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Abstract. We study the distribution of some statistics (width, number of steps, length,
area) defined for paths contained in walls. We present the results by giving generating
functions, asymptotic approximations, as well as some closed formulas. We prove alge-
braically that paths in walls of a given width and ending on the x-axis are enumerated by
the Catalan numbers, and we provide a bijection between these paths and Dyck paths.
We also find that paths in walls with a given number of steps are enumerated by the
Fibonacci numbers. Finally, we give a constructive bijection between the paths in walls
of a given length and peakless Motzkin paths of the same length.

1. Introduction and notation

Lattice path theory takes an important place in combinatorics. In the literature, there
are many articles that study combinatorial problems on lattice paths (see [15]). Most of
the time, lattice paths are defined in Z2 by a starting point (almost always the origin), and
a sequence of vectors (also called steps) lying in a given set S. For instance, paths (also
called walks) defined with S = {N,S,E,W}, where N = (0, 1), S = (0,−1), E = (1, 0),
and W = (−1, 0), are widely studied in the quarter plane N2 (see [9, 17, 18] for instance).
Such a path may overlap itself (i.e., vertices and edges can be repeated). The problem of
the enumeration of these paths is very interesting to solve whenever boundary constraints
are imposed. On the other hand, we can consider lattice paths in N2 with no overlaps by
forcing the paths to go to the right; this is the subclass of directed paths. For example, if
S = {U,D}, where U = (1, 1), D = (1,−1), then the paths in N2 starting at the origin
and ending on the x-axis are the famous Dyck paths that are counted with respect to
the semilength (number of steps divided by 2) by the Catalan numbers Cn = 1

n+1

(
2n
n

)
(see A000108 in Sloane’s On-line Encyclopedia of Integer Sequences [27]). Moreover, if we
permit steps H = (1, 0), then we obtain the class of Motzkin paths that are enumerated by
the sequence A001006 in [27]. We refer to [1, 4, 5, 6, 7, 8, 10, 12, 19, 20, 25, 26] for several
works on the enumeration and the generation of such paths (with and without overlaps)
with respect to the length and various statistics.

In this work we introduce a new class of paths in N2 induced by a regular tiling of the
first quadrant: the wall. More precisely, a wall is a tiling of N2 using tiles (or bricks) of size
1× 2 organized as shown in Figure 1. More formally, a wall is a subgrid of N2 constituted
by the segments (0, b)− (∞, b) for every b ≥ 0, and (a, b)− (a, b+1) for a ≥ 0 and b ≥ 0 of
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the same parity. Note that this tiling can be also viewed as the cell structure of the plant
tissues (see [28] for instance), and our work studies the enumeration of paths of the sap
[16] according to several parameters defined below.

Figure 1. The wall tiling of N2.

A path in a wall is a lattice path on the subgrid defined by the wall. More precisely, it is
a lattice path in N2 starting at the origin (0, 0) where each step links two adjacent corners
of the bricks, by following the sides of the bricks with no overlap and no return to the
left (each step touching exactly two corners of some bricks at its beginning and its end).
Thus a path consists of steps N = (0, 1), S = (0,−1), and E ∈ {E1 = (1, 0), E2 = (2, 0)}
and their connections are constrained by the tiling (E2 is used on the x-axis and E1

above). Let P be the set of all paths in a wall. For instance, Figure 2 shows the two
paths NEEENEESESENEES and NEEENEESESENENEN , which can also writ-
ten as NE1E1E1NE1E1SE1SE2NE1E1S and NE1E1E1NE1E1SE1SE2NE1NE1N . The
first path ends on the x-axis and the second path ends at ordinate 3. Note that some works
[13, 14] have investigated the connection between paths and tilings of the plane, but this
does not correspond to our definition of the paths in a wall.

A statistic on the set P is a function w from P to N. Below, we define three important
statistics for our study. The width of a path P , denoted width(P ), is the abscissa of its
last point. For instance Figure 2 shows two paths of width 10. The length of a path P ,
denoted length(P ), is the length of the path considering as a curve in R2. Figure 2 shows
two paths of length 16 and 17, respectively. The number of steps of a path P , denoted
nbstep(P ), is the number of steps in the path (or equivalently the number of connections
of two corners). Figure 2 shows two paths with 15 and 16 steps, respectively.

