commonly in use. Moreover, it is powerful from a technical
point of view: it allows for the use of subgradient techniques without assuming differentiability
of V and makes it possible to use convex analysis tools in the study of existence and uniqueness
of functional minimizers. Finally, this requirement ensures stronger bounds for the sample error
(Bartlett et al., 2002; Bartlett, 2003; Bartlett et al., 2003).

Assumption 2. is a minimal requirement for defining the expected risk and it is usually satisfied
since loss functions commonly in use are continuous onZ.

Condition 3. is a technical hypothesis we need in order to use results from convex integral
functional analysis. For example, it is satisfied in the following cases

1. for p = 2, if V is the square loss function,V(y,w) = (y−w)2, and
Z

X×Y
y2dρ(x,y) < +∞;
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2. for p = 1, if V(y, ·) is Lipschitz onR with a Lipschitz constant independent ofy and
Z

X×Y
V(y,0)dρ(x,y) < +∞.

We now restrict our analysis to some functionals studied in statistical learning.

3.3 Learning Functionals

Theexpected riskof a measurable functionf : X → R is defined as

I [ f ] =
Z

X×Y
V(y, f (x))dρ(y,x),

and can be seen as the average error obtained by the functionf , where f is a possible solution of
the learning problem and the probability measureρ is unknown.

Given a training setS, a possible way to estimateI [ f ] is to evaluate theempirical risk

IS
emp[ f ] =

1
`

`

∑
i=1

V(yi , f (xi)).

The problem of learning is to find, given the training setS, anestimator feffectively predicting the
label of a new point. This translates in finding a functionf such that its expected risk is small with
high probability.

A possible way to efficiently solve the learning problem is provided byregularized kernel meth-
odswhich amounts to solving a problem of functional minimization as Problem (1). A general-
ization of Problem (1) to a continuous setting is provided by Problem (2) in which the continuous
measureρ replaces the empirical measureρS in the first term. In what follows we will refer to the
functionals to be minimized in both Eq. (1) and Eq. (2) asTikhonov functionalsand to the solutions
as theregularized solutions.

The second term of a Tikhonov functional is asmoothnessor acomplexityterm measuring the
norm of the functionf in a suitable Hilbert spaceH . The minimization takes place in thehypothesis
spaceH ×B. We now collect the assumptions on the hypothesis space at the basis of ouranalysis.

3.4 Hypothesis Space

First of all, we recall the definition of reproducing kernel Hilbert space. A RKHS H on X with
kernelK : X×X → R is defined as the unique Hilbert space of real valued functions onX such that,
for all f ∈ H ,

f (x) = 〈 f ,Kx〉H ∀x ∈ X, (5)

whereKx is the function onX defined byKx(s) = K(x,s).
Given a probability meausureρ on Z and p ∈ [1,+∞[, we say that the kernelK is p-bounded

with respect toρ if the functionK is measurable onX×X and
Z

X×Y
K(x,x)

p
2 dρ(x,y) < +∞. (6)

Clearly the above condition depends only on the marginal distribution ofρ on X and ensures that
H is a subspace ofLp(Z,ρ) with continuous inclusion (see Lemma 4 in Section 4). This fact is
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essential for proving our results. In particular, thep-boundedness of the kernel is fulfilled for all
p∈ [1,+∞ [ if X is compact and the kernel is continuous or if the kernel is measurable and bounded.

We are now ready to discuss the assumptions on the hypothesis space. We fix the probability
measureρ on Z and p ∈ [1,+∞ [ such thatV is p-bounded with respect toρ. We require that the
space of penalized functionsH and the space of offset functionsB are RKHS onX such that the
corresponding kernelsK andKB are p-bounded with respect toρ. We denote the corresponding
norms by‖·‖H and‖·‖B . Finally, we notice that, in general, the product spaceH ×B is not a
RKHS.

In learning theory usuallyX is compact,K is continuous andB is the one dimensional vector
space of constant functions

B = { f : X → R | f (x) = b, b∈ R} = R

with kernelKB simply given byKB(x,s) = 1. Another example of offset space, which arises in
approximation problems in RKHS on a bounded interval, is the space of splinesof ordern, whose
corresponding kernel is continuous (Wahba, 1990). In both case thep-boundedness assumption is
satisfied for allp. Our framework allows to treat arbitrary (possibly infinite-dimensional) offset
spaces with the possibility to incorporate jumps in the offset term.

Finally, the requirement that the hypothesis space is a RKHS is due to the factthat minimization
of a convex functional in a Hilbert space is easier to treat than in an arbitrary Banach space since in
the former case the subgradient of the functional is an element of the space itself. Moreover, in the
proofs we use extensively the reproducing property given by Eq. (5).

4. Explicit Form of the Regularized Solution

In this section we determine the explicit form of the minimizer of the Tikhonov functional intro-
duced in the previous section. We first state the main theorem and comment on the obtained result,
then we provide the mathematical proof.

4.1 Main Theorem

Theorem 2 Letρ be a probability measure on X×Y where X is a locally compact second countable
space and Y is a closed subset ofR. Let V be a p-loss function with respect toρ, p∈ [1,+∞[. Let
H and B reproducing kernel Hilbert spaces such that the corresponding kernels K and KB are
p-bounded with respect toρ. Define q=]1,+∞] such that1q + 1

p = 1.

Let λ > 0 and( f λ,gλ) ∈ H ×B, then

( f λ,gλ) ∈ argmin
( f ,g)∈H ×B

{

Z

X×Y
V(y, f (x)+g(x))dρ(x,y)+λ‖ f‖2

H

}

(7)

if and only if there isα ∈ Lq(Z,ρ) satisfying

α(x,y) ∈ (∂V)(y, f λ(x)+gλ(x)) (x,y) ∈ X×Y a.e. (8)

f λ(s) = − 1
2λ

Z

X×Y
K(s,x)α(x,y)dρ(x,y) s∈ X (9)

0 =
Z

X×Y
KB(s,x)α(x,y)dρ(x,y) s∈ X. (10)
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The proof of this theorem is given in the following subsection. A few important remarks are in
order.

