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Abstract. Let Cn denote the set of Catalan words of length n and Cn(p) the subset of Cn

whose members avoid the pattern p. In this paper, we enumerate members of Cn(p) where p is
a permutation pattern of length four. This extends recent work on Catalan words concerning
the avoidance of classical, consecutive or vincular patterns of length at most three. Indeed,
we determine the generating function of the distribution for the number of descents on each
of the corresponding avoidance classes. We make use of the symbolic counting method to
establish our results, together with a variety of other enumerative techniques, including use
of strategic decompositions, introduction of auxiliary generating functions and analysis of
active sites.

1. Introduction

A Catalan word is a positive integral sequence starting with 1 where each letter is either
less than or equal to its predecessor or is its predecessor incremented by one. More formally,
it is a word w = w1 · · ·wn with positive integer entries, where w1 = 1 and wi+1 ≤ wi + 1
for 1 ≤ i ≤ n − 1. Let Cn denote the set of all Catalan words of length n (i.e., that contain
n letters). It is well known that the cardinality of Cn is given by the n-th Catalan number

Cn = 1
n+1

(
2n
n

)
; see, e.g., [15, Exercise 80]. For example, we have C4 = 14 and

C4 = {1111, 1112, 1121, 1122, 1123, 1211, 1212, 1221, 1222, 1223, 1231, 1232, 1233, 1234}.
Catalan words have been widely studied in the context of various combinatorial structures

enumerated by the Catalan numbers, such as rooted binary trees [8] and Dyck paths [13]. For
example, members of Cn encode the heights of the up steps in Dyck paths of semilength n, i.e.,
lattice paths in N2 running from the origin to (2n, 0) consisting of up (1, 1) and down (1,−1)
steps. See also [11], where Catalan words arise in the context of the exhaustive generation of
Gray codes for growth-restricted words.

Recall that a pattern p is a finite sequence in [ℓ] = {1, . . . , ℓ} for some ℓ ≥ 1 in which each
element of [ℓ] occurs at least once. We say that a word w = w1 · · ·wn contains the pattern
p = p1 · · · pk if there exist indices 1 ≤ i1 < i2 < · · · < ik ≤ n such that wir xwis if and only if
pr x ps for all r, s ∈ [k] and each x ∈ {<,>,=}, i.e., if there exists a subsequence of w that is
order-isomorphic to p. If no such subsequence exists, then w is said to avoid the pattern p.
For example, the Catalan word 12123423412 contains four occurrences of the pattern 321 (as
witnessed by the subsequences 321, 421, 431 and 432), but is seen to avoid 4213. We will say
that p is a permutation pattern whenever all of its letters are distinct. Given n ≥ 0, let Cn(p)
denote the set of Catalan words of length n avoiding the pattern p and let cp(n) = |Cn(p)|.

Baril et al. [4] studied the distribution of descents on Cn(p), where p is a classical pattern
of length two or three, with these results being extended to pairs of such patterns in [3].
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Ramı́rez and Rojas [12] considered the distribution of descents for Catalan words avoiding
consecutive patterns of length at most three, and analogous results were found for pairs of
partial order relations [5]. Comparable results involving the last letter statistic instead of
descents were obtained for Catalan words avoiding a classical [2] or consecutive [1] pattern.
Further combinatorial parameters on the polyominoes associated with words in Cn were stud-
ied in [6, 9], and in [13], the generating function for the distribution on Cn of any consecutive
pattern of length two or three was found. Finally, Mansour and Shattuck [10] established
closed form expressions and/or generating function formulas for the number of Catalan words
avoiding any vincular pattern of type (1, 2) or (2, 1).

The goal of the current paper is to extend this recent work to Catalan words avoiding
a permutation pattern of length four. For each such pattern p, we compute its bivariate
generating function Cp(x, y) whose coefficient of xnyk is given by the number of members of
Cn(p) with k descents avoiding the pattern p. As a consequence, we may deduce in several
cases explicit formulas for cp(n) and the total number of descents in Cn(p).

We now introduce some further notation as follows. Let des(w) denote the number of
descents in the word w = w1 · · ·wn, i.e., the number of indices i ∈ [n − 1] such that wi >
wi+1. We denote the set of Catalan words w ∈ Cn(p) such that des(w) = k by Cn,k(p). Let

cp(n, k) := |Cn,k(p)| for 0 ≤ k ≤ n − 1. Hence, cp(n) =
∑n−1

k=0 cp(n, k) for all n ≥ 1, with
cp(0) = 1, by the definitions.

We consider here several cases of the bivariate generating function

Cp(x, y) :=
∑

w∈C(p)

x|w|ydes(w) = 1 +
∑

0≤k<n

cp(n, k)x
nyk,

where C(p) :=
⋃

n≥0 Cn(p). Let dp(n) denote the total number of descents in all the members

of Cn(p). Note that the generating function for the sequence dp(n) is given by

Dp(x) :=
∂Cp(x, y)

∂y

∣∣∣∣
y=1

.

Remark 1.1. Let C′(p) = C(p, 11) denote the set of all Catalan words avoiding the pattern
p and containing no levels (i.e., identical adjacent symbols). We introduce the bivariate
generating function

C ′
p(x, y) :=

∑
w∈C′(p)

x|w|ydes(w).

Then we have the dual relations

Cp(x, y) = C ′
p

(
x

1− x
, y

)
and C ′

p(x, y) = Cp

(
x

1 + x
, y

)
.

In several of the proofs below, we will make use of the formulas for Cp(x, y) found in [4].
Indeed, these formulas for a pattern p of length three will allow us to obtain C ′

p(x, y) =

Cp

(
x

1+x , y
)
where it is needed.

The organization of this paper is as follows. In the second section, we treat each permu-
tation pattern of length four that starts with 1. These cases may be obtained by combining
the first return decomposition (i.e., position of the second 1, if it exists) with prior results
from [4], taken together with Remark 1.1. In these cases, without too much additional work,
one may also ascertain explicit formulas for cp(n) and dp(n) for the various patterns p. Fur-
thermore, combinatorial proofs are provided for the explicit formulas for cp(n) in the cases
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Class p Cp(x) Reference/OEIS #

1 1234 1−2x
1−3x+x2 Cor. 2.2/A001519

2 1243 (1−x)(1−5x+7x2−x3)
(1−2x)2(1−3x+x2) Cor. 2.5/A244885

3 1324

1423 1−7x+16x2−12x3+x4

(1−2x)(1−3x)(1−3x+x2) Cor. 2.8, Thm. 2.10

4 1342 1−6x+12x2−9x3+3x4

(1−x)(1−3x+x2)2 Cor. 2.12/A116845

5 1432 1−11x+49x2−112x3+136x4−78x5+9x6+6x7−x8

(1−x)(1−2x)2(1−3x+x2)(1−4x+3x2+x3) Cor. 2.15

6 2134

3412 (1−x)(1−3x)
1−5x+6x2−x3 Thm. 3.1/A080937

7 2143

4312 (1−3x+x2)(1−7x+17x2−17x3+6x4−x5)
(1−x)(1−2x)2(1−6x+10x2−4x3+x4) Thms. 4.2 and 3.7

8 2314
2413
3124

4123 1−5x+6x2−x3

(1−2x)(1−4x+2x2) Thm. 3.2

9 2341 1−3x+x2

(1−x)(1−3x) Thm. 3.3/A024175

10 2431 1−8x+23x2−27x3+8x4+5x5−x6

(1−2x)2(1−5x+6x2−x4) Thm. 3.5

11 3142 1−13x+69x2−192x3+297x4−244x5+82x6+9x7−11x8+x9

(1−x)(1−3x+x2)(1−10x+37x2−61x3+39x4+x5−5x6) Thm. 4.4

12 3214
4132

4213 (1−2x)(1−4x+2x2)
(1−x)(1−6x+9x2−x3) Thm. 3.8/A080938

13 3241

4231 1−8x+21x2−18x3+x5

(1−3x)(1−6x+10x2−3x3−x4) Thm. 3.9

14 3421 (1−x)(1−6x+10x2−2x3−2x4)
(1−3x+x2)(1−5x+6x2−x4) Thm. 3.10

15 4321 Too lengthy to state here Thm. 4.6

Table 1. Generating function Cp(x) for all permutation patterns p of length four.

when p = 1234 or 1243 and a bijection is given demonstrating the equivalence of 1324 and
1423. In the third section, we consider most of the remaining cases and compute Cp(x, y)
for each p. We reserve for the fourth section the patterns 2143, 3142 and 4321, which are
apparently more difficult than the others. In the final section, we make some concluding
remarks and raise a general question. Setting y = 1 in the formulas found below for Cp(x, y)
for the various patterns p yields the entries in Table 1 for the univariate generating function
Cp(x) :=

∑
n≥0 cp(n)x

n. Further, it should be noted that each of the Wilf equivalences seen
in Table 1 respects the descents statistic.