Figure 2. Two paths in a wall NEEENEESESENEES and
NEEENEESESENENEN . The left path ends on the x-axis, its width
is 10, it has 15 steps, and its length is 16. The right path ends at ordinate
3, its width is 10, it has 16 steps, and its length is 17.
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Now, let us assume that the statistic w returns either the width, or the length, or the
number of steps of a path. For k ≥ 0, we consider the generating function fk = fk(z)
(resp. gk = gk(z), resp. hk = hk(z)), where the coefficient of zn in the series expansion
is the number of paths P ∈ P such that w(P ) = n, ending at ordinate k with an up-step
N (resp., with a down-step S, resp., with a horizontal-step E). Let f 0

k (resp. f 1
k ) be the

generating function consisting of the terms zn in fk such that n + k ≡ 0 mod 2 (resp.,
n+k ≡ 1 mod 2). Similarly, we define g0k, g

1
k, h

0
k, and h

1
k. Obviously, we have fk = f 0

k +f
1
k ,

gk = g0k + g1k, and hk = h0k + h1k for any k ≥ 0.
Also, we introduce the bivariate generating functions for i ∈ {0, 1},

F i(u, z) =
∑
k≥0

ukf i
k(z), Gi(u, z) =

∑
k≥0

ukgik(z), and H i(u, z) =
∑
k≥0

ukhik(z).

For short, we use the notation F i(u), Gi(u), and H i(u), i ∈ {0, 1}, for these functions.
We will use all these notations for the three following sections of this study according

to the choice of the statistic w (w = width in Section 3, w = nbstep in Section 4, and
w = length in Section 5).

Outline of the paper. In this paper, we investigate the enumeration problem of the
paths defined by the wall with respect to several parameters. In Section 2, we count paths
of a given width (ending on a given abscissa) according to the type of the last step and
the ordinate of the last point. We provide an asymptotic approximation for the expected
ordinate of the last point, and we prove that such paths ending on the x-axis are counted
by the well known Catalan numbers. We exhibit a bijection between these paths and Dyck
paths. Note that this last result was already found by Odlyzko [22] in the context of the
enumeration of fountains with a given number of coins on the basis. En passant, Odlyzko
also enumerates fountains with n coins, which allows us to say that paths ending on the
x-axis in the wall and having a given number of bricks below the path, are counted by the
infinite continued fraction

1

1−
z

1−
z2

1−
z3

. . .

.

In this section we also enumerate the paths ending on the x-axis with a given area and
width. We note that the total area of the paths is related with the path length in binary
trees.

In Section 3, we count paths of a given number of steps according to the type of the
last step and the ordinate of the last point. We prove that such paths are counted by the
Fibonacci numbers. We exhibit a bijection between these paths and binary words avoiding
two consecutive ones.

Finally, in Section 4, we make an analogous study for paths having a given length. We
prove that such paths are counted by the generalized Catalan number, which are known
to also count RNA structures. We exhibit a bijection between these paths and peakless
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Motzkin paths. Note that the study made in this last section is equivalent to the study of
paths of a given length in the honeycomb (i.e., hexagonal) lattice (it suffices to expand all
bricks of the wall into hexagonal cells).

2. Paths of a given width

In this part, we count paths in P of a given width, i.e., ending at a given abscissa.
By convention, we fix f 0

0 = 1 for considering the empty path consisting of the origin
(0, 0) only. Observing that a step N = (0, 1) in a path cannot end on a corner (n, k),
k ≥ 1, with n + k ≡ 0 mod 2, we deduce f 0

k = 0 for k ≥ 1. Of course, a path ending
with N cannot end at ordinate 0, which implies f 1

0 = 0. A path ending with N at ordinate
k = 1 ends necessarily at an even abscissa, and then, it equals either N or QN , where
Q is a path ending with a horizontal step (2, 0), which implies f 1

1 = 1 + h00. Finally, a
path ending with N on a corner (n, k), k > 1, n + k ≡ 1 mod 2, follows necessarily an
horizontal step (1, 0) that ends at (n, k − 1), which implies f 1

k = h0k−1, k > 1.
Other recurrence relations for gik and hik, k ≥ 0, i ∈ {0, 1}, can be obtained mutatis

mutandis. Thus we obtain the following equations:{
f 0
0 = 1 and f 0

k = 0, k ≥ 1,

f 1
0 = 0, f 1

1 = 1 + h00, and f
1
k = h0k−1, k > 1,

,

{
g0k = h1k+1, k ≥ 0,

g1k = 0, k ≥ 0,
and

(1)

{
h00 = z2 + z2(h00 + g00) and h

0
k = z(h1k + f 1

k ), k ≥ 1,

h10 = 0 and h1k = z(h0k + g0k), k ≥ 1.

Summing the recursions in (1), we have: F 0(u) = 1,

F 1(u) = u+
∑
k≥1

ukh0k−1 = u+ uH0(u),

 G0(u) =
∑
k≥0

ukh1k+1 =
1
u
H1(u),

G1(u) = 0,

,



H0(u) = h00 + z
∑
k≥1

uk(f 1
k + h1k)

= h00 + z(F 1(u) +H1(u)),

H1(u) = z
∑
k≥0

uk(g0k + h0k)− z(h00 + g00)

= z(H0(u) +G0(u))− h0
0−z2

z
.