First, the theorem gives a general quantitative version of the representer theorem. The generality
is obtained by considering the continuous setting which subsumes the discretesetting if the measure
ρ is the empirical measureρS. In this case, the integral reduces to a finite sum and we recover the
well known result thatf λ

S = ∑`
i=1 αiKxi , where thexi form the training set. Moreover, the solution is

quantitatively characterized since the coefficientsα are given by Eq. (8) involving the subgradient.
For differentiable loss functions in the discrete setting, Eq. (8) reduces to

αi = V ′(yi , f λ
S(xi)+gλ

S(xi)),

whereV ′ denotes the derivative with respect to the second variable (Girosi, 1998; Wahba, 1998).
Second, if{ψi}m

i=1 is a base forB, the offset part of the solution can be written asgλ = ∑m
i=1diψi ,

where the coefficientsdi are again constrained by Eq. (8). A discussion on how to solve explicitly
Eq. (8) can be found in Wahba (1998). Furthermore, the presence ofB induces a system of linear
constraints on the coefficientsαi expressed by Eq. (10) that, forB = R, reduces to the well known
condition

`

∑
i=1

αi = 0.

We stress that, unlike previous works, the above equation has been derived without introducing the
dual formulation.

Finally, we discuss the role of Assumption 3) in Definition 1. From the proof, itis apparent
that this assumption is needed to ensure the continuity of the first term in the Tikhonov functional
which in the discrete setting is trivially guaranteed. Therefore, for the discrete setting Theorem 2
holds for any convex loss function. In particular,Lq(Z,ρS) = R

` and the conditionα ∈ Lq(Z,ρS) is
always satisfied. Back to the continuous setting, ifV(y, ·) is Lipschitz onR with a Lipschitz constant
independent ofy and

Z

X×Y
V(y,0)dρ(x,y) < +∞,

one can choosep = 1, so thatq = +∞ and conditionα ∈ L∞(Z,ρ) means thatα is bounded. For the
square loss, clearlyp = 2, so thatq = 2 andα is square-integrable. As shown by Steinwart (2003),
for classification and compactX, one can again remove Assumption 3) of Definition 1 using the fact
that a convex function is locally Lipschitz and the range of possibley is bounded.

The following corollary is the restatement of the representer theorem without offset space.

Corollary 3 With the assumptions of Theorem2, let fλ ∈ H then

f λ ∈ argmin
f∈H

{

Z

X×Y
V(y, f (x))dρ(x,y)+λ‖ f‖2

H

}

if and only if there isα ∈ Lq(Z,ρ) satisfying

α(x,y) ∈ (∂V)(y, f λ(x)) (x,y) ∈ X×Y a.e.

f λ(s) = − 1
2λ

Z

X×Y
K(s,x)α(x,y)dρ(x,y) s∈ X.
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4.2 Proof of the Main Theorem

Before giving the proof of the theorem we discuss the proof structure,which aside from some
technicalities is very simple, and is based on two lemmas. The Tikhonov functional I [ f + g] +
λ‖ f‖2

H is a convex map onH ×B, so ( f λ,gλ) is a minimizer of the Tikhonov functional if and
only if (0,0) is in its subgradient, which is a subset ofH ×B. Using linearity, the computation of
the subgradient of the Tikhonov functional reduces to the computation of the subgradient ofI [ f +g]
and‖ f‖2

H respectively. Since the latter functional is differentiable, the subgradient evaluation is
straightforward. Some care is needed for the subgradient of the former. First, we rewrite it as an
integral functional onLp(Z,ρ) and then use a fundamental result of convex analysis to interchange
the integral and the subgradient.
Proof [of Theorem 2] Clearly,λ‖ f‖2

H is continuous and, by Lemma 4, the functionalI [ f + g] is
continuous and finite. So, from item 5 of Proposition 14, one has that

∂
(

I [ f +g]+λ‖ f‖2
H

)

= ∂(I [ f +g])+λ∂(‖ f‖2
H ).

Now, the map
( f ,g) →‖ f‖2

H

is differentiable with derivative(2 f ,0) and, therefore, by item 1 of Proposition 14,

∂(‖ f‖2
H ) = {(2 f ,0)}. (11)

The main difficulty is the evaluation of the subgradient of the mapI [ f +g] given in Lemma 5. By
means of this lemma we obtain that the elements of the subgradient ofI [ f + g] at ( f ,g) are of the
form

(

Z

X×Y
K(x, ·)α(x,y)dρ(x,y),

Z

X×Y
KB(x, ·)α(x,y)dρ(x,y)

)

, (12)

whereα ∈ Lq(Z,ρ) satisfies
α(x,y) ∈ (∂V)(y, f (x)+g(x)) (13)

for ρ-almost all(x,y)∈ X×Y. Now, by combining Eq. (11) and Eq. (12), we have that the elements
of the subgradient ofI [ f +g]+λ‖ f‖2

H at point( f ,g) are of the form

(

Z

X×Y
K(x, ·)α(x,y)dρ(x,y)+2λ f ,

Z

X×Y
KB(x, ·)α(x,y)dρ(x,y)

)

. (14)

whereα ∈ Lq(Z,ρ) satisfies Eq. (13).
From item 3 of Proposition 14, we have that an element( f λ,gλ)∈H ×B is a minimizer ofI [ f +

g] + λ‖ f‖2
H if and only if (0,0) belongs to the subgradient evaluated at( f λ,gλ). Using Eq. (14),

one has that

f λ(s) = − 1
2λ

Z

X×Y
α(x,y)K(x,s)dρ(x,y)

Z

X×Y
α(x,y)KB(x,s)dρ(x,y) = 0.

where, by means of Eq. (13),α ∈ Lq(Z,ρ) satisfies Eq. (8). This ends the proof.
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Before computing the subgradient of the mapI [ f +g] in Lemma 5, we need to extend the definition
of expected risk onLp(Z,ρ). First of all, we let

I0[u] =
Z

X×Y
V(y,u(x,y)) dρ(x,y) u∈ Lp(Z,ρ),

so thatI [ f +g] = I0(J ( f ,g)) whereJ : H ×B → Lp(Z,ρ) is the linear map

J ( f ,g) = f +g,

(the functionf +g is viewed in a natural way as a function onZ).
The following lemma collects some technical facts onI0 andJ .

Lemma 4 With the above notations,

1. the functional I0 : Lp(Z,ρ) → [0,+∞ [ is well-defined and continuous;

2. the operatorJ : H ×B → Lp(Z,ρ) is well-defined and continuous.

Proof Since the loss functionV can be regarded as function onZ×R, that is,V(z,w) = V(y,w)
wherez= (x,y), one has thatI0[u] is the Nemitski functional associated withV (see Appendix), that
is,

I0[u] =
Z

Z
V(z,u(z))dρ(z) u∈ Lp(Z,ρ).