In addition to utilizing the symbolic generating function method (see, e.g., [7]) as a basic
tool, we draw upon a variety of other techniques in finding Cp(x, y) for each p, including
strategic decompositions of words and analysis of active sites. For the latter, we consider in-
serting certain sequences of 1’s and 2’s into precursor Catalan words on the alphabet {2, 3, . . .}
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at various sites such that the avoidance of a given pattern is preserved. It will also be conve-
nient to consider certain refinements or subsets of C(p), which will require the use of auxiliary
generating functions in writing a system of equations from which Cp(x, y) may be deduced.
For a permutation pattern p, it suffices to restrict to the case of no levels, by Remark 1.1,
and compute C ′

p(x, y) prior to replacing x with x
1−x . Here, we found it more convenient to

work with the members of C′(p) instead of C(p) when considering the various decompositions
or performing an active site analysis. Finally, we remark that as a consequence of our re-
sults, new combinatorial interpretations of several sequences from the OEIS [14] are found,
see Table 1.

2. Descent distributions for patterns starting with 1

In this section, we focus on permutation patterns p starting with the letter 1. For these
cases, it is possible to deduce without too much extra difficulty closed-form expressions for
cp(n) and dp(n).

2.1. The case 1234.

Theorem 2.1. We have

C1234(x, y) =
1− 2x+ 2x2(1− y)

1− 3x+ x2(3− 2y)− x3(1− y)
.

Proof. In light of Remark 1.1, we first count Catalan words w avoiding 1234 and 11. Such a
nonempty word is either (i) 1; or (ii) 1(w′ + 1)w′′, with w′ ∈ C′(123)\{ϵ} and w′′ ∈ C′(1234),
where w′ + 1 denotes the word obtained by increasing each entry of w′ by one. If f :=

C ′
1234(x, y) and g := C ′

123(x, y) = C123

(
x

1+x , y
)
, then we obtain the functional equation

f = 1 + x+ x (g − 1) (y(f − 1) + 1),

where C123(x, y) is given in [4]. Solving this equation for f , and considering Remark 1.1, we
obtain the desired result. □

The first few terms in the series expansion of C1234(x, y) are

1 + x+ 2x2 + (4 + y)x3 + (7 + 6y)x4 + (11 + 21y + 2y2)x5 + (16 + 56y + 17y2)x6

+ (22 + 126y + 81y2 + 4y3)x7 + (29 + 252y + 285y2 + 44y3)x8 +O(x9).

Let Fn denote the n-th Fibonacci number satisfying Fn = Fn−1 + Fn−2 for n ≥ 2, with
F0 = 0 and F1 = 1. Letting y = 1 in Theorem 2.1, and extracting the coefficient of xn, yields
the following result.

Corollary 2.2. We have

C1234(x) =
1− 2x

1− 3x+ x2
.

Moreover, c1234(n) = F2n−1 for n ≥ 1.

Differentiation of the expression for C1234(x, y) from Theorem 2.1 with respect to y, and
setting y = 1, leads to the following formulas for D1234(x) and d1234(n).
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Corollary 2.3. We have

D1234(x) =
x3

(1− 3x+ x2)2
.

Moreover,

d1234(n) =
1

5
((4n− 10)F2n−4 + (3n− 6)F2n−5) , n ≥ 3.

We remark that d1234(n) corresponds to the OEIS sequence A001871.

2.2. The case 1243.

Theorem 2.4. The bivariate generating function C1243(x, y) is given by

1− 6x+ 3x2(5− y)− 4x3(5− 3y) + x4(15− 16y + 2y2)− 2x5(3− 5y + 2y2) + x6(1− y)2

(1− 2x)(1− 2x+ x2(1− y))(1− 3x+ x2(3− 2y)− x3(1− y))
.

Proof. Again, we first count Catalan words w avoiding 1243 and 11. Such a nonempty word
w is either (i) 1; or (ii) 1(w′ + 1)w′′, with w′ ∈ C′(123)\{ϵ} and w′′ ∈ C′(1243); or (iii)
1(23)k4 · · · ℓw′, k ≥ 1, ℓ ≥ 4, with w′ ∈ C′(123); or (iii′) 1(23)k4 · · · ℓ2w′, k ≥ 1, ℓ ≥ 4,

with w′ ∈ C′(123). If f := C ′
1243(x, y) and g := C123

(
x

1+x , y
)
, then we obtain the functional

equation

f = 1 + x+ x (g − 1) (y(f − 1) + 1)

+

(
x4

(1− x)(1− x2y)
+

x5y

(1− x)(1− x2y)

)
(y(g − 1) + 1) ,

where C123(x, y) is given in [4]. Solving this equation for f , and considering Remark 1.1, we
obtain the desired result. □

The first few terms in the series expansion of C1243(x, y) are

1 + x+ 2x2 + (4 + y)x3 + (8 + 6y)x4 + (16 + 23y + 2y2)x5 + (32 + 71y + 18y2)x6

+ (64 + 192y + 94y2 + 4y3)x7 + (128 + 475y + 371y2 + 47y3)x8 +O(x9).

Corollary 2.5. We have

C1243(x) =
(1− x)(1− 5x+ 7x2 − x3)

(1− 2x)2(1− 3x+ x2)
.

Moreover, c1243(n) = F2n+1 − (n+ 1)2n−2 for n ≥ 1.

Corollary 2.6. We have

D1243(x) =
x3(1− 6x+ 14x2 − 15x3 + 6x4 − x5)

(1− 2x)3(1− 3x+ x2)2
.

Moreover,

d1243(n) = 2n−5(26 + 5n− n2) +
1

5
((n− 8)F2n − (5− 2n)F2n−1) , n ≥ 3.

The first few values of the sequence d1243(n) for n ≥ 3 are

1, 6, 27, 107, 392, 1358, 4509, 14481, . . .

We conclude this subsection by providing combinatorial proofs of the closed form expres-
sions for cp(n) in Corollaries 2.2 and 2.5.

http://oeis.org/A001871
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Combinatorial proofs of formulas for cp(n), where p is 1234 or 1243:

Let an = c1234(n) for n ≥ 1 and note a1 = 1, a2 = 2. Let a
(m)
n for 1 ≤ m ≤ 3 denote the

cardinality of the subset of Cn(1234) whose members end in m. We show an = F2n−1 for all n
by arguing combinatorially that an satisfies the recurrence an = 3an−1−an−2 for n ≥ 3. Note

a
(1)
n = a

(2)
n = an−1, upon appending 1 or 2 to an arbitrary member of Cn−1(1234). On the

other hand, members of Cn(1234) ending in 3 must have penultimate letter 2 or 3 and hence
have cardinality an−1 − an−2, by subtraction. Combining the prior cases yields the desired
recurrence for an.

It is also possible to show an = F2n−1 by defining a bijection between an object enumerated
by F2n−1 and Cn(1234) as follows. Let Fn denote the set of square-and-domino tilings of length
n and recall |Fn| = Fn+1 for n ≥ 0. We denote an individual square or domino within a tiling
by s or d, respectively. Note that members of Fn may be viewed as sequences in {s, d}
consisting of m d’s and n − 2m s’s for some 0 ≤ m ≤ ⌊n/2⌋. Let F̃n denote the subset of

Fn whose members start with d and hence |F̃n| = Fn−1 for n ≥ 1. To show an = F2n−1, it

suffices to define a bijection between F̃2n and Cn(1234).
To do so, first note that each member π ∈ F2n may be obtained uniquely as a sequence of

n steps each being one of the following three operations performed recursively on tilings of
increasing length starting with the empty tiling: (i) add a d to the end of the present tiling,
(ii) add s2 to the end or (iii) if the present tiling ends in s, then insert d directly prior to
the final s. Put 1, 2 or 3 for the i-th entry of a ternary sequence, which we will denote by
απ, depending on which of (i), (ii) or (iii) is performed in the i-th step of the procedure for
1 ≤ i ≤ n. Note that π is recoverable from απ for all π and that no 3 can directly follow a 1
within απ or occur at the very beginning, by construction. Further, it is seen that απ starts
with 1 if and only if π starts with d, and hence απ belongs to Cn(1234) for such π. Thus, we

have that π 7→ απ defines a bijection between F̃2n and Cn(1234) for all n ≥ 1, as desired.
Now let bn = c1243(n) and we wish to show bn = F2n+1 − (n + 1)2n−2 for n ≥ 1. As

the formula is seen to hold for 1 ≤ n ≤ 3, we may assume n ≥ 4. By the preceding, there
are F2n−1 members of Cn(1243) that do not contain 4, i.e., belong to Cn(1234). So assume
π ∈ Cn(1243)− Cn(1234), which we decompose as

π = π′απ′′,

where π′ is ternary and ends in 3, α starts with 4 and has letters in {4, 5, . . .} and π′′ is
empty or starts with a letter in {1, 2, 3} if nonempty. Since π avoids 1243, we have that α
is weakly increasing and π′′ is binary. Note that such π may then be obtained by selecting
ρ ∈ Ci(1234)−Ci(123) for some 3 ≤ i ≤ n− 1 and inserting the letters comprising a sequence
of the form α of length n− i directly following the rightmost 3 in ρ. From this, it is seen that
Cn(1243)− Cn(1234) has cardinality

n−1∑
i=3

(F2i−1 − 2i−1)2n−i−1 =
n−1∑
i=1

2n−i−1F2i−1 − (n− 1)2n−2.