Solving the above functional equations, we deduce

F 0(u) = 1 and F 1(u) =
u (h00 z − u+ z)

u2z − u+ z
,

G1(u) = 0 and G0(u) = −h
0
0 uz + h00 z

2 + z2 − h00
(u2z − u+ z) z

,
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H0(u) =
z (−u2 + h00)

u2z − u+ z
and H1(u) = −u (h

0
0 uz + h00 z

2 + z2 − h00)

(u2z − u+ z) z
.

In order to compute h00, we use the kernel method [2, 3, 24, 25] on F 1(u). This method
consists in cancelling the denominator of F 1(u) by finding u as an algebraic function r of z.
Therefore, if we substitute u with r in the numerator then it necessarily equals zero (in
order to counterbalance the cancellation of the denominator), which induces the value of
h00.

Thus, we factorize the denominator u2z − u+ z = z(u− r)(u− s) with

r =
1−

√
1− 4z2

2z
and s =

1 +
√
1− 4z2

2z
.

Note that r is the generating function of Catalan numbers, which ensures us that we remain
in the ring of formal power series.

Hence we obtain

h00 =
r − z

z
.

Now, substituting h00 with its value in the above generating functions, and simplifying
by (u− r) in the numerator and the denominator, we obtain the following:

Theorem 1. We have

F 0(u) = 1, F 1(u) =
u

z(s− u)
, G0(u) =

r − z

z2(s− u)
, G1(u) = 0, and

H0(u) =
r + u

s− u
, H1(u) =

u(r − z)

z2(s− u)
.

Finally, the bivariate generating function S(z, u), where the coefficient of znuk is the num-
ber of paths of width n ending at ordinate k, satisfies

S(z, u) =
r(1 + u)

z2(s− u)
.

The first terms of the series expansion of S(z, u) are

1 + u+
(
u2 + u

)
z +

(
u3 + u2 + 2u+ 2

)
z2 +

(
u4 + u3 + 3u2 + 3u

)
z3+

+
(
u5 + u4 + 4u3 + 4u2 + 5u+ 5

)
z4 +

(
u6 + u5 + 5u4 + 5u3 + 9u2 + 9u

)
z5+

+
(
u7 + u6 + 6u5 + 6u4 + 14u3 + 14u2 + 14u+ 14

)
z6 + · · ·

Using the Vieta relations rs = 1 and r + s = 1/z, we deduce the following.

Corollary 1. We have

[uk]F 0(u) = [k = 0], k ≥ 0, [uk]F 1(u) =
rk

z
, k ≥ 1,

[uk]G0(u) =
(r − z)rk+1

z2
, k ≥ 0,
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[uk]H0(u) =
rk+1

z
, k ≥ 1, [uk]H1(u) =

(r − z)rk

z2
, k ≥ 1,

[uk]S(z, u) =
rk+1(r + 1)

z2
− [k = 0]

z
, k ≥ 0, and

all other coefficients are equal to zero.

In order to provide closed forms for the coefficients of znuk in the previous generating
functions, we need to obtain a closed form for the coefficient of zn in rk, k ≥ 0. The
quantity r satisfies the functional equation r = z(1+ r2) = zϕ(r) with ϕ(t) = 1+ t2. From
Lagrange inversion, (see [21] for instance), we have

[zn]rk =
k

n
[tn−k]ϕ(t)n =

k

n
[tn−k](1 + t2)n.

Thus we have

[zn]rk = 0 if n− k ̸≡ 0 mod 2 and [zn]rk =
k

n

(
n

n−k
2

)
otherwise.

Therefore, we obtain the following.

Theorem 2. The number f(n, k) of paths of width n ending at ordinate k with a step N
is given by

f(n, k) =
k

n+ 1

(
n+ 1
n+1−k

2

)
if n+ k ̸≡ 0 mod 2 and 0 otherwise.

The number g(n, k) of paths of width n ending at ordinate k with a step S is given by

g(n, k) =
k + 2

n+ 2

(
n+ 2
n−k
2

)
− k + 1

n+ 1

(
n+ 1
n−k
2

)
if n+ k ≡ 0 mod 2 and 0 otherwise.

Theorem 3. The number s(n, k) of paths of width n ending at ordinate k is given by

s(n, k) =
k + 2

n+ 2

(
n+ 2
n−k
2

)
if n+ k ≡ 0 mod 2 and

s(n, k) =
k + 1

n+ 2

(
n+ 2
n−k+1

2

)
otherwise.

From Theorem 2 and Theorem 3, we can easily deduce a closed form for the number
h(n, k) of paths of width n ending at ordinate k with a horizontal step. As a byproduct of
Theorem 3, if we set k = 0 and n = 2m is even, then s(2m, 0) = 1

m+1

(
2m+2
m

)
= 1

m+2

(
2m+2
m+1

)
,

which corresponds to the (m + 1)-th Catalan number (see A000108). Figure 3 shows the
14 paths of width 6 ending on the x-axis (i.e., ending at ordinate k = 0).

https://oeis.org/A000108
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Figure 3. The 14 paths of width 6 ending on the x-axis (Catalan number).