We claim thatI0[u] is finite. Indeed, givenu∈ Lp(Z,ρ), by Eq. (3),
Z

X×Y
V(y,u(z))dρ(x,y) ≤

Z

X×Y
a(y)+b|u(z)|pdρ(x,y) < +∞.

The proof thatI0 is continuous can be found in Proposition III.5.1 of Ekeland and Turnbull(1983).
In order to prove the second item, we letf ∈ H . Then, by Eq. (5),

Z

X×Y
| f (x)|pdρ(x,y) =

Z

X×Y
| 〈 f ,Kx〉H |pdρ(x,y)

≤ ‖ f‖p
H

Z

X×Y
K(x,x)

p
2 dρ(x,y)

= C‖ f‖p
H

< +∞.

whereC =
R

X×Y K(x,x)
p
2 dρ(x,y) is finite sinceK is p-bounded (see Eq. (6)). In particular, the

function (x,y) 7→ f (x) is in Lp(Z,ρ) and‖ f‖Lp ≤ p
√

C‖ f‖H . The same relation clearly holds for
g∈ B. It follows thatJ is well defined and

‖ f +g‖Lp ≤ p
√

C‖ f‖H +
p
√

C′ ‖g‖B .

SinceJ is linear, it follows thatJ is continuous.

Finally, the following lemma computes the subgradient ofI = I0◦ J .
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Lemma 5 With the above notations, let( f ,g) ∈ H ×B, then(φ,ψ) ∈ ∂(I0 ◦ J )( f ,g) if and only if
there isα ∈ Lq(Z,ρ) such that

α(x,y) ∈ (∂V)(y, f (x)+g(x)) (x,y) ∈ X×Y a.e.

φ(s) =
Z

X×Y
K(s,x)α(x,y)dρ(x,y) s∈ X

ψ(s) =
Z

X×Y
KB(s,x)α(x,y)dρ(x,y) s∈ X.

Proof SinceI0 is finite and continuous in 0= J (0), by point 6 of Proposition 14, we know that

∂(I0◦ J )( f ,g) = J ∗(∂I0)(J ( f ,g)), (15)

whereJ ∗ : Lq(Z,ρ) → H ×B is the adjoint ofJ , that is,

〈J ∗α,( f ,g)〉H ×B =
Z

X×Y
α(x,y)J ( f ,g)(x,y) dρ(x,y).

First of all, we compute∂I0. SinceI0[0] < +∞, we can apply Proposition 15 so that, given
u∈ Lp(Z,ρ), thenα ∈ (∂I0)(u) if and only if α ∈ Lq(Z,ρ) and

α(z) ∈ (∂V)(y,u(x,y)),

for ρ-almost all(x,y) ∈ X×Y.
We now compute the adjoint ofJ . Let α ∈ Lq(Z,ρ) and (φ,ψ) = J ∗α ∈ H ×B. Using the

reproducing property ofH and the definition ofJ ∗ we can write

φ(s) = 〈φ,Ks〉H

= 〈J ∗α,(Ks,0)〉H ×B = 〈α,J (Ks,0)〉L2(Z,ρ) .

Writing the scalar product explicitly we then find

φ(s) =
Z

X×Y
K(s,x)α(x,y)dρ(x,y).

Reasoning in the same way we find that

ψ(s) =
Z

X×Y
KB(s,x)α(x,y)dρ(x,y).

Replacing the above formulas in Eq. (15), we have the thesis.

5. Dealing with the Offset SpaceB

In this section we deal with the offset term which often appears in regularized solutions. We first
motivate our analysis, then state and discuss our main result on this issue. Finally, we give the proof
of the results.

1373



DE V ITO, ROSASCO, CAPONNETTO, PIANA AND VERRI

5.1 Motivations

In the previous section we minimized a Tikhonov functional on the setH ×B, dealing explicitly
with the possible presence of an offset term in the form of the solution. Typical examples in which
offset spaces arise are Support Vector Machine algorithms (Vapnik, 1988), where the offset term is
a constant accounting for the translation invariance of the separating hyperplane, and penalization
methods (Wahba, 1990), where the offset space is the kernel space of the penalization operator.

However, the fact that the setH ×B is not a RKHS (in fact, it is not even a function space)
makes it cumbersome to extend of typical statistical learning results to the general setting in which
the offset term is considered. For example a separate analysis, with and without the offset term, is
needed for measuring the complexity of the hypothesis space or studying algorithm consistency.

In this section we show that under very weak conditions the presence of an offset term is equiv-
alent to solving a standard regularization problem with a seminorm (Wahba, 1990).

The fact that the estimator isf λ(x)+gλ(x) (for regression) or sgn
(

f λ(x)+gλ(x)
)

(for classifi-
cation) suggests to replaceH ×B with the sum

S = H +B = { f +g| f ∈ H , g∈ B}.

The hypothesis spaceS is a space of functions onX and, in particular, a RKHS, the kernel being
the sum of the kernels ofH andB. In this section we show that the minimization of a Tikhonov
functional onH ×B is essentially equivalent to the minimization of an appropriate functional onS .
This provides a rigorous derivation of the following facts.

1. The equivalent functional onS is also a Tikhonov functional. The penalty term is a seminorm
penalizing the functions inS orthogonal toB only.

2. The estimator given by the minimization of the Tikhonov functional onS depends only on
the kernel sum.

Moreover, since the hypothesis spaceS is a RKHS, a number of classical results of learning theory
follows without further effort.

Finally, we notice that the norm ofB (hence the kernelKB ) plays no role in the functional

I [ f +g]+λ‖ f‖2
H ,

that is, all kernels, whose corresponding RKHS isB as a vector space, give rise to the same mini-
mizers( f λ,gλ). This fact is confirmed by Eq. (18) below (see also Eq. (20)).

5.2 Main Theorem

We recall that the norm inS is given by

‖ f +g‖2
S = inf

f ′∈H ,g′∈B

f+g= f ′+g′

(

∥

∥ f ′
∥

∥

2
H

+
∥

∥g′
∥

∥

2
B

)

(16)

and, with respect to this norm,S is a RKHS onX with kernelK +KB (Schwartz, 1964).
We are now ready to state the following result.
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Theorem 6 Let Q be the orthogonal projection on the closed subspace ofS

S0 = {s∈ S | 〈s,g〉S = 0 ∀g∈ B},

that is the subset of functions orthogonal toB w.r.t. the scalar product inS . We have the following
facts.