Thus, to complete the proof of the formula for bn, we provide a combinatorial argument for

(1)
n−1∑
i=1

2n−i−1F2i−1 = F2n − 2n−1, n ≥ 1.
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To do so, let F ′
2n−1 denote the subset of F2n−1 consisting of those tilings with the property

that if 2j + 1 is covered by a square, then so is 2j for all 1 ≤ j ≤ n − 1. Note β ∈ F ′
2n−1

implies β = sβ′, where β′ is a sequence in {s2, d} of length n− 1, and hence |F ′
2n−1| = 2n−1.

Thus, to complete the proof of (1), we argue

|F2n−1 −F ′
2n−1| =

n−1∑
i=1

2n−i−1F2i−1, n ≥ 1.

Let ρ ∈ F2n−1 − F ′
2n−1 and we consider the largest index i such that s covers 2i + 1, and is

preceded by a d. That is, ρ can be decomposed as ρ = ρ′dsσ, where ρ′ ∈ F2i−2 and σ is a
sequence in {s2, d} of length n− i− 1. Then there are 2n−i−1F2i−1 possibilities for ρ for each
i and considering all i implies (1), as desired. □

2.3. The cases 1324, 1423.

Theorem 2.7. The bivariate generating function C1324(x, y) is given by

R(x, y)

(1− 2x+ x2(1− y))(1− 3x+ 2x2(1− y))(1− 3x+ x2(3− 2y)− x3(1− y))
,

where

R(x, y) = 1− 7x+ x2(21− 5y)− x3(35− 23y) + x4(35− 42y + 8y2)

− 3x5(7− 13y + 6y2) + x6(1− y)2(7− 4y)− x7(1− y)3.

Proof. We first count Catalan words w avoiding 1324 and 11. Such a nonempty word w is
either (i) 1; or (ii) 12w′, with w′ ∈ C′(1324); or (iii) 1(w′ + 1)w′′, with w′ ∈ C′(213)\{ϵ, 1}
and w′′ ∈ C′(1234). If f := C ′

1324(x, y), g := C213

(
x

1+x , y
)
and h := C1234

(
x

1+x , y
)
, then we

obtain
f = 1 + x+ x2 + x2y(f − 1) + x (g − 1− x) (1 + y (h− 1)) ,

where C213(x, y) and C1234(x, y) are given in [4] and Theorem 2.1, respectively. Solving this
last equation for f , and making use of Remark 1.1, we obtain the desired result. □

The first few terms in the series expansion of C1324(x, y) are

1 + x+ 2x2 + (4 + y)x3 + (8 + 6y)x4 + (16 + 24y + 2y2)x5 + (32 + 79y + 20y2)x6

+ (64 + 230y + 117y2 + 5y3)x7 + (128 + 615y + 518y2 + 67y3)x8 +O(x9).

Corollary 2.8. We have

C1324(x) =
1− 7x+ 16x2 − 12x3 + x4

(1− 2x)(1− 3x)(1− 3x+ x2)
.

Moreover, c1324(n) = 2n−1 + 3n−1 − F2n for n ≥ 1.

Corollary 2.9. We have

D1324(x) =
x3(1− 10x+ 40x2 − 79x3 + 75x4 − 28x5 + 5x6)

(1− 2x)2(1− 3x)2(1− 3x+ x2)2
.

Moreover,

d1324(n) = 2n−3(n− 2) + 3n−3(2n− 1) +
1

5
((1− 2n)F2n + nF2n−1) , n ≥ 3.
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The first few values of the sequence d1324(n) for n ≥ 3 are

1, 6, 28, 119, 479, 1852, 6930, 25232, . . .

Theorem 2.10. We have C1423(x, y) = C1324(x, y).

Proof. We first count Catalan words w avoiding 1423 and 11. Such a nonempty word w is
either (i) 1; or (ii) 1(w′+1)w′′, with w′ ∈ C′(123)\{ϵ} and w′′ ∈ C′(1423); or (iii) 1(w′+1)w′′,

with w′ ∈ C′(312)\C′(123) and w′′ ∈ C′(123). If f := C ′
1423(x, y), g := C123

(
x

1+x , y
)

and

h := C312

(
x

1+x , y
)
, then we obtain

f = 1 + x+ x(y(f − 1) + 1) (g − 1) + x (y (g − 1) + 1) (h− g) ,

where C312(x, y) and C123(x, y) are already known from [4]. Solving for f in this equation,
making use of Remark 1.1 and comparing with Theorem 2.7 yields the stated equality. □

A bijection between Cn(1324) and Cn(1423):

To exhibit a bijection between Cn(1324) and Cn(1423) for all n ≥ 1, it is enough to exhibit a
bijection between C′

n(1324) and C′
n(1423), since one may increase the run lengths by inserting

extra copies of letters without introducing an occurrence of either pattern.
We first define a bijection gn between C′

n(213) and C′
n(312) recursively for n ≥ 1 as follows,

the cases n = 1, 2 being clear. So assume n ≥ 3 and let π ∈ C′
n(213). If π = 1π′, where π′ does

not contain 1, then let gn(π) = 1gn−1(π
′), where it is understood that the domain and range of

gn−1 here consists of Catalan words on the alphabet {2, 3, . . .}. Otherwise, π = 1α1β, where
α is nonempty and does not contain 1 and β may be empty. Note that α avoids 213 if and
only if α does, with β not containing 3 (i.e., β is binary). Let m = |α| so that 1 ≤ m ≤ n− 2
and define gn in this case by

gn(π) =

{
1β1gm(α), if β ̸= ∅;

1gm(α)1, if β = ∅.

One may verify gn(π) avoids 312 for all π and that gn is indeed a bijection between C′
n(213)

and C′
n(312).

We now define a bijection between C′
n(1324) and C′

n(1423), which will be seen to preserve
the number of descents. To do so, we form members of either set by inserting 1’s into 213- or
312-avoiding sequences on the alphabet {2, 3, . . .}. Let τ ∈ C′

ℓ(213) for some 2 ≤ ℓ ≤ n−1 and
suppose τ contains exactly j 1’s for some 1 ≤ j ≤ ⌊(ℓ + 1)/2⌋. Consider the decomposition

τ = τ (1) · · · τ (j), where j ≥ 1 and each section τ (i) for 1 ≤ i ≤ j starts with 1 and contains no
other 1’s.

Let π be a Catalan word obtained from τ having the form

(2) π = α(1)(τ (1) + 1)α(2)(τ (2) + 1) · · ·α(j)(τ (j) + 1)α(j+1),

where (a) α(1) is nonempty and is given by α(1) = 1(21)a1 for some a1 ≥ 0, (b) α(i) for

2 ≤ i ≤ j is either empty or of the form α(i) = (12)ai1 or 2(12)ai1 for some ai ≥ 0 and (c)

α(j+1) is empty or is given by α(j+1) = (12)aj+11 or 2(12)aj+11 for some aj+1 ≥ 0 if |τ (j)| ≥ 2,

with α(j+1) empty if |τ (j)| = 1. Note that if j ≥ 2 in (2), then τ avoiding 213 implies that

each section τ (i) + 1 for 2 ≤ i < j equals 23, with τ (j) + 1 equal 2 or 23. Further, the section
τ (1)+1 contains 3 for all j ≥ 1, with this holding when j = 1 by the assumption ℓ ≥ 2. From
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the preceding, it is seen that each π ∈ C′
n(1324) containing 3 can be expressed as in (2), upon

allowing τ to vary.
Let σ(i) = gki(τ

(i)), where τi ∈ C′
ki
(213) for 1 ≤ i ≤ j, and note that each σ(i), like τ (i),

starts with 1 and contains no other 1’s. Given π ∈ C′
n(1324) expressed as in (2), let

fn(π) =

{
α(1)(σ(j) + 1)α(2)(σ(j−1) + 1) · · ·α(j)(σ(1) + 1)α(j+1), if |τ (j)| ≥ 2;

α(1)(σ(j−1) + 1)α(2)(σ(j−2) + 1) · · ·α(j−1)(σ(1) + 1)α(j)2, if |τ (j)| = 1,

with fn(π) = π for π = 1212 · · · . Note that in the second part of the definition of fn, we

must have j ≥ 2 since |τ (j)| = 1 and ℓ ≥ 2. One may verify fn(π) ∈ C′
n(1423) for all π and

that fn furnishes the desired bijection between C′
n(1324) and C′

n(1423), which completes the
proof. □

2.4. The case 1342.

Theorem 2.11. The bivariate generating function C1342(x, y) is given by

1− 6x+ 3x2(5− y)− x3(20− 11y) + x4(15− 14y + 2y2)− 2x5(3− 4y + y2) + x6(1− y)2

(1− x)(1− 3x+ x2(2− y))(1− 3x+ x2(3− 2y)− x3(1− y))
.