Corollary 2. The generating function for the number of paths of a given width is

S(z, 1) =
2r

z2(s− 1)
=

1− z − 2z2 − (1− z)
√
1− 4z2

z3(−1 + 2z)
,

and the n-th coefficient in the series expansion is given by

2 ·
(
n+ 1

⌊n/2⌋

)
,

which corresponds to twice the coefficients of A037952 in [27].

The first terms of the series expansion are

2 + 2z + 6z2 + 8z3 + 20z4 + 30z5 + 70z6 + 112z7 + 252z8 + 420z9 + · · ·

By calculating ∂u(S(z, u))|u=1, and using classical methods [11, 23] for an asymptotic
approximation of the coefficient of zn, we obtain the following.

Corollary 3. An asymptotic for the expected ordinate of the last point in all paths of a
given width is given by √

πn

2
≈ 1.253314137

√
n.

We end this section by exhibiting a constructive bijection ϕ between paths of width 2n
ending on the x-axis in P and Dyck paths with n+1 up steps. Recall that E1 = (1, 0) and
E2 = (2, 0). Let P1 be the set of paths in the wall starting at (1, 1), ending at ordinate 1,
and never going to the x-axis. If Q is a path in P1, then we define the path Q̄ in P obtained
from Q after a translation by the vector (−1,−1) (note that some occurrences of E1E1 in Q
can be transformed by the translation into a step E2). For instance, if Q = E1E1NE1E1S
then Q̄ = E2NE1E1S.

https://oeis.org/A037952
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Proposition 1. Let us consider the map ϕ recursively defined from P to the set D of Dyck
paths as follows. For P ∈ P, we set:

ϕ(P ) =


UD if P = ϵ,

UDϕ(Q) if P = E2 Q with Q ∈ P ,
Uϕ(Q̄)D if P = NE1QE1S ∈ P , and Q ∈ P1,

Uϕ(Q̄)Dϕ(R) if P = NE1QE1SE2R ∈ P , with R ∈ P and Q ∈ P1.

Then, the map ϕ is a bijection.

Due to the recursive definition, the image by ϕ of a path ending on the x-axis of width
2n in P is a Dyck path of semilength n + 1, and it is easy to see that ϕ is a bijection.
For instance, the image ofNE1E1E1NE1E1SE1SE2NE1E1S (of width 10) is the Dyck path
Uϕ(E2NE1E1S)Dϕ(NE1E1S) = UUDϕ(NE1E1S)Dϕ(NE1E1S) = UUDUUDDDUUDD
(of length 12), see Figure 4. We also refer to Figure 5 for an illustration of the last three
cases used in the definition of ϕ.

Figure 4. The path NEEENEESESENEES of width 10 and its image
by ϕ, the Dyck path UUDUUDDDUUDD of length 12,

2.1. The total area. The area of a path P ending on the x-axis is defined as two times
the number of bricks between the path and the x-axis. It is denoted by area(P ). For
example, the path in Figure 2 has area 10. In this part, we enumerate the paths in P of a
given width, ending on the x-axis, and with a given area.
The following theorem provides a functional equation satisfied by the generating function

F (z, q) =
∑
P∈P

zwidth(P )qarea(P ).

Theorem 4. The bivariate generating function F (z, q), where the coefficient of znqk is
the number of paths of width n ending on the x-axis and area k, satisfies the functional
equation

F (z, q) = 1 + z2F (z, q) + z2q2F (zq, q) + z4q2F (zq, q)F (z, q).(2)

Proof. In the bijection introduced in Proposition 1 we note that any non-empty path can
be decomposed as E2Q,NE1QE1S, or NE1QE1SE2R, where Q ∈ P1 and R ∈ P , see
Figure 5 for a pictorial representation. For the paths P of the form E2Q, the contribution
is z2F (z, q) since the area of P and Q are the same, and the width of P is equal to that of Q
plus two. For the paths P of the form NE1QE1S, the contribution is z2q2F (zq, q) since the
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area of P is 2+width(Q)+area(Q), and the width of P is 2+width(Q). The contribution
of the third case is obtained mutatis mutandis. Therefore, fom this decomposition follows
the functional equation.

Figure 5. Decomposition of a path into E2Q, or NE1QE1S, or NE1QE1SE2R.

□

Theorem 5. An expression for the generating function F (z, q) is given by the continued
fraction

F (z, q) =
1

−z2 +
1

1 +
q2z2

−q2z2 +
1

1 +
q4z2

−q4z2 +
1

. . .

.

Proof. From Theorem 4 we have

F (z, q) =
1 + z2q2F (zq, q)

1− z2 − z4q2F (zq, q)
=

1

−z2 +
1

1 + z2q2F (zq, q)

.