1. If ( f λ,gλ) ∈ H ×B is a solution of the problem

min
( f ,g)∈H ×B

{I [ f +g]+λ‖ f‖2
H },

then sλ = f λ +gλ ∈ S is a solution of the problem

min
s∈S

{I [s]+λ‖Qs‖2
S}

and fλ = Qsλ.

2. If sλ ∈ S is a solution of the problem

min
s∈S

{I [s]+λ‖Qs‖2
S},

let fλ = Qsλ and gλ = sλ −Qsλ, then

I [ f λ +gλ]+λ
∥

∥

∥
f λ
∥

∥

∥

2

H
= inf

( f ,g)∈H ×B
{I [ f +g]+λ‖ f‖2

H }.

In particular, if gλ ∈ B, then( f λ,gλ) ∈ H ×B is a minimizer of I[ f +g]+λ‖ f‖2
H .

Before giving the proof in the following subsection we comment on this result.
First, notice that ifH ∩B = {0} thenS = H ×B and

‖ f +g‖2
S = ‖ f‖2

H +‖g‖2
B .

In this case the theorem is trivial. However, in the arbitrary case care is needed because there are
functions inH not orthogonal toB. Moreover, the norm‖·‖S restricted toH andB could be dif-
ferent from‖·‖H and‖·‖B : in particular, it could happen that(B⊥)⊥ 6= B, where the orthogonality
⊥ is meant with respect to the dot product inS . This pathology is at the root of the fact that there
are cases in which the problem

min
s∈S

{I [s]+λ‖Qs‖2
S}

has a solution, whereas the functionalI [ f +g]+λ‖ f‖2
H does not admit a minimizer onH ×B (see

example below). In practice, sinceH ∩B in most applications is finite dimensional, this pathology
does not occur and the minimization problem onH ×B is fully equivalent to the one onS .

Second, the advantage of using the penalty term‖ f‖2
H instead of‖Qs‖2

S is that one can solve
the minimization problem without knowing the explicit form of the projectionQ. Conversely, the
spaceS is the natural space to address theoretical issues.
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Third, we observe that since the proof does not depend on the convexity of the loss function,
the theorem holds for arbitrary (positive) loss functions. However, ifV satisfies the hypotheses of
Definition 1, from Theorem 2 it follows that the minimizersλ of I [s]+λ‖Qs‖2

S is of the form

sλ(s) =
Z

X×Y
α(x,y)

(

K(x,s)+KB(x,s)
)

dρ(x,y)+gλ(s) (17)

=
Z

X×Y
α(x,y)K(x,s)dρ(x,y)+gλ(s) (18)

wheregλ ∈ B andα ∈ Lq(Z,ρ) satisfies

α(x,y) ∈ (∂V)(y,sλ(x)) (19)
Z

X×Y
α(x,y)KB(x,s) = 0. (20)

In particular, this implies that, givenh∈ B, one can replace the kernelK with K(x,s)+ h(x)h(s),
without changing the form of the minimizersλ. For example ifB is the set of constant functions,
the two kernelsK(x,s) = x ·sandK(x,s) = x ·s+1 are equivalent since both penalize the functions
orthogonal to 1, that is the space of linear functions.

5.3 Proof

Before giving the proof of Theorem 6 we need to prove the following technical lemma. For this
purpose we recall thatS0 was defined as

S0 = {s∈ S | 〈s,g〉S = 0 ∀g∈ B},

andQ was the corresponding orthogonal projection fromS onto S0. Moreover we letH0 be the
closed subspace ofH given by

H0 = { f ∈ H | 〈 f ,h〉H = 0 ∀h∈ H ∩B}

andP be the corresponding orthogonal projection fromH ontoH0.
In order to prove the main theorem we need the following technical lemma that characterizes

the spaceS0.

Lemma 7 Let s= f +g∈ S with f ∈ H and g∈ B, then

Qs = P f (21)

‖Qs‖S = ‖P f‖H (22)

and there is a sequence( fn,gn) ∈ H ×B such that

lim
n→∞

‖P f − fn‖H = 0 (23)

with fn +gn = s.

1376



SOME PROPERTIES OFREGULARIZED KERNEL METHODS

Equations (21) and (22) show thatS0 andH0 are the same Hilbert space and, in particular,Qs∈ H .
However, in general, it could happen thats−Qs 6∈ B. Equation (23) is a technical trick to overcome
this pathology.
Proof [of Lemma 7] To give the proof of the lemma we need some preliminary facts. LetK be the
closed subspace ofH ×B

K = {( f ,g) ∈ H ×B |( f ,h)H = (g,h)B ∀h∈ H ∩B}.

It is known (Schwartz, 1964) that, givens∈ S , there is a unique( f ,g) ∈ K such thats = f + g.
Moreover for all( f ′,g′) ∈ H ×B,

〈

s, f ′ +g′
〉

S
=
〈

f , f ′
〉

H
+
〈

g,g′
〉

B
. (24)

From Eq. (16) one has that

‖ f‖S ≤ ‖ f‖H f ∈ H (25)

First of all we claim thatH0 ⊂ S0. Clearly, if f ∈ H0, then( f ,0) ∈ K and, by Eq. (24), for all
g′ ∈ B,

〈

f +0,0+g′
〉

S
= 〈 f ,0〉H +

〈

0,g′
〉

B
= 0,

that is f ∈ S0. This shows the claim. Moreover,

‖ f‖2
S = 〈 f +0, f +0〉S = 〈 f , f 〉H = ‖ f‖2

H . (26)

Let s= f +g with f ∈ H andg∈ B. Clearly, f = P f +h whereh∈ H ⊥
0 = ((H ∩B)⊥)⊥ = ¯H ∩B

(here⊥ denotes the orthogonal complement with respect to the scalar product ofH ). It follows that
there is a sequencehn ∈ H ∩B such that

lim
n→∞

‖h−hn‖H = 0. (27)

Since, by Eq. (25),‖h−hn‖S ≤ ‖h−hn‖H andQ is continuous, it follows thatQh= limn→∞ Qhn =
0, sinceQhn = 0. The statements of the theorem easily follow from the above facts. Indeed

Qs= Q(P f +h+g) = QP f = P f,

sinceP f ∈ H0 ⊂ S0, and Equation (21) is proved. Equation (22) follows from Eq. (26). Finally
let now fn = P f + h−hn andgn = g+ hn. Clearly, fn + gn = f + g = s, fn ∈ H andgn ∈ B and
moreover Eq. (23) follows from Eq. (27).