Proof. We first count Catalan words w avoiding 1342 and 11. Such a nonempty word w is
either (i) 1; or (ii) 1(w′+1)w′′, with w′ ∈ C′(123)\{ϵ} and w′′ ∈ C′(1342); or (iii) 1(w′+1)w′′,

with w′ ∈ C′(231)\C′(123) and w′′ ∈ {ϵ, 1}. If f := C ′
1342(x, y), g := C123

(
x

1+x , y
)

and

h := C231

(
x

1+x , y
)
, then we obtain

f = 1 + x+ x (g − 1) (y(f − 1) + 1) + + x(xy + 1) (h− g) ,

where C123(x, y) and C231(x, y) are given in [4]. Solving this equation and making use of
Remark 1.1, we obtain the desired result. □

The first few terms in the series expansion of C1342(x, y) are

1 + x+ 2x2 + (4 + y)x3 + (8 + 6y)x4 + (16 + 23y + 2y2)x5 + (32 + 71y + 18y2)x6

+ 64 + 193y + 94y2 + 4y3)x7 + (128 + 484y + 373y2 + 47y3)x8 +O(x9).

Corollary 2.12. We have

C1342(x) =
1− 6x+ 12x2 − 9x3 + 3x4

(1− x)(1− 3x+ x2)2
.

Moreover,

c1342(n) = 1 +
1

5
((1 + 3n)F2n − 4nF2n−1) , n ≥ 1.

Corollary 2.13. We have

D1342(x) =
x3(1− x)3

(1− 3x+ x2)3
.

Moreover,

d1342(n) =
1

50

(
(−34 + 33n− 5n2)F2n−2 + (16− 21n+ 5n2)F2n−1

)
, n ≥ 3.

The first terms of the sequence d1342(n) for n ≥ 3 are

1, 6, 27, 107, 393, 1371, 4607, 15045, . . .
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2.5. The case 1432.

Theorem 2.14. The bivariate generating function C1432(x, y) is given by P/Q, where

P = 1− 11x+ x2(53− 4y)− 7x3(21− 5y) + x4(259− 128y + 5y2)

− x5(301− 255y + 32y2) + x6(231− 301y + 81y2 − 2y3)− x7(113− 213y + 102y2 − 8y3)

+ x8(32− 86y + 65y2 − 12y3)− x9(4− 17y + 20y2 − 7y3)− x10y(1− y)2

and

Q = (1−x)(1−2x)(1−2x+x2(1−y))(1−3x+x2(3−2y)−x3(1−y))(1−4x+x2(4−y)+x3y)).

Proof. We first count Catalan words w avoiding 1432 and 11. Such a nonempty word w is
either (i) 1(w′ + 1), with w′ ∈ C′(321); or (ii) 1(w′ + 1)1, with w′ ∈ C′(321)\{ϵ}; or (iii)
1(w′ + 1)w′′, with w′ = (12)a1, a ≥ 0, w′′ ∈ C′(1432)\{ϵ, 1}; or (iii′) 1(w′ + 1)w′′, with
w′ = (12)a, a ≥ 1, w′′ ∈ C′(1432)\{ϵ, 1}; or (iv) 1(w′ + 1)w′′, with w′ = (12)a123 · · · k1,
a ≥ 0, k ≥ 3, w′′ = (12)b12 · · · ℓv, b ≥ 0, ℓ ≥ 2 and v ∈ {ϵ, 1}; or (iv′) 1(w′ + 1)w′′, with
w′ = (12)a123 · · · k, a ≥ 0, k ≥ 3, w′′ = (12)b12 · · · ℓv, b ≥ 0, ℓ ≥ 2 and v ∈ {ϵ, 1}; or (v)
1(w′ + 1)w′′, with w′ = (12)a123 · · · k1, a ≥ 0, k ≥ 3, w′′ = (12)b123 · · · (k − 1)(w′′′ + k − 1)v,
b ≥ 0, v ∈ {ϵ, 1} and w′′′ ∈ C′(321)\{ϵ, 12 · · ·m,m ≥ 1}; or (v′) 1(w′ + 1)w′′, with w′ =
(12)a123 · · · k, a ≥ 0, k ≥ 3, w′′ = (12)b123 · · · (k − 1)(w′′′ + k − 1)v, b ≥ 0, v ∈ {ϵ, 1} and
w′′′ ∈ C′(321)\{ϵ, 12 · · ·m,m ≥ 1}.

If f := C ′
1432(x, y) and g := C321

(
x

1+x , y
)
, then we obtain

f = 1 + xg + x2y (g − 1) +

(
x2y

1− x2y
+

x3y

1− x2y

)
(f − 1− x) +

x7y2(1 + xy)

(1− x)2(1− x2y)2

+
x6y(1 + xy)

(1− x)2(1− x2y)2
+

x7y2(1 + xy)

(1− x2)(1− x2y)2

(
g − 1

1− x

)
+

x6y(1 + xy)

(1− x2)(1− x2y)2

(
g − 1

1− x

)
,

where C321(x, y) is given in [4]. Solving for f , and making use of Remark 1.1, we obtain the
desired result. □

The first few terms in the series expansion of C1432(x, y) are

1 + x+ 2x2 + (4 + y)x3 + (8 + 6y)x4 + (16 + 24y + 2y2)x5 + (32 + 80y + 19y2)x6

+ (64 + 240y + 107y2 + 4y3)x7 + (128 + 672y + 465y2 + 50y3)x8 +O(x9).

Corollary 2.15. We have

C1432(x) =
1− 11x+ 49x2 − 112x3 + 136x4 − 78x5 + 9x6 + 6x7 − x8

(1− x)(1− 2x)2(1− 3x+ x2)(1− 4x+ 3x2 + x3)
.

Theorem 2.16. We have

D1432(x) =
p(x)

(1− 2x)3(1− 7x+ 16x2 − 12x3 + x5)2
,

where

p(x) = x3(1−14x+85x2−290x3+598x4−736x5+477x6−78x7−67x8+21x9+2x10−x11).
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The first few values of the sequence d1432(n) for n ≥ 3 are

1, 6, 28, 118, 466, 1752, 6333, 22170, 75588, . . .

3. Other descent distributions

Theorem 3.1. The bivariate generating functions C2134(x, y) and C3412(x, y) are each given
by

1− 4x+ 3x2(2− y)− 4x3(1− y) + x4(1− y)2

1− 5x+ 3x2(3− y)− x3(7− 6y) + x4(1− y)(2− y)
.

Proof. Let f = C ′
2134(x, y) and h = C ′

1234(x, y). By Theorem 2.1, we have

h =
(1 + x)(1 + x2(1− 2y))

1− 2x2y − x3y
.

A nonempty π ∈ C′(2134) may be expressed as (i) π = 1(α + 1), where α may be empty, or
(ii) π = 1(α+1)1β, where α is nonempty and β is possibly empty. Note that π avoiding 2134
and α + 1 containing 2 in case (ii) implies β cannot contain 4 (i.e., β is ternary). Further,
the section α + 1 in (ii) is then unaffected by β with respect to the avoidance of 2134 since
β is ternary. This implies

f = 1 + xf + xy(f − 1)(h− 1) = 1 + xf +
x2y(1 + x+ x2(1− y))

1− 2x2y − x3y
(f − 1),

and solving for f gives

f =
1− 3x2y − 2x3y − x4y(1− y)

1− x− 3x2y + x4y2
.

Applying Remark 1.1 now leads to the stated formula for C2134(x, y).
Now let f = C ′

3412(x, y) and we consider the following cases on a nonempty π ∈ C′(3412):
(i) 1(α+ 1), (ii) 1(23)iu1α, where i ≥ 0, u ∈ {ϵ, 2} such that u = 2 if i = 0 and α is possibly
empty, or (iii) 1(23)j4σ1, where j ≥ 1 and σ may be empty and does not contain 1. Note
that if π is not of form (i) such that its first block of non-1 letters contains 4, then π cannot
contain any letters beyond its second 1 so as to avoid 3412, which implies the form in (iii).

Observe further that the subsequence (23)j4σ of π in (iii) is accounted for by f−1− x(1+x)
1−x2y

, by

subtraction, since it represents a member of C′(3412) on the alphabet {2, 3, . . .} that contains
at least three distinct letters. Combining the cases (i)–(iii) for π then yields

f = 1 + xf +
x2y(1 + x)

1− x2y
(f − 1) + x2y

(
f − 1− x(1 + x)

1− x2y

)
.

Solving for f gives the same expression for f as in the case 2134, which implies the result for
3412. □

Theorem 3.2. The bivariate generating functions C2314(x, y), C2413(x, y), C3124(x, y) and
C4123(x, y) are each given by

(1− x)5 − x2(4− 9x+ 8x2 − 2x3)y + x4(3− x)y2

((1− x)2 − x2y)(1− 4x+ 5x2 − 2x3 − x2(3− 2x)y)
.

Proof. Let f = C ′
τ (x, y) for the pattern τ under current consideration. We first treat τ = 2314.