Iterating this expression yields the desired result. □

The first terms of the continued fraction are as follows:

1 + (1 + q2)z2 + (1 + 2q2 + q4 + q6)z4 + (1 + 3q2 + 3q4 + 3q6 + 2q8 + q10 + q12)z6+

(1 + 4q2 + 6q4 + 7q6 + 7q8 + 5q10 + 5q12 + 3q14 + 2q16 + q18 + q20)z8 + · · ·
The paths corresponding to the boldface in the expansion are displayed in Figure 3. Note
that by considering 1 + q · F (√q,√q), we obtain the generating function for the paths



10 J.-L BARIL AND J. L. RAMÍREZ

without steps on the x-axis having a given number of bricks below the path, and we retrieve
the results of Odlyzko [22] that enumerates fountains with n coins with the continued
fraction

1

1−
z

1−
z2

1−
z3

. . .

.

Corollary 4. The generating function of the total area in all paths in P of a given width
and ending on the x-axis is

1− 3z2 − (1− z2)
√
1− 4z2

z4(1− 4z2)
.

The n-th coefficient of the series expansion is asymptotically equivalent to

(1 + (−1)n)2n+1.

Proof. Let G := ∂q(F (z, q))|q=1. Then, by differentiating (2) with respect to q, we obtain

G = z2G+ (2z2 + 2z4F (z, 1) + z4G)F (z, 1) + z2(1 + z2F (z, 1))H,(3)

where H = ∂q(F (qz, q))|q=1. From Theorem 1 we have

F (z, 1) =
1− 2z2 −

√
1− 4z2

2z4
=

∑
n≥0

Cn+1z
2n,

where Cn is the n-th Catalan number. From the definition of F (z, q) we have

H = ∂q(F (qz, q))|q=1 =
∑
n≥0

2nCn+1z
2n +G.

Since we have ∑
n≥0

2nCn+1z
2n = 2

1− 3z2 − (1− z2)
√
1− 4z2

z4
√
1− 4z2

,

we can substitute this expression in (3). Solving for G, we obtain the desired result. □

The first terms of the series expansion are

2z2 + 14z4 + 74z6 + 352z8 + 1588z10 + 6946z12 + 29786z14 + 126008z16 + · · · ,

which corresponds to A138156 in [27], that also counts the sum of the path lengths of
all incomplete binary trees with n edges. It would be interesting to investigate the link
between the area in these paths and the path length in these trees.

https://oeis.org/A138156
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3. Paths with a given number of steps

In this part, we count paths in P with a given number of steps (recall that a step is a
move N = (0, 1), S = (0,−1), E ∈ {(1, 0), (2, 0)} connecting two adjacent corners in a wall.
With the similar arguments used in the previous section, we easily obtain the following
recurrence relations.{

f 0
0 = 1, and f 0

k = 0, k ≥ 1,

f 1
0 = 0, f 1

1 = z + zh00, and f
1
k = zh0k−1, k ≥ 2,

,

{
g0k = zh1k+1, k ≥ 0,

g1k = 0, k ≥ 0,
and

(4)

{
h00 = z + z(h00 + g00), and h

0
k = z(h1k + f 1

k ), k ≥ 1,

h10 = 0, and h1k = z(h0k + g0k), k ≥ 1.

Summing the recursions in (4), we have: F 0(u) = 1,

F 1(u) = zu+ z
∑
k≥1

ukh0k−1 = zu+ zuH0(u),

 G0(u) = z
∑
k≥0

ukh1k+1 =
z
u
H1(u),

G1(u) = 0,

H0(u) = h00 + z
∑
k≥1

uk(f 1
k + h1k)

= h00 + z(F 1(u) +H1(u)),

H1(u) = z
∑
k≥0

uk(g0k + h0k)− z(h00 + g00)

= z(H0(u) +G0(u))− h00 + z.

Solving these functional equations, we deduce

F 0(u) = 1 and F 1(u) =
uz (h00 uz + h00 z

2 − h00 u+ z2 − u)

−uz4 + u2z2 + uz2 + z2 − u
,

G1(u) = 0 and G0(u) = − z (h00 uz
2 + h00 z − h00 + z)

−uz4 + u2z2 + uz2 + z2 − u
,

H0(u) =
uz4 − (u2 − h00 + u)z2 + h00uz − h00u

−uz4 + (u2 + u+ 1)z2 − u
and H1(u) = − u (h00 uz

2 + h00 z − h00 + z)

−uz4 + u2z2 + uz2 + z2 − u
.

In order to compute h00, we use the kernel method on F 1(u) (see Section 2 for more
details). We factorize the denominator −uz4 + u2z2 + uz2 + z2 − u = z2(u− r)(u− s) with

r =
1− z2 + z4 −

√
(z2 + z + 1) (z2 − z + 1) (z2 + z − 1) (z2 − z − 1)

2z2
and

s =
1− z2 + z4 +

√
(z2 + z + 1) (z2 − z + 1) (z2 + z − 1) (z2 − z − 1)

2z2
.