We are now ready to prove the main theorem of this section.
Proof [Theorem 6] First of all we note the following facts. Letf ∈ H , g∈ B ands= f +g∈ S .
By Eq. (22)

I [s]+λ‖Qs‖2
S = I [ f +g]+λ‖P f‖2

H (28)

Let ( fn,gn) ∈ H ×B as in Lemma 7, then

I [ f +g]+λ‖P f‖2
H = lim

n

(

I [ fn +gn]+λ‖ fn‖2
H

)

.
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From the above equalities it follows that

I [s]+λ‖Qs‖2
S = lim

n

(

I [ fn +gn]+λ‖ fn‖2
H

)

. (29)

We can now prove the first part of the theorem. Assume that( f λ,gλ) ∈ H ×B is a minimizer of
I [ f +g]+λ‖ f‖2

H and letsλ = f λ +gλ. From Eq. (29) and the definition of minimizer, one has that,
for all s∈ S ,

I [s]+λ‖Qs‖2
S ≥ I [ f λ +gλ]+λ

∥

∥

∥
f λ
∥

∥

∥

2

H
. (30)

In particular with the choices= sλ, by means of Eq. (22), one has that

‖Qs‖S =
∥

∥

∥
P fλ

∥

∥

∥

H
≥
∥

∥

∥
f λ
∥

∥

∥

H
,

and, hence, thatQsλ = P fλ = f λ. Therefore, it follows that

I [s]+λ‖Qs‖2
S ≥ I [sλ]+λ

∥

∥

∥
Qsλ
∥

∥

∥

2

S
,

that is,sλ is a minimizer ofI [s]+λ‖Ps‖2
S .

Before proving the second part of the theorem we note that the following inequality follows as
a simple consequence of the definition of projection.

I [s]+λ‖Qs‖2
S = I [ f +g]+λ‖P f‖2

H ≤ I [ f +g]+λ‖ f‖2
H . (31)

Assume now thatsλ ∈ S is a minimizer ofI [s]+ λ‖Qs‖2
S . Let f λ = Qsλ andgλ = s− f λ, then, by

Eq. (31) and Eq. (22), it follows that

I [ f λ +gλ]+λ
∥

∥

∥
f λ
∥

∥

∥

2

H
≤ inf

( f ,g)∈H ×B
{I [ f +g]+λ‖ f‖2

H }.

However, using Eq. (29) withs= f λ +gλ, one has that

I [ f λ +gλ]+λ
∥

∥

∥
f λ
∥

∥

∥

2

H
≥ inf

( f ,g)∈H ×B
{I [ f +g]+λ‖ f‖2

H }.

SoI [ f λ +gλ]+λ
∥

∥ f λ
∥

∥

2
H

is the infimum ofI [ f +g]+λ‖ f‖2
H onH ×B. Clearly, ifgλ ∈B, it follows

that( f λ,gλ) is a minimizer ofI [ f +g]+λ‖ f‖2
H .

5.4 A Counterexample

The following example shows that in some pathological framework the minimization on H ×B is
not equivalent to the one onS = H +B.

Example 1 Let H = `2 = { f = ( fn)n∈N | ∑n f 2
n < +∞}. The spacè2 is a RKHS onN with respect

to the kernel K(n,m) = δn,m. LetB = { f ∈ `2 | ∑nn2 f 2
n < +∞} with the scalar product

〈 f ,g〉B = ∑
n

n2 fngn.
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The spaceB is a RKHS with respect to the kernel KB(n,m) = 1
n2 δn,m.

Clearly, B ⊂ H , so thatH ∩B = B, which is not closed inH . SinceB is dense inH , P = 0
and, by Lemma 7, Q= 0.

Let V be the squared loss function and choose h= (hn)n∈N ∈ H such that h6∈ B. Letρ(n,y) =
δ(y−hn) so that

I [s] = ‖s−h‖2
S ,

then
I [s]+λ‖Qs‖2

S = ‖s−h‖2
S ,

and the minimizer is sλ = h. Moreover, by our theorem, one has that

inf
f∈H ,g∈B

{I [ f +g]+λ‖ f‖2
H } = I [sλ]+λ

∥

∥

∥
Qsλ
∥

∥

∥

2

S
= 0.

If ( f λ,gλ) ∈ H ×B were a minimizer, then fλ = 0 and, hence, gλ = h, but this is impossible since
h 6∈ B.

6. Existence and Uniqueness

We now discuss existence and uniqueness of the regularized solution inS . Before stating and
proving the main results we summarize our findings and show that if the offsetspace is empty
both existence and uniqueness are easily obtained. Our analysis extendsexistence to all cases of
interest under some weak assumptions on the kernel and the loss function for both regression and
classification.

Uniqueness depends critically on the convexity assumption. For strictly convex functions we
prove that the solution is unique if and only if the offset space satisfies suitable conditions, fulfilled
in the case of constant offsets. For loss functions which are not strictly convex we limit our attention
to the hinge loss and show that the solution is unique unless some particular conditions on the
number and location of the support vectors are met. In Burges and Crisp (2000, 2003) similar
results were obtained considering the dual formulation of the minimization problem.

If the offset space is empty, strict convexity and coerciveness of the penalty term trivially imply
both existence and uniqueness. Indeed, we have the following proposition.

Proposition 8 Givenλ > 0, there exists a unique solution of the problem

min
f∈H

(

I [ f ]+λ‖ f‖2
H

)

.

Proof The function
(

I [ f ]+λ‖ f‖2
H

)

is strictly convex and continuous. Moreover

I [ f ]+λ‖ f‖2
H ≥ λ‖ f‖2

H → +∞

if ‖ f‖H goes to+∞. From item 4 of Proposition 14 both existence and uniqueness follow.
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6.1 Existence

We now consider existence. IfB is not trivial, there are no general results (see Wahba, 1990, for a
discussion on this subject). However, ifB is the set of constant functions, we derive existence of
the solution in two different settings.

The first proposition holds only for classification under the assumption thatthe loss functionV
goes to infinity wheny f(x) goes to−∞ (see Condition 1 of Proposition 9 below). Similar results
were obtained in Steinwart (2002). We letν be the marginal measure onX associated withρ and
suppν its support.