Note that a nonempty π ∈ C′(2314) has the form (i) 1(α + 1), (ii) 121β or (iii) 1(α + 1)1β,
where |α| ≥ 2, with β possibly empty in (ii) and (iii). Note that α + 1 containing 3 in (iii)
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implies β must be ternary in this case, with no such restriction on β in (ii). Further, β is
seen not to restrict α in (iii), since β does not contain 4. Thus, from (i)–(iii), we have

f = 1 + xf + x2y(f − 1) + xy(f − 1− x)(h− 1),

where h is as in the proof of Theorem 3.1. Solving for f gives

f =
1− 4x2y − 3x3y + x4y(3y − 2) + x5y(2y − 1)

(1− x2y)(1− x− 3x2y − x3y)
,

and replacing x with x
1−x implies the stated formula for Cτ (x, y) when τ = 2314. Note that

the same argument is seen to apply to f when τ = 3124, and hence the result in this case
follows as well.

Now let τ = 2413. In this case, first note that a nonempty π ∈ C′(2413) is of the form
(i) 1(α + 1), (ii) 1(23)iu1α, where i ≥ 0, u ∈ {ϵ, 2} such that u = 2 if i = 0 and α may be
empty, or (iii) 1(23)i4σ(12)jv, where i ≥ 1, j ≥ 0, σ does not contain 1 and may be empty
and v ∈ {ϵ, 1} such that v = 1 if j = 0. Note that the section (23)i4σ of π in case (iii)
is a member of C′(2413) on {2, 3, . . .} containing at least three distinct letters, and hence is

enumerated by f − 1 − x(1+x)
1−x2y

. Further, the subsequent section (12)jv is accounted for by
xy(1+x)
1−x2y

since there is a single descent if j = 0 or if j = 1 with v = ϵ (caused by the last letter

of 234σ), and incrementally increasing j by one in each of these cases is seen to add a descent
(with each such increase thus contributing a factor of x2y). Hence, the π in case (iii) have
generating function given by

x2y(1 + x)

1− x2y

(
f − 1− x(1 + x)

1− x2y

)
.

Combining with the other two cases for π, we get

f = 1 + xf +
x2y(1 + x)

1− x2y
(f − 1) +

x2y(1 + x)

1− x2y

(
f − 1− x(1 + x)

1− x2y

)
,

which leads to the same formula for f as before and establishes the result for τ = 2413. The
same argument is seen to apply in the case τ = 4123, which completes the proof. □

Theorem 3.3. We have

C2341(x, y) =
1− 3x+ x2(3− 2y)− x3(1− y)

(1− x)(1− 3x+ 2x2(1− y))
.

Proof. Let f = C ′
2341(x, y) and ω = C ′

123(x, y). Note

ω = 1 + x+ x2 + x3y + x4y + x5y2 + x6y2 + · · · = 1 +
x(1 + x)

1− x2y
.

A nonempty π ∈ C′(2341) must be of the form (i) π = 1(α+1) or (ii) π = 1(α+1)1β, where
α ∈ C′(123) in (ii). Thus, we have that f satisfies

f = 1 + xf + xy(ω − 1)(f − 1),

which implies f = 1−2x2y−x3y
1−x−2x2y

. Applying Remark 1.1 now leads to the stated formula for

C2341(x, y). □

Now let f = C ′
2431(x, y). To assist in finding f , we introduce the auxiliary generating

functions fm = fm(x, y) for m ≥ 3 that count members of C′(2431) with prefix 12 · · ·m1
according to the number of descents. The fm satisfy the following recurrence.
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Lemma 3.4. If m ≥ 4, then

(3) fm =
xm+1y

1− x2y
+

x2

1− x2y
fm−1,

with f3 = x3y(f − 1).

Proof. We first observe that π ∈ C′(2431) enumerated by fm where m ≥ 4 is expressible as
either (a) π = 12 · · ·m1(21)i or (b) π = 12 · · ·m1(21)i2σ, where σ if nonempty starts with

3 and i ≥ 0 in both cases. Note that the π in (a) contribute xm+1y
1−x2y

towards fm, as each

additional pair of letters in the sequence (21)i yields a factor of x2y. On the other hand, if π
is of form (b), then the subsequence 23 · · ·m2σ is seen to be accounted for by 1

yfm−1, as the

second 2 of the subsequence is preceded by a 1 in π and hence does not contribute a descent.

The remaining letters of π contribute x2y
1−x2y

, where the factor of y in the numerator arises

from the second 1 of π being directly preceded by m. Thus, the π of form (b) are enumerated

by x2

1−x2y
fm−1, and combining with those in (a) gives (3). Finally, the initial condition when

m = 3 follows from the fact that Catalan words enumerated by f3 are of the form 1231σ,
with the prefix 123 imposing no restriction on the nonempty Catalan word 1σ with respect
to the avoidance of 2431. □

Theorem 3.5. The bivariate generating function C2431(x, y) is given by

(1− x)4(1− 2x)2 − x2(1− x)2(3− 11x+ 10x2 − x3)y + x4(2− 7x+ 7x2 − x3)y2

(1− 2x)((1− x)2 − x2y)(1− 5x+ 8x2 − 4x3 − x2(2− 4x+ x2)y)
.

Proof. A nonempty π ∈ C′(2431) must have the form (i) 1(α + 1), (ii) 1(α + 1)1β, where
α does not contain the letter 3 and β is possibly empty, (iii) 1(23)i45 · · ·mu(12)j1 or (iv)
1(23)i45 · · ·mu1(21)j2σ, where σ starts with 3 if nonempty in (iv) and i ≥ 1, j ≥ 0, m ≥ 4
and u ∈ {ϵ, 2} in both (iii) and (iv). Observe that σ cannot contain 1 in (iv), for otherwise
2431 would occur, whence the subsequence 23 · · ·m2σ in (iv) where m ≥ 4 is accounted for
by 1

y

∑
m≥4 fm−1. Combining the cases (i)–(iv) then implies f satisfies

(4) f = 1 + xf +
x2y(1 + x)

1− x2y
(f − 1) +

x(1 + xy)

(1− x2y)2

∑
m≥4

xmy +
x2(1 + xy)

(1− x2y)2

∑
m≥4

fm−1,

where fm is given recursively by (3).
To aid in solving (4), let F (t) =

∑
m≥3 fmtm. Then, by (3), we have

F (t)− x3y(f − 1)t3 =
x5yt4

(1− x2y)(1− xt)
+

x2t

1− x2y
F (t),

which gives

F (t) =
x3y(1− x2y)(1− xt)(f − 1)t3 + x5yt4

(1− xt)(1− x2y − x2t)
.

Thus, by the fact
∑

m≥3 fm = F (1), we have

f = 1 + xf +
x2y(1 + x)

1− x2y
(f − 1) +

x5y(1 + xy)

(1− x)(1− x2y)2

+
x2(1 + xy)

(1− x2y)2
· x

3y(1− x)(1− x2y)(f − 1) + x5y

(1− x)(1− x2 − x2y)
.
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Solving for f , we obtain

f(x, y) =
x7y2 − x6y2 − x5y2 − x5y + 2x4y2 + 3x4y + 2x3y + x3 − 3x2y − x2 − x+ 1

(1− x)(1− x2y)(x4y + x3 − 2x2y − x2 − x+ 1)
.

Replacing x with x
1−x in the last formula yields the desired result. □

A comparable idea applies to the pattern 4312. Let gm be defined the same way fm
was above, but in conjunction with 4312 instead, and let g = C ′

4312(x, y). Considering the
following cases on π ∈ C′(4312) leads to the recurrence for gm where m ≥ 4: (a) π = 12 · · ·m1
or 12 · · ·m12, (b) π = 12 · · ·m121σ, where σ may be empty, or (c) π = 12 · · ·m123σu, where
σ does not contain 1 and u ∈ {ϵ, 1}.

Lemma 3.6. If m ≥ 4, then

(5) gm = xm+1(1 + x)y + x2ygm + x2(1 + xy)(gm−1 − xmy),

with g3 = x3y(g − 1).

We can now establish the formula for C4312(x, y).

Theorem 3.7. We have C4312(x, y) = A/B, where

A = (1− x)6(1− 2x)2 − x2(1− x)4(4− 13x+ 9x2 + x3)y

+ x4(1− x)(4− 15x+ 16x2 − 2x3 − 2x4)y2 − x6(1− 2x− x2 + x3)y3,

B = (1− x)(1− 2x)((1− x)2 − x2y)((1− 3x+ 2x2)2 − x2(1− x)(3− 5x− x2)y

+ x4(1 + x)y2).

Proof. Let h = C ′
1234(x, y). Before proceeding, we will need the restriction of h to Catalan

words ending in a specific letter. Let h(i) = h(i)(x, y) for i = 1, 2, 3 denote the restriction of the

generating function h to the members of C′(1234) ending in i. Note that h = 1+h(1)+h(2)+

h(3), by the definitions. Considering the penultimate letter of members of C′(1234) implies

the following system of equations: (a) h(1) = x+xy(h(2)+h(3)), (b) h(2) = xh(1)+xyh(3), (c)

h(3) = xh(2). Solving (a)–(c) implies

h(1) =
x(1− x2y)

1− 2x2y − x3y
, h(2) =

x2

1− 2x2y − x3y
, h(3) =

x3

1− 2x2y − x3y
.