Cancelling the numerator of F 1(u) by substituting u by r, we obtain

h00 =
z

1− z − rz2
.
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The first terms of the series expansion of h00 are

z + z2 + z3 + z4 + 2 z5 + 3 z6 + 5 z7 + 7 z8 + 11 z9 + · · · ,

and this sequence does not appear in [27]. However, if we set h(n) := [zn]h00 then the
sequence of odd powers corresponds to A051286, and we have

h(2n+ 1) =
n∑

k=0

(
n− k

k

)2

.

Moreover, the sequence of even powers corresponds to A203611, and we have

h(2n) =
n∑

k=0

(
k − 1

2k − 1− n

)(
k

2k − n

)
.

Corollary 5. The generating function for the number of paths of a given number of steps
in P and ending on the x-axis is

h00
z

=
2

1− 2z + z2 − z4 +
√
1− 2z2 − z4 − 2z6 + z8

,

and the n-th coefficient of the series expansion is given by h(n+ 1).

Now, substituting h00 by its value in the previous generating functions, and simplifying
by (u− r) in the numerators and denominators, we obtain the following:

Theorem 6. We have

F 0(u) = 1, F 1(u) =
u(1 + h00 − h00z)

z(s− u)
, G0(u) =

zh00
s− u

, G1(u) = 0, and

H0(u) =
ru+ h00
r(s− u)

, H1(u) =
uh00
s− u

,

where

h00 =
z

1− z − rz2
.

Finally, the bivariate generating function S(z, u), where the coefficient of znuk is the num-
ber of paths with n steps ending at ordinate k, satisfies

S(z, u) = 1 +
ru+ zru+ h00(ru+ z2r + z)

zr(s− u)
.

The first terms of the series expansion of S(z, u) are

1 + (u+ 1)z + (1 + 2u)z2 + (u2 + 3u+ 1)z3 + (2u2 + 4u+ 2)z4 + (u3 + 4u2 + 5u+ 3)z5+

+ (2u3 + 6u2 + 8u+ 5)z6 + (u4 + 5u3 + 9u2 + 12u+ 7)z7+

+ (2u4 + 8u3 + 14u2 + 20u+ 11)z8 + · · ·

https://oeis.org/A051286
https://oeis.org/A203611


FIBONACCI AND CATALAN PATHS IN A WALL 13

Theorem 7. We have

[uk]F 0(u) = [k = 0], k ≥ 0, [uk]F 1(u) =
1 + h00(1− z)

z
· rk, k ≥ 1,

[uk]G0(u) = zh00r
k+1, k ≥ 0,

[uk]H0(u) = (1 + h00)r
k − [k = 0], k ≥ 0, [uk]H1(u) = h00r

k, k ≥ 1,

S(z, 0) = h00/z, [uk]S(z, u) =
1 + 2h00

z
· rk, k ≥ 1, and

all other coefficients are equal to zero.

In order to provide a closed form for the coefficient of zn of all these previous quantities,
we need to provide a closed form of r(n, k) := [zn]rk. We set r′ = r(

√
z). Then r′ is the

generating function for the generalized Catalan numbers, and using the comment of Barry
in [27] (see A004148) giving the general term of r′k, we can easily obtain:

r(2k, k) := [z]2krk = 1, k ≥ 0

r(2k + 2ℓ, k) := [z]2k+2ℓrk = k
ℓ∑

i=⌈ ℓ+1
2

⌉

1

i

(
i

ℓ− i

)(
i+ k − 1

ℓ+ k − i

)
, k ≥ 1, ℓ ≥ 1,

r(2n+ 1, k) := [z2n+1]rk = 0, otherwise.

Corollary 6. The number s(n, k) of paths with n steps in P ending at ordinate k is given
by

s(n, k) = r(n+ 1, k) + 2
n+1∑
i≥0

h(i)r(n+ 1− i, k),

where r(n, k) and h(n) are defined previously.

Corollary 7. The generating function for the number of paths of a given number of steps
in P is

S(z, 1) =
1 + z

1− z − z2
,

and the n-th coefficient s(n) in the series expansion is given by a shift of the Fibonacci
sequence A000045 in [27], defined by s(n) = s(n − 1) + s(n − 2) anchored with s(0) = 1
and s(1) = 2.

The first terms of the series expansion are

1 + 2z + 3z2 + 5z3 + 8z4 + 13z5 + 21z6 + 34z7 + 55z8 + 89z9 + · · ·
Figure 6 shows the eight paths with four steps. Note that there is a simple bijection ψ
between the set of paths in P with n steps and the set of binary words of length n that
do not contain two adjacent ones: reading the path from left to right, we replace each
vertical step by 1, and each horizontal step by 0. For instance, the image of the path
ENENEESEEN is 0101001001.

https://oeis.org/A004148
https://oeis.org/A000045
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Figure 6. The eight paths with four steps (Fibonacci).

By calculating ∂u(S(z, u))|u=1 and using classical methods [11, 23] for an asymptotic
approximation of the coefficient of zn, we obtain the following.