Proposition 9 Assume that the following conditions hold

1. limw→−∞V(1,w) = +∞ and limw→+∞V(−1,w) = +∞

2. there is C> 0 such that
√

K(x,x) ≤C for all x ∈ suppν

3. ρ(X×{1}) > 0 andρ(X×{−1}) > 0

Then there is at least one solution of the problem

min
s∈S

(

I [s]+λ‖Qs‖2
S

)

,

whereS = H +R.

We observe that Assumption2. is satisfied ifX is compact andK is continuous. Assumption3. has
a very natural interpretation in the discrete setting where it simply amounts to have one example for
each class. This condition is need since Assumption1. does not requires thatV goes to+∞ when
y f(x) goes to+∞. Typical example of loss function satisfying Assumption1. is the hinge loss.

The second result holds both for regression and classification, but it requires the loss function
going to infinity whenf (x) goes to±∞, uniformly in y (compare Assumption1. of Proposition 10
and Assumption1. of Proposition 9).

Proposition 10 Assume that the following conditions hold

1. limw→±∞(infy∈YV(y,w)) = +∞.

2. there is C> 0 such that
√

K(x,x) ≤C for all x ∈ suppν.

Then there is at least one solution of the problem

min
s∈S

(

I [s]+λ‖Qs‖2
S

)

,

whereS = H +R.

We observe that for classification with symmetric loss functions, as the squared loss function, this
proposition gives a sharper result than Proposition 9.

We now prove Proposition 9 and omit the proof of Proposition 10 since it is essentially the same.
Proof [of Proposition 9] The idea of the proof is to show that the functional we have to minimize
goes to+∞ when‖s‖S goes to+∞. With this aim, let

α = min{ρ(X×{1}) ,ρ(X×{−1})}.
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By assumption3, α > 0. For a fixedM > 0, we are looking forR> 0 such that for alls∈ S with
‖s‖S ≥ R,

I [s]+λ‖Qs‖2
S ≥ M.

Due to assumption1, there isr > 0 such that, for allw ≤ −r, V(1,w) ≥ M
α and, for allw ≥ r

, V(−1,w) ≥ M
α . We now letR = max{2(1+C)

√

M
λ ,2r} and chooses∈ S with ‖s‖S ≥ R. If

‖Qs‖S = ‖Qs‖H ≥ R
2(1+C) , then

I [s]+λ‖Qs‖2
S ≥ λ‖Qs‖2

S

≥ λ(
R

2(1+C)
)2

≥ M,

sinceR≥ 2(1+C)
√

M
λ . If ‖Qs‖ ≤ R

2(1+C) , let b = s−Qs∈ R, then

|b| = ‖s−Qs‖S

≥ ‖s‖S −‖Qs‖S

≥ R− R
2(1+C)

= R
2C+1
2C+2

.

Assume, for example, thatb > 0. For allx ∈ suppν

s(x) = 〈Qs,Kx〉H +b

≥ b−‖Qs‖H ‖Kx‖H

≥ R
2C+1
2C+2

− R
2(1+C)

C

≥ R
C+1
2C+2

=
R
2
≥ r,

sinceR≥ r
2. By definition ofr, one has that for allx ∈ suppν

V(−1,s(x)) ≥ M
α

.

Integrating both sides, we find
Z

X×{−1}
V(−1,s(x))dρ(x,−1) ≥ M

α
ρ(X×{−1}) ≥ M

from which it follows that
I [s]+λ‖Qs‖2

S ≥ M.

The same proof holds whenb < 0 replacing the integration onX ×{−1} with the integration on
X×{1}. SinceM is arbitrary, we have that

I [s]+λ‖Qs‖2
S ≥ λ‖Qs‖2

S → +∞.

Since the functional is continuous, from item 4 of Proposition 14 the existence of the minimizer
follows.
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6.2 Uniqueness

The first proposition completely characterizes uniqueness for strictly convex functions.

Proposition 11 Let sλ be a solution of the problem

min
s∈S

(

I [s]+λ‖Qs‖2
S

)

.

1. If s′ is another solution, then Qs′ = Qsλ.

2. If V(y, ·) is strictly convex for all y∈ Y then all the minimizers are of the form sλ + g, with
g∈ S such that Qg= 0 and g(x) = 0 for ν-almost all x∈ X.

Let us comment on this proposition before providing the proof. We recall that a solutionsλ is the
sum of two terms:f λ = Qsλ which is orthogonal toB andgλ = sλ− f λ. The uniqueness off λ (item
1) is due to the strict convexity of the penalty term. Item2 states the general conditions that should
be satisfied by offset functions to obtain uniqueness onsλ: in the discrete setting one has uniqueness
if and only if the conditiong(xi) = 0 for all i implies thatg is equal to zero. Clearly, ifB is the
space of constant functions uniqueness is ensured. We now give the proof of the proposition.
Proof [of Proposition 11]

1. Let s′ another minimizer and assume thatQsλ 6= Qs′. Then, by the strict convexity of‖·‖2
S ,

one has that, for allt ∈ ]0,1[ ,
∥

∥

∥
(1− t)Qsλ + tQs′

∥

∥

∥

2

S
< (1− t)

∥

∥

∥
Qsλ
∥

∥

∥

2

S
+ t
∥

∥Qs′
∥

∥

2
S
.

SinceI [s] is convex, one has that

I [(1− t)sλ + ts′] ≤ (1− t)I [sλ]+ tI [s′].

From the above two inequalities we find

I [(1− t)sλ + ts′] + λ
∥

∥

∥
Q
(

(1− t)sλ + ts′
)∥

∥

∥

2

S

< (1− t)

(

I [sλ]+λ
∥

∥

∥
Qsλ
∥

∥

∥

2

S

)

+ t
(

I [s′]+λ
∥

∥Qs′
∥

∥

2
S

)

= min
s∈S

(

I [s]+λ‖Qs‖2
S

)

.

Since this is impossible, it follows thatQsλ = Qs′.

2. Let s′ = sλ + g with g as in item1. By straightforward computation we have thats′ is a
minimizer. It is left to show that the minimizers are only the functions written in the above
form. From item1 we have thatQg= 0. LetU be the measurable set

U = {x ∈ X |g(x) 6= 0} = {x ∈ X |s′(x) 6= sλ(x)}.