We consider the following cases on π ∈ C′(4312): (i) π ternary, (ii) π = α23 · · ·mβu, where
β starts with a letter in [2,m − 1] if nonempty and does not contain 1 and u ∈ {ϵ, 1}, or
(iii) π = α23 · · ·mv1β, where β is nonempty and v ∈ {ϵ, 2}, with m ≥ 4 and α ternary
in both (ii) and (iii). Note that the section 23 · · ·mβ in case (ii) has generating function
(1−x2y)g− 1−x−x2(1− y), by subtraction. Taking into account the contributions towards
g for the π in cases (i)–(iii) then yields

(6) g = h+ (h(1) + yh(3))(1 + xy)
(
(1− x2y)g − 1− x− x2(1− y) +

1

x

∑
m≥4

(gm − xm+1y)
)
,

where gm is given by (5). To solve (6), let G(t) =
∑

m≥3 gmtm. Then, by (5),

(1− x2y)G(t)− x3y(1− x2y)(g − 1)t3 =
x5y(1 + x)t4

1− xt
+ x2(1 + xy)t

(
G(t)− x4yt3

1− xt

)
,
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which implies

G(t) =
x3yt3(x2y − 1)(xtg − x2t− xt− g + 1)

(xt− 1)(x3yt+ x2t+ x2y − 1)
.

Note
∑

m≥4

(
gm − xm+1y

)
= G(1)− x3y(g − 1)− x5y

1−x so that

g =
(1 + x)(1 + x2(1− 2y))

1− 2x2y − x3y
+

x(1 + xy)

1− 2x2y − x3y

(
(1− x2y)g − 1− x− x2(1− y)

)
+

1 + xy

1− 2x2y − x3y

(
x3y(x2y − 1)(xg − x2 − x− g + 1)

(x− 1)(x3y + x2 + x2y − 1)
− x3y(g − 1)− x5y

1− x

)
.

Solving for g, we obtain a formula of

(1 + x)(1− x)2 − x2(4− x− 5x2 + x3)y + x4(4 + x− 5x2 + x3 + x4)y2 − x6(1 + x− 2x2 − x3)y3

(1− x)(1− x2y)((1 + x)(1− x)2 − x2(3 + x− 3x2)y + x4(1 + 2x)y2)
.

Making use of Remark 1.1 now yields the desired formula for C4312(x, y). □

Theorem 3.8. The bivariate generating functions C3214(x, y), C4132(x, y) and C4213(x, y)
are each given by

(1− 2x+ x2(1− y))(1− 4x+ 5x2 − 2x3 − x2(3− 2x)y)

(1− x)(1− 6x+ 13x2 − 12x3 + 4x4 − x2(4− 11x+ 7x2)y + 3x4y2)
.

Proof. Let f = C ′
τ (x, y), where τ is the pattern in question. To establish the formula for

3214, we first compute f and consider the following cases on nonempty π ∈ C′(3214): (i) π
binary, (ii) π = (12)i123σ, (iii) π = (12)i123σ1ρ, where ρ is ternary and possibly empty, or
(iv) π = (12)i123σ1ρβ, where ρ contains 4 but not 1 and β if nonempty has first letter 1,
with i ≥ 0 and σ not containing 1 in all cases. Note that π avoiding 3214 implies β must be
ternary in (iv), with no 2 occurring in σ in this case since ρ contains 4. Thus, the subsequence
23σρ of π in (iv) is a 3214-avoiding Catalan word with no levels on the alphabet {2, 3, . . .}
such that 4 occurs to the right of the second 2. Note that the generating function for such

Catalan words is given by (1− x)f − 1− x2y(1+x)
1−x2y

(f − 1), by subtraction.

Combining the contributions towards f from cases (i)–(iv) above then gives

f = 1 +
x(1 + x)

1− x2y
+

x

1− x2y
(f − 1− x) +

xy

1− x2y
(f − 1− x)(h− 1)

+
x2

1− x2y
(1 + y(h− 1))

(
(1− x)f − 1− x2y(1 + x)

1− x2y
(f − 1)

)
,

and solving for f yields

f =
(1 + x)(1− x2y)(1− x− 3x2y − x3y)

1− x− x2(1 + 4y) + x3(1− y) + 3x4y(1 + y) + 3x5y2
.

Replacing x with x
1−x then gives the desired formula for C3214(x, y).

For the pattern 4132, first let ρ ∈ C′
i(4132) for some i ∈ [4, n] of the form ρ = αρ′, where

the section α is ternary and ρ′ = 234β, with β not containing 1. We wish to make various
insertions of letters into these “precursors” ρ of the stated form so as to obtain π ∈ C′

n(4132)
that contain 4. We consider the following cases on ρ according to the section β: (a) β does
not contain 2, (b) β contains only a terminal 2 or (c) β contains a 2 that is not terminal.
Based on these cases for ρ, we make insertions of letters as follows. In cases (b) and (c), we
may insert a sequence of letters of the form (21)j or 1(21)j for some j ≥ 0 directly prior
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to the rightmost 2 in β so as to obtain various π from ρ. Further, in all three cases, one
may add a single 1 to the end of β (or do nothing in this regard). Note that inserting a
1 or a sequence of letters as described elsewhere into β is seen to introduce an occurrence
of 4132. Moreover, this process of insertion may be reversed by considering the following
decomposition of λ ∈ C′

n(4132) containing 4 for some ℓ ≥ 0:

λ = λ(0)α(1)λ(1) · · ·α(ℓ)λ(ℓ)α(ℓ+1),

where λ(0) contains 4 and ends in a letter ≥ 3, α(j) for 1 ≤ j ≤ ℓ is binary and ends in 2, λ(j)

for 1 ≤ j ≤ ℓ starts with 3 and contains no 1 or 2 and α(ℓ+1) if nonempty is binary.
Note that the section ρ′ of a precursor in case (a) where β does not contain 2 is accounted

for by the generating function x(f − 1 − x). Further, by subtraction, all of the possible ρ′

from cases (a)–(c) combined are seen to be enumerated by (1 − x2y)f − 1 − x − x2(1 − y).
Hence, again by subtraction, the ρ′ in cases (b) and (c) combined are counted by

(1− x2y)f − 1− x− x2(1− y)− x(f − 1− x) = (1− x− x2y)f − 1 + x2y.

Therefore, upon considering the insertions to obtain the various π from the precursors ρ as
described above in accordance with the cases (a)–(c), we obtain

f = h+ (h(1) + yh(3))

(
x(1 + xy)(f − 1− x) +

(1 + x)(1 + xy)

1− x2y
((1− x− x2y)f − 1 + x2y)

)
=

(1 + x)(1 + x2(1− 2y))

1− 2x2y − x3y

+
x(1 + xy)

1− 2x2y − x3y

(
x(f − 1− x) +

1 + x

1− x2y
((1− x− x2y)f − 1 + x2y)

)
,

where h and the h(i) are as in Theorem 3.7. Solving for f in the last equation, we obtain the
same expression as before, which implies the result for 4132.

A similar argument applies to the case 4213, wherein we add sequences of letters to pre-
cursors ρ = αρ′ ∈ Ci(4213) to obtain members of Cn(4213), where α and ρ′ = 234β are as
before. We again consider the cases (a)–(c) above concerning the section β. Here, we may
append (12)j or (12)j1 for some j ≥ 0 to any ρ with β of the form (a)–(c), and, in addition,
for those ρ where β is of the form (c), we may insert a single 1 directly prior to the first 2 in
β. Note that inserting a sequence of the form (21)j or 1(21)j where j ≥ 1 directly prior to
any non-terminal 2 in β within ρ (or inserting a 1 directly prior to any non-terminal 2 that
is not the first 2 of β) introduces 4213, and hence the insertions here are as described. By
subtraction, the generating function for ρ′ in case (c) is given by

(1− x2y)f − 1− x− x2(1− y)− x(1 + xy)(f − 1− x) = (1− x− 2x2y)f − 1 + x2(2 + x)y.

Thus, making the insertions into ρ to obtain the various π ∈ C′
n(4213) as described implies

that f here satisfies

f = h+ (h(1) + yh(3))

(
x(1 + xy)2

1− x2y
(f − 1− x)

+
(1 + x)(1 + xy)

1− x2y
((1− x− 2x2y)f − 1 + x2(2 + x)y)

)
.

Solving for f , we obtain the same expression as before, which yields the result for 4213 and
completes the proof. □
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Theorem 3.9. The bivariate generating functions C3241(x, y) and C4231(x, y) are each given
by

(1− x)4(1− 2x)2 − x2(1− x)3(5− 11x+ x2)y + 2x4(1− x)(4− 6x+ x2)y2 − x6(4− x)y3

(1− 3x+ 2x2 − 2x2y)((1− 3x+ 2x2)2 − x2(1− x)(3− 6x+ x2)y + x4(2− x)y2)
.