Corollary 8. The expected ordinate of the last point in all paths in P with n steps is
asymptotically equivalent to√

−15 + 7
√
5
(
5 + 3

√
5
)√

n

10
√
π

≈ 0.5335775634
√
n.

4. Paths with a given length

In this part, we count paths in P with a given length. We easily obtain the following
recurrence relations.{

f 0
0 = 1 and f 0

k = 0, k ≥ 1,

f 1
0 = 0, f 1

1 = z + zh00, and f
1
k = zh0k−1, k ≥ 2,

,

{
g0k = zh1k+1, k ≥ 0,

g1k = 0, k ≥ 0,
and

(5)

{
h00 = z2 + z2(h00 + g00) and h

0
k = z(h1k + f 1

k ), k ≥ 1,

h10 = 0 and h1k = z(h0k + g0k), k ≥ 1.

Summing the recursions in (5), we have: F 0(u) = 1,

F 1(u) = zu+ z
∑
k≥1

ukh0k−1 = zu+ zuH0(u),

 G0(u) = z
∑
k≥0

ukh1k+1 =
z
u
H1(u),

G1(u) = 0,

H0(u) = h00 + z
∑
k≥1

uk(f 1
k + h1k)

= h00 + z(F 1(u) +H1(u)),

H1(u) = z
∑
k≥0

uk(g0k + h0k)− z(h00 + g00)

= z(H0(u) +G0(u))− h0
0−z2

z
.

Solving the above functional equations, we deduce

F 0(u) = 1 and F 1(u) =
uz (h00 z

2 + z2 − u)

−uz4 + u2z2 + uz2 + z2 − u
,
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G1(u) = 0 and G0(u) = − h00 uz
2 + h00 z

2 + z2 − h00
−uz4 + u2z2 + uz2 + z2 − u

,

H0(u) =
z2 (uz2 − u2 + h00 − u)

−uz4 + u2z2 + uz2 + z2 − u
and H1(u) = − u (h00 uz

2 + h00 z
2 + z2 − h00)

(−uz4 + u2z2 + uz2 + z2 − u) z
.

In order to compute h00, we use the kernel method on F 1(u) (see Section 2 for more
details). We factorize the denominator −uz4+u2z2+uz2+z2−u = z2(u−r)(u−s) where
r and s are the same as those defined in Section 3.

Cancelling the numerator of F 1(u) by substituting u with r, we obtain

h00 =
r − z2

z2
.

Now, substituting h00 by its value in the previous generating functions, and simplifying
by (u− r) in the numerators and denominators, we obtain the following:

Theorem 8. We have

F 0(u) = 1, F 1(u) =
u

z(s− u)
, G0(u) =

r − z2

z2(s− u)
, G1(u) = 0, and

H0(u) =
1

z2(s− u)
− 1, H1(u) =

u(r − z2)

z3(s− u)
.

Finally, the bivariate generating function S(z, u), where the coefficient of znuk is the num-
ber of paths of length n ending at ordinate k, satisfies

S(z, u) =
rz + z + ru− z3

z3(s− u)
.

The first terms of the series expansion of S(z, u) are

1 + uz + (u+ 1)z2 + (u2 + 2u)z3 + (u2 + 2u+ 2)z4 + (u3 + 3u2 + 3u)z5+

+ (u3 + 3u2 + 4u+ 4)z6 + (u4 + 4u3 + 6u2 + 6u)z7+

+ (u4 + 4u3 + 7u2 + 9u+ 8)z8 + · · ·

Theorem 9. We have

[uk]F 0(u) = [k = 0], k ≥ 0, [uk]F 1(u) =
rk

z
, k ≥ 1,

[uk]G0(u) = rk+2/z2 − rk+1, k ≥ 0,

[uk]H0(u) = rk+1/z2 − [k = 0], k ≥ 0, [uk]H1(u) = rk+1/z3 − rk/z, k ≥ 1,

S(z, 0) =
r − z2

z4
, [uk]S(z, u) =

rk+1

z2
(1 + r +

1

z
− z2), k ≥ 1, and

all other coefficients are equal to zero.

Using the closed form of [zn]rk obtained in the previous section, we deduce the following.
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Corollary 9. The number s(n, k) of paths of length n in P ending at ordinate k is given
by

s(2, 0) = 1, s(n, 0) = r(n+ 4, 1), n ≥ 4, and

s(n, k) = r(n+ 2, k + 1) + r(n+ 3, k + 1)− r(n, k + 1) + r(n+ 2, k + 2),

where r(n, k) := [zn]rk is given before Corollary 6

Corollary 10. The generating function for the number of paths of a given length in P is

S(z, 1) =
z3 − rz − z − r

z3(1− s)
=

−1 + 2z2 + 2z5 + z6 + (1− z2)
√
1− 2z2 − z4 − 2z6 + z8

2z5(1− z − z2)
.