By contradiction, let us assume thatν(U) > 0 and, hence,ρ(U ×Y) > 0. Fix t ∈ ]0,1[ . since
V(y, ·) is strictly convex, for all(x,y) ∈U ×Y, one has that

V(y,(1− t)sλ(x)+ ts′(x)) < (1− t)V(y,sλ(x))+ tV(y,s′(x)).
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Therefore, by integration,
Z

U×Y
V(y,(1− t)sλ(x)+ ts′(x))dρ(x,y) <

< (1− t)
Z

U×Y
V(y,sλ(x))dρ(x,y)+ t

Z

U×Y
V(y,s′(x))dρ(x,y).

On the complement ofU ×Y, we haveV(y,sλ(x)) = V(y,s′(x)), so that

I [(1− t)sλ + ts′] < (1− t)I [sλ]+ tI [s′].

By the same line of reasoning of item1, one finds a contradiction. It follows thatν(U) = 0,
that is,g(x) = 0 for ν-almost allx ∈ X.

Two important examples of convex loss functions which are not strictly convex are the hinge
and theε-insensitive loss. The next proposition deals with the hinge loss though a similar result can
be also derived for theε-insensitive loss, see Burges and Crisp (2000). For the sake of simplicity
we develop our result in the discrete setting for the case of constant offset functions. In this case
uniqueness of the solution is expressed as a condition on the number of support vectors of the two
classes. Similar but a little bit more involved conditions can be found considering the continuous
setting.

Proposition 12 Let Y= {±1}, V(y,w) = |1−yw|+ andB = R. Let sλ be a solution of

min
s∈S

(

1
`

`

∑
i=1

V(yi ,s(xi))+λ‖Qs‖2
S

)

,

and define

I+ = {i |yi = 1, sλ(x) < 1} I− = {i |yi = −1, sλ(x) > −1}
B+ = {i |yi = 1, sλ(x1) = 1} B− = {i |yi = −1, sλ(x1) = −1}.

The solution is unique if and only if
#I+ 6= #I− +#B− (32)

and
#I− 6= #I+ +#B+, (33)

where# denotes set cardinality.

Proof Assume thats′ is another solution. From item1 of proposition 11, we have thatQsλ = Qs′

ands′ = sλ +b. Since both functions are minimizers, one concludes that

`

∑
i=1

|1−yis
λ(xi)|+ =

`

∑
i=1

|1−yis
′(xi)|+ (34)
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We notice that ifyw1 < 1 andyw2 > 1, then

V(y,(1− t)w1 + tw2) < (1− t)V(y,w1)+ tV(y,w2).

Reasoning as in the proof of the previous proposition, one has that, for all i ∈ I+∪ I−,

yis
′(xi) ≤ 1

and, for alli 6∈ (I+∪ I−∪B+∪B−)
yis

′(xi) ≥ 1.

Using the above two equations, it follows that equality (34) becomes

∑
i∈I+∪I−

(1−yis
λ(xi)) = ∑

i∈I+∪I−

(1−yis
′(xi))+ ∑

i∈B+∪B−

|−byi |+,

(if the index set is empty, we let the corresponding sum be equal to 0). Theabove equation is
equivalent to

∑
i∈I+∪I−

byi = ∑
i∈B+∪B−

|−byi |+,

that has a not trivial solution if and only if both the following conditions are true

1. if b > 0, then∑i∈I+∪I− yi = −∑B− yi (that is, Eq. (32) holds).

2. if b < 0, then∑i∈I+∪I− yi = ∑B+
yi (that is, Eq. (33) holds).

Now, if neither Eq. (32) nor Eq. (33) holds, thenb = 0 andsλ is unique. Conversely, assume for
example that Eq. (32) holds. It is simple to check that there isb > 0 such that for alli ∈ I+∪ I−,

yi(s
λ(xi)+b) ≤ 1

and, for alli 6∈ (I+∪ I−∪B+∪B−)
yi(s

λ(xi)+b) ≥ 1.

Finally, by direct computation one has that

I [sλ] = I [sλ +b].

If the solution is not unique, the solution family is parameterized assλ +b, whereb runs in a closed,
not necessarily bounded interval. However, if there is at least one example for each class,b lies in
the bounded interval[b−,b+] and one can easily show that

1. for the solution withb = b−, Eq. (32) holds;

2. for the solution withb = b+, Eq. (33) holds;

3. for the solution withb− < b < b+, both Eqs. (32) and (33) hold, from which it follows that
#I+ = #I− and #B+ = #B− = 0.
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7. Discrete Tikhonov Regularization

We now specialize our results to the case in which the probability measure is the empirical distri-
bution ρS andB is the space of constant functions (KB = 1) and discuss in detail Support Vector
Machines for classification.

We start by recalling that, from item 2 of Proposition 14 it follows that the left and right deriva-
tives ofV(y, ·) always exist and

(∂V)(y,w) = [V ′
−(y,w),V ′

+(y,w)].

Corollary 13 Let S = H +R and Q the projection on

{s∈ S | 〈s,1〉S = 0}.

Givenλ > 0, let fλ ∈ H and bλ ∈ R and define sλ = f λ +bλ ∈ S , then

( f λ,bλ) ∈ argmin
f∈H ,b∈R

{

1
`
∑

i

V(yi , f (xi)+b)+λ‖ f‖2
H

}

if and only if

sλ ∈ argmin
s∈S

{

1
`
∑

i

V(yi ,s(xi))+λ‖Qs‖2
H

}

f λ = Qsλ

if and only if there areα1, . . . ,α` ∈ R such that

f λ =
`

∑
i=1

αiKxi =
`

∑
i=1

αi(Kxi +1)

−1
2λ`

V ′
+(yi , f λ(xi)+bλ) ≤ αi ≤ −1

2λ`
V ′
−(yi , f λ(xi)+bλ)

`

∑
i=1

αi = 0

We notice two facts. First,αi can be zero only if 0∈ (∂V)(yi , f λ(xi)+bλ) – that is, only if f λ(xi)+
bλ is a minimizer ofV(yi , ·). Therefore, a necessary condition for obtaining sparsity is aplateauxin
the loss function. A quantitative discussion on this topic can be found in Steinwart (2003). Second
if V− andV+ are bounded by a constantM > 0, one has that|αi | ≤ 2λ`M – that is, a sufficient
conditions for box constraints on the coefficients.

In the rest of this section we consider Support Vector Machines for classification showing that
through our analysis the solution is completely characterized in the primal formulation.