Proof. First, let f = C ′
3241(x, y) and g = C ′

213(x, y). Note g = 1−2x2y−x3y
1−x−2x2y

, upon replacing x

with x
1+x in [4, Theorem 8]. A nonempty π ∈ C′(3241) has the form (i) 1α, where α does not

contain 1, (ii) 121α, where α may contain 1, (iii) 123σ(23)iu1ρ or (iv) 123σ(23)iu1ρ234τ ,
where i ≥ 0, u ∈ {ϵ, 2}, σ does not contain 1 or 2 and ρ is ternary in both (iii) and (iv).
Note that π avoiding 3241 implies τ cannot contain 1 in (iv). Further, a 1 occurring to the
right of the section 3σ in (iii) implies it is counted by g− 1, with 1ρ counted by h− 1, where
h is as in the proof of Theorem 3.7. Thus, the π from (iii) make a contribution towards f of
x2y(1+xy)
1−x2y

(g − 1)(h− 1).

By subtraction, the subsequence s = 23σ234τ of π in (iv) has generating function

f − 1− xf − x2y(1 + x)(g − 1)− x2y(f − 1− xf),

where the last two subtracted terms correspond respectively to excluded sequences of the form
23σ2v and 23σ232σ′, where σ does not contain 1 or 2, σ′ does not contain 1 and v ∈ {ϵ, 3}.
Note that while the descent between the section 3σ and 2 in s does not actually occur in π, it
is implicitly counted by the preceding generating function for s. However, the aforementioned
descent is replaced by the one occurring between the second 1 of π and its predecessor and
hence no extra factor of y is required for it, as it ordinarily would be. Thus, π of the form in
(iv) are enumerated by

x(1 + xy)

1− x2y
(h(1) + yh(3))((1− x2y)(f − 1− xf)− x2y(1 + x)(g − 1)),

where the h(i) are as in Theorem 3.7. Combining cases (i)–(iv) then implies f satisfies

f = 1 + xf + x2y(f − 1) +
x2y(1 + xy)

1− x2y
(g − 1)(h− 1)

+
x2(1 + xy)

(1− x2y)(1− 2x2y − x3y)
((1− x2y)(f − 1− xf)− x2y(1 + x)(g − 1)),

which may be simplified and rewritten as(
1− x− x2y − x2(1− x)(1 + xy)

1− 2x2y − x3y

)
f =

1− x2(1 + 3y)− 2x3y + 2x4y2 + x5y2

1− 2x2y − x3y

+
x4y(1 + xy)(1− x2y)

(1− x− 2x2y)(1− 2x2y − x3y)
.

Solving for f in the last equation gives

f =
3x7y3 + 4x6y3 + 2x6y2 − 4x5y2 − 8x4y2 − 5x4y − x3y − x3 + 5x2y + x2 + x− 1

(2x2y + x− 1)(x5y2 + 2x4y2 + 2x4y + x3 − 3x2y − x2 − x+ 1)
,

and replacing x with x
1−x yields the stated formula for C3241(x, y).

Now let f = C ′
4231(x, y) and g = C ′

312(x, y). Note that g is as before, by Theorem [4,
Theorem 8]. We consider the following cases on a nonempty π ∈ C′(4231): (i) 1α, where α
does not contain 1, (ii) 1α1β, where α does not contain 1 or 4 and β is possibly empty, (iii)
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1(23)i4σu1ρ, where ρ if nonempty is binary, or (iv) 1(23)i4σu1(21)j23τ with j ≥ 0, where
i ≥ 1, σ does not contain 1 or 2 and u ∈ {ϵ, 2} in (iii) and (iv). Observe that τ may be empty
and does not contain 1 in (iv) since π avoids 4231.

Note further that the subsequence 34σ of π in (iii) is counted by g − 1− x, since it must
avoid 312 by virtue of a 1 lying to its right. Thus, the π in (iii) make a contribution towards
f of

x2(g − 1− x)

1− x2y
· xy(1 + x)(1 + xy)

1− x2y
=

x5y(1 + x)(1 + xy)2

(1− x2y)2(1− x− 2x2y)
.

For π of the form (iv), we first extract the subsequence 234σ23τ , which by subtraction is
counted by f − 1 − xf − x2y(f − 1) − x2y(g − 1 − x), where the last two subtracted terms
account respectively for excluded words on {2, 3, . . .} of the form 232σ′ and 234σ2, where σ′

may contain 2. This implies π of the form (iv) make a contribution towards f of

x2(1 + xy)

(1− x2y)2

(
(1− x− x2y)f − 1 + 2x2y + x3y − x2y(1− 2x2y − x3y)

1− x− 2x2y

)
.

Combining cases (i)–(iv) then implies f satisfies

f = 1 + xf +
x2y(1 + x)

1− x2y
(f − 1) +

x5y(1 + x)(1 + xy)2

(1− x2y)2(1− x− 2x2y)
+

x2(1 + xy)(1− x− x2y)

(1− x2y)2
f

− x2(1 + xy)(1− x− 3x2y + x3y + x4y(1 + 2y) + x5y2)

(1− x2y)2(1− x− 2x2y)
,

which may be simplified and rewritten as(
1− x(1 + xy)

1− x2y
− x2(1 + xy)(1− x− x2y)

(1− x2y)2

)
f =

1− 2x2y − x3y

1− x2y

− x2(1 + xy)(1− x− 3x2y + x4y2)

(1− x2y)2(1− x− 2x2y)
.

Solving for f in the last equation gives the same expression for f as before and implies the
stated formula in the case 4231, which completes the proof. □

Theorem 3.10. We have

C3421(x, y) =
(1− x)(1− 6x+ 13x2 − 12x3 + 4x4 − x2(3− 10x+ 8x2 − x3)y + x4(2− x)y2)

(1− 3x+ x2(2− y))(1− 5x+ 8x2 − 4x3 − x2(2− 4x+ x2)y)
.

Proof. Let f = C ′
3421(x, y) and r = C ′

231(x, y). Replacing x with x
1+x in [4, Theorem 9] gives

r = 1−x2y
1−x−x2y

. Note that a nonempty π ∈ C′(3421) can be expressed as (i) 1(α + 1), (ii)

1(α + 1)1β, where α does not contain 3, (iii) 1(23)i4σ1 or (iv) 1(23)i4σ1ρ, where i ≥ 1 and
σ does not contain 1 or 2 in (iii) and (iv) and ρ is nonempty in (iv). Note that π avoiding
3421 implies ρ cannot contain 1. Further, the subsequence 34σ in (iii) must avoid 231, and

hence the π in this case are enumerated by x3y
1−x2y

(r − 1− x).

For π of the form (iv), first note that the subsequence s = (23)i4σρ is a member of C′(3421)
on {2, 3, . . .} in which there are at least three distinct letters and a 2 occurs somewhere to
the right of the first 4. By subtraction, such s are enumerated by

f − 1− x(1 + x)

1− x2y
− x

1− x2y
(f − 1− x) = f − 1− x

1− x2y
f,



CATALAN WORDS AVOIDING A PATTERN OF LENGTH FOUR 19

upon excluding members of C′(3421) that fail to contain three distinct letters or are of the
form (23)i4σ, where σ does not contain 2. Combining cases (i)–(iv), we then have

f = 1 + xf +
x2y(1 + x)

1− x2y
(f − 1) +

x3y

1− x2y
(r − 1− x) + x2

(
f − 1− x

1− x2y
f

)
.

Solving for f gives

f =
1− x− x2(1 + 3y) + x3(1 + y) + x4y(3 + 2y) + x5y2

(1− x− x2y)(1− x− x2(1 + 2y) + x3 + x4y)
,

and making use of Remark 1.1 completes the proof. □

4. The patterns 2143, 3142 and 4321

These three cases entail a more involved analysis than the others and are treated below.

4.1. The case 2143.

We first consider the generating functions km = km(x, y) for m ≥ 1 enumerating the members
of C′(2143) ending in m according to the number of descents. Let k = C ′

2143(x, y) and note
k = 1+

∑
m≥1 km, by the definitions. Let k∗m for m ≥ 3 denote the restriction of km to those

words containing exactly two 1’s such that the block of letters occurring to the right of the
second 1 is 23 · · ·m. Then we have the following recurrences involving km and k∗m.

Lemma 4.1. The km and k∗m are given by

(7) km =
1

1− 2x2y − x3y
k∗m + xkm−1, m ≥ 3,

with k1 =
x

1+xy (yk + 1− y) and k2 =
x

(1+xy)2
((1 + x)yk + x− y − 2xy), and

(8) k∗m = xm+2y +
x2(1 + xy)(1− x2y)

1− 2x2y − x3y
k∗m−1, m ≥ 4,

with k∗3 = x4y(k − 1).

Proof. The initial conditions for k1 and k2 follow from observing the equalities

k1 = x+ xy(k − k1 − 1) and k2 = xk1 + xy(k − k1 − k2 − 1).

If m ≥ 3, then π ∈ C′(2143) ending in m may be decomposed as π = 1π(1) · · · 1π(j) for some

j ≥ 1, where each section π(i) for 1 ≤ i ≤ j does not contain 1. If j = 1, then we clearly get
a contribution of xkm−1 towards the enumeration of π. On the other hand, if j ≥ 2, then π
ending in m ≥ 3 (and hence π(j) contains 3) implies π(i) for 2 ≤ i ≤ j − 1 is an alternating

sequence in {2, 3} starting with 2. Further, we must have π(j) = (23)i4 · · ·m for some i ≥ 1
since no descent tops to the right of the second 1 can be ≥ 4. To see this, note that otherwise
there would be an occurrence of 2143 witnessed by the first 2 in π, the second 1, z and m
if z ≥ m + 1 or by 2, 1, z, z − 1 if 4 ≤ z ≤ m, where z denotes a descent top of π greater
than or equal 4. This implies when j ≥ 2 that π is expressible as π = 1π(1)ρ1(23)i4 · · ·m for
some i ≥ 1, where ρ is possibly empty and belongs to C′

1234. Note that the suitable ρ in this

case are accounted for by 1 + y(h(2) + h(3)) = 1−x2y
1−2x2y−x3y

, where the h(i) are as in Theorem

3.7. Since any i ≥ 1 is permitted in the decomposition of π above, it follows that such π
contribute 1

1−2x2y−x3y
k∗m towards km, and combining with the prior case when j = 1 yields

recurrence (7).
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For (8), note first that the initial condition when m = 3 follows from the fact that π
enumerated by k∗3 have the form π = 1α123, where α − 1 is an arbitrary nonempty member
of C′(2143). Now suppose π ∈ C′(2143) is given by π = 1σ12 · · ·m, where σ does not contain

1 and m ≥ 4. We decompose σ as 2σ(1) · · · 2σ(ℓ)u for some ℓ ≥ 0, where u ∈ {ϵ, 2} such that

u = 2 if ℓ = 0 and each section σ(i) for 1 ≤ i ≤ ℓ is nonempty and does not contain 1 or 2. If
ℓ = 0, then there is a single possibility for π, which has weight xm+2y.

If ℓ ≥ 1, then it is seen that u and both 1’s within π may be deleted as they are extraneous
concerning the avoidance of the pattern 2143. We claim that each section 2σ(i) for 2 ≤ i ≤ ℓ
is also extraneous and may be deleted. To see this, first note that no σi for 2 ≤ i ≤ ℓ can
contain 5, for if one did, then there would be an occurrence of 2143 witnessed by the first
3 of σ, the second 2 of σ, the aforementioned 5 and the rightmost 4 of π. Then 2σ(i) not
containing 5 for i ≥ 2 implies that, within the subsequence s = 2σ(1) · · · 2σ(ℓ)23 · · ·m, no
letter in 2σ(2) · · · 2σ(ℓ) can play the role of a 2, 1 or 4 in a possible occurrence of 2143 in s.
Further, the section 2σ(2) · · · 2σ(ℓ) is redundant with regard to any of its letters playing the
role of a 3 in a 2143 due to it being followed by 23 · · ·m. Thus, after deleting u, both 1’s and
the extraneous sections 2σ(i) for 2 ≤ i ≤ ℓ of π, one is left with a Catalan word of the form
enumerated by k∗m−1, which implies π for which ℓ ≥ 1 are accounted for by

x2(1 + xy)

1− x2y(1+x)
1−x2y

k∗m−1 =
x2(1 + xy)(1− x2y)

1− 2x2y − x3y
k∗m−1.

Combining the cases when ℓ = 0 and ℓ ≥ 1 then implies (8) and completes the proof. □

Theorem 4.2. We have C2143(x, y) = A/B, where A and B are as in Theorem 3.7.

Proof. Let K(t) =
∑

m≥1 kmtm and K∗(t) =
∑

m≥3 k
∗
mtm. By (7), we then have

K(t)− k1t− k2t
2 =

1

1− 2x2y − x3y
K∗(t) + xt(K(t)− k1t),

with k1 =
x

1+xy (yK(1) + 1) and k2 =
x

(1+xy)2
((1 + x)yK(1) + x− xy). By (8), we also have

K∗(t)− x4yK(1)t3 =
x2(1 + xy)(1− x2y)t

1− 2x2y − x3y
K∗(t) +

x6yt4

1− xt
.

Solving for K(1) and K∗(1) in the last two equations yields

K(1) =
x((1 + x)(1− x)2 − x2(x3 − 4x2 − x+ 3)y + x4(x3 − 2x2 + x+ 2)y2 + x8y3)

(1− x)((1 + x)(1− x)2 − x2(x3 − 4x2 + 4)y − x4(3x2 − 3x− 4)y2 − x6(2x+ 1)y3)
.

Noting k(x, y) = K(1) + 1, we find that k is given by the same expression as g = C ′
4312(x, y)

in the proof of Theorem 3.7 above was, and hence the result for 2143 follows. □

4.2. The case 3142.

Let f = C ′
3142(x, y) and fi for i = 1, 2 denote the restriction of f to the members of C′(3142)

whose members end in 1 or 2, respectively. To write a system of equations involving these
generating functions, we will also need to consider the restriction of f2 to members of C′(3142)
whose last two letters are 1, 2, which will be denoted by f∗

2 . There is the following formula
for f in terms of f2 and f∗

2 .
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Lemma 4.3. We have(
1− x(1 + x2y)

1− x2y
− x2(1 + y + 2xy − x2y2 − x3y2)(1− x− 2x2y + x3y + x4y2)

(1 + xy)(1− x2y)2(1− 2x2y − x3y)

− x3y(1 + y + 2xy)

(1 + xy)(1− x2y)2

)
f =

1− x2y − x3y

1− x2y
+

x5y(1 + y + 2xy − x2y2 − x3y2)

(1− x2y)2(1− 2x2y − x3y)

− x2(1 + y + 2xy − x2y2 − x3y2)

(1 + xy)(1− 2x2y − x3y)

+
x4y(1 + xy)(2 + y + x(1 + 4y) + 2x2y)

(1− x2y)2(1− 2x2y − x3y)
(f2 − f∗

2 )−
x3y(1 + y + 2xy)

(1− x2y)2

(
f∗
2 +

1 + x

1 + xy

)
.

(9)

Proof. We consider several cases on nonempty π ∈ C′(3142) and obtain their respective con-
tributions towards the generating function f . First note that π in which no 1 appears to the
right of the first 3 (including the binary case) are enumerated by x

1−x2y
f . Further, observe

that π of the form π = α2β1, where α is binary and β is nonempty and does not contain 1

or 2 are counted by x3y
1−x2y

(f − 1).

To complete the equation for f , we must enumerate the subset T consisting of those
members of C′(3142) which contain 3 such that both 1 and 2 occur somewhere to the right
of the first 3. To obtain π ∈ T , consider inserting sequences of letters into precursors p on
{2, 3, . . .} that contain more than one 2 such that p− 1 ∈ C′(3142). Note that in all cases we
must insert a sequence of the form (12)i1 for some i ≥ 0 directly prior to the first letter of p,
as the resulting word must start with 1. Note that this insertion is always accounted for by
a factor of x

1−x2y
.

Regarding other insertions (which we will describe as non-initial), it is convenient to write

the precursor p as p = 2α(1) · · · 2α(r) for some r ≥ 2, where the α(i) for 1 ≤ i ≤ r − 1 are
nonempty, with α(r) possibly empty, and no α(i) contains 2. We will refer to each section
2α(i) as a unit of p. First suppose p does not end in 2 (i.e., α(r) is nonempty). We consider
subcases of this case based on whether or not 4 occurs prior to the final unit of p. First
assume 4 does occur prior to the final unit of p, which itself need not contain 4. We then
decompose p as p = α(23)ℓ2β, where ℓ ≥ 0, the final unit of α contains 4 and β is nonempty
and does not contain 2.

We first enumerate the precursors p of the stated form with ℓ = 0 and denote their gener-
ating function by k = k(x, y). By subtraction, we have

k = f − 1− xf − (f1 − x)− x2y(f − f1 − 1),

upon excluding precursors containing only a single 2, that end in 2 (and contain more than
one 2) or that do not end in 2 but have penultimate unit 2, 3. Note f1 = x+ xy(f − f1 − 1),
by the definitions, and hence f1 =

x
1+xy (yf + 1− y). Therefore, we have

k = (1− x− x2y)f − (1− x2y)f1 − 1 + x+ x2y

=

(
1− x− x2y − xy(1− x2y)

1 + xy

)
f − x(1− y)(1− x2y)

1 + xy
− 1 + x+ x2y

=
1− x− 2x2y

1 + xy
f − 1− 2x2y − x3y

1 + xy
.
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Additionally, for p of the form α(23)ℓ2β, one may make a non-initial insertion of a possibly
empty binary sequence with no levels ending in 1 prior to each of the ℓ units 2, 3 as well as
directly preceding the section 2β and also add an optional 1 to the very end of p. Note that
a 1 (or any binary sequence containing 1, as described) may not be inserted anywhere else
into a precursor p of the stated form. For otherwise, there would be an occurrence of 3142
in which the roles of the respective letters are played by the first 3 in p, the inserted 1, the
rightmost 4 in α and the 2 directly preceding β. Further, we require that at least a single 1
be added somewhere beyond the section α, as we have already enumerated the case in which
no 1 occurs beyond the first 3. Moreover, an insertion made directly preceding a non-initial

2 of p is seen to have weight ω := 1 + x(1+xy)
1−x2y

= 1+x
1−x2y

.

Thus, the letters of the section (23)ℓ for some ℓ ≥ 0