The sequences of coefficients of z2n+1 corresponds to A003440 and the sequences of
coefficients of z2n does appear in [27]

Corollary 11. The generating function for the number of paths of a given length in P
ending on the x-axis is r−z2

z4
and the n-th coefficient of the series expansion is given by

r(2n, 0), which corresponds to the n-th generalized Catalan number (see A004148).

Corollary 12. An asymptotic for the expected ordinate of the last point in all paths in P
of a given length is (

3 +
√
5
)√

−15 + 7
√
5

2
√
πn

≈ 1.193115703 · 1√
n
.

Figure 7 shows the eight paths of length 8 ending on the x-axis.

Figure 7. The eight paths of length 8 ending on the x-axis (generalized Catalan)

We end the section by exhibiting a constructive bijection ψ between paths of length
2n ending on the x-axis in P and peakless Motzkin paths with n + 1 steps (i.e., Motzkin
paths with no occurrence of UD). Recall that E1 = (1, 0) and E2 = (2, 0), and that P1

is the set of paths in the wall starting at (1, 1), ending at ordinate 1, and never going to
the x-axis. If Q ∈ P1, then we recall that Q̄ is the path in P obtained from Q after the
translation by the vector (−1,−1). These definitions are already given in Section 2 just
before Proposition 1.

https://oeis.org/A003440
https://oeis.org/A004148
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Proposition 2. Let us consider the map ψ recursively defined from P to the set PM of
peakless Motzkin paths as follows. For P ∈ P, we set:

ψ(P ) =


H if P = ϵ,

Hψ(Q) if P = E2 Q with Q ∈ P ,
Uψ(Q̄)D if P = NE1QE1S ∈ P , and Q ∈ P1,

Uψ(Q̄)Dψ(R) if P = NE1QE1SE2R ∈ P , with R ∈ P and Q ∈ P1.

Due to the recursive definition, the image by ψ of a path ending on the x-axis of length 2n
in P is a peakless Motzkin path with n+1 steps, and it is easy to see that ψ is a bijection.
For instance, the image of NE1E1E1NE1E1SE1SE2NE1E1S (of length 16) is the peakless
Motzkin path UHUHDDUHD (of length 9), see Figure 8. Note that the definition of ψ
is basically the same as in Proposition 1 since we use the same decomposition of a path
(the only change is that we use horizontal steps instead of peaks UD).

Figure 8. The path NE1E1E1NE1E1SE1SE2NE1E1S of length 16 and its
image by ψ, the peakless Motzkin path UHUHDDUHD of length 9.

5. Conclusions

In this work, we enumerate lattice paths in the wall with respect to their width, number
of steps, length, and area. Can we identify the underlying limit law (see [11])? The main
tools are multivariate generating functions and the kernel method. We can extend our
results by considering additional statistics, for example the number of turns of the path,
i.e., the number of occurrences of the subpaths EN,ES,NE, and SE. For example, it is
possible to give an expression for the multivariate generating function S(z, u, w), where the
coefficient of znukwℓ is the number of paths with n steps, ℓ turns, and ending at ordinate
k. The expression is too large, however, the first few terms of the Taylor expansion are

S(z, u, w) = 1 + (1 + u)z + (1 + 2uw)z2 + (1 + 2uw + uw2 + u2w2)z3

+ (1 + 2uw + w2 + 2uw2 + 2u2w3)z4

+ (1 + 2uw + 3uw2 + u2w2 + 2w3 + 2u2w3 + u2w4 + u3w4)z5 + · · ·

Moreover, the bivariate generating function S(z, 1, w), where the coefficient of znwℓ is the
number of paths with n steps and ℓ turns is given by

S(z, 1, w) =
(w2 − 2w + 1)z2 − z − 1

w2z2 + z − 1
.
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Therefore, the generating function for the total number of turns in all paths of a given
width is

2z2(1 + z)

(1− z − z2)2
= 2z2 + 6z3 + 14z4 + 30z5 + 60z6 + 116z7 + 218z8 + 402z9 + · · · ,

and the n-th coefficient corresponds to twice the convolution of the Fibonacci sequence
(see A023610 in [27]), that is,

2 ·
n+1∑
i=2

FiFn+1−i.

Can we obtain enumerative results for paths with other boundary conditions? Can
we generalize our study if we drop the non-overlapping constraint and allow the step
W = (−1, 0)? Finally, the paths studied in the last section are in one-to-one correspondence
with paths of a given length in the honeycomb lattice, which suggests to explore in more
detail the link between the paths in the wall and the honeycomb lattice.

6. Acknowledgments

The authors are grateful to the anonymous referees for helpful comments.

References

[1] A. Asinowski, C. Banderier, and V. Roitner. Generating functions for lattice paths with several
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LIB, Université de Bourgogne Franche-Comté, B.P. 47 870, 21078, Dijon Cedex, France
Email address: barjl@u-bourgogne.fr
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