A simple calculation for the hinge loss shows that

[V ′
−(y,w),V ′

+(y,w)] =







−y for yw< 1
[min{−y,0},max{0,−y}] for yw= 1
0 for yw> 1

. (35)
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To be consistent with the notation used in the literature, we letC = 1
2λ`

and factorize the labelsyi

from the coefficientsαi . Then, according to the above corollary, the solution of the SVM algorithm
is given by

sλ =
`

∑
i=1

αiyiKxi +bλ

where the set(α1, . . . ,α`,bλ) solves the following algebraic system of inequalities

0≤ αi ≤C if yi

(

`

∑
j=1

α jy jK(xi ,x j)+bλ

)

= 1

αi = 0 if yi

(

`

∑
j=1

α jy jK(xi ,x j)+bλ

)

> 1 (36)

αi = C if yi

(

`

∑
j=1

α jy jK(xi ,x j)+bλ

)

< 1

∑
i

αiyi = 0

Interestingly, the above inequalities, which fully characterize the supportvectors associated with the
solution, are usually obtained as the Kuhn-Tucker conditions of the dual QP optimization problem
(Vapnik, 1988).

Looking at Eqs.(35-36), it is immediate to see that the box constraints (0≤ αi ≤C) are due to
the linearity ofV(y f(x)) for y f(x) < 1, whereas sparsity (αi = 0) follows from the constancy of
V(y f(x)) for y f(x) > 1.

8. Conclusion

In this paper we study some properties of learning functionals derived from Tikhonov regulariza-
tion. We develop our analysis in a continuous setting and use tools from convex analysis in infinite
dimensional spaces to quantitatively characterize the explicit form of the regularized solution for
both regression and classification. We also address the case with and without the offset term within
the same unifying framework. We show that the presence of an offset term is equivalent to solving
a standard problem of regularization in a Reproducing Kernel Hilbert Space in which the penalty
term is given by a seminorm. Finally, we discuss issues of existence and uniqueness of the solution
and specialize our results to the discrete setting.

Current work aims at extending these results to vector-valued functions (Micchelli and Pontil,
2003) and exploring possible use of offset functions to incorporate invariances (Girosi and Chan,
1995).
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Appendix A. Convex Functions in Infinite Dimensional Spaces

The proof of Theorem 2 is based on the properties of convex functionsdefined on infinite dimen-
sional spaces. In particular, we use the notion of subgradient that extends the notion of derivative to
convex non-differentiable functions. In this appendix we collect the results we need. For details see
the book Ekeland and Turnbull (1983) and also Ekeland and Teman (1974).

Let H be a Banach space andH ∗ its dual. A functionF : H → R∪+∞ is convexif

F(tv+(1− t)w) ≤ tF(v)+(1− t)F(w),

for all v,w∈ H andt ∈ [0,1] (if the strict inequality holds fort ∈ (0,1), F is calledstrictly convex).
Let v0 ∈ H such thatF(v0) < +∞. Thesubgradientof F at pointv0 ∈ H is the subset ofH ∗

given by
∂F(v0) = {w∈ H ∗ |F(v) ≥ F(v0)+ 〈w,v−v0〉 , ∀v∈ H }. (37)

where〈·, ·〉 is the pairing betweenH ∗ andH . If F(v) = +∞, we let∂F(v0) = /0.
In the following proposition we summarize the main properties of the subgradient we need.

Proposition 14 The following facts hold:

1. If F is differentiable at v0, the subgradient reduces to the usual gradient F′(v0).

2. If F is defined onR and F(v0) < +∞, then F admits left and right derivative and

∂F(v0) = [F ′
−(v0),F

′
+(v0)].

3. Assume that F6= +∞. A point v0 is a minimizer of F if and only if0∈ ∂F(v0).

4. If F is continuous and
lim

‖v‖H →+∞
F(v) = +∞.

then F has a minimizer. If F is strictly convex, the minimizer is unique.

5. Let G be another convex function onH . Assume that there is v0 ∈ H such that F and G are
continuous and finite at v0. Let a,b≥ 0, then aF+bG is convex and, for all v∈ H ,

∂(aF +bG)(v) = a(∂F)(v)+b(∂G)(v).

6. Let H ′ be another Banach space andJ be a continuous linear operator fromH ′ into H .
Assume that there is v′0 ∈ H ′ such that F is continuous and finite atJ v′0. For all v′ ∈ H ′

(∂F ◦ J )(v′) = J ∗(∂F)(J v′),

whereJ ∗ : H ∗ → H ′∗ is the adjoint ofJ defined by
〈

v′,J ∗v
〉

H ′ =
〈

J v′,v
〉

H
.

for all v ∈ H and v′ ∈ H ′.
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Proof We simply give the references to the book of Ekeland and Turnbull (1983).

1. Prop. III.2.8

2. Prop. III.2.7

3. It is a simple consequence of Prop. III.3.1

4. It is a simple consequence of Prop. II.4.6.

5. Prop. III.2.13

6. Prop. III.2.12

We now recall the definition ofNemitskifunctional, adapted to our framework (Ekeland and Turn-
bull, 1983, p.143). LetZ be a locally compact second countable space,ρ be a finite measure onZ,
andW : Z×R → [0,+∞[ be a measurable function onZ×R such thatW(z, ·) is convex for allz∈ Z
(sinceW(z, ·) is convex onR, it is continuous).

Let p∈ [1,+∞ [ andLp(Z,ρ) be the Banach space of measurable functionsu : Z → R such that
R

Z |u(z)|pdρ(z) is finite.
TheNemitskifunctional associated withW is defined as the mapI0 : Lp(X,ν)→ [0,+∞[ ∪ {+∞}

given by

I0[u] =
Z

Z
W(z,u(z))dρ(z). (38)

Next proposition provides us with a straightforward method to study the subgradient(∂I0). Let
q∈]1,+∞] such that1p + 1

q = 1.

Proposition 15 Assume that there is an element u0 ∈ Lp(Z,ν) such thatsupz∈Z |u0(z)| < +∞ and
I0[u0] < +∞. Given u∈ Lp(Z,ρ)

(∂I0)(u) = {w∈ Lq(Z,ρ) | w(z) ∈ (∂W)(z,u(z)) ρ−a.e.}. (39)

Proof See the proof of Prop. III.5.3 of Ekeland and Turnbull (1983). The proof is for Z interval of
R, but can be easily extended to arbitraryZ, compare with Ekeland and Teman (1974).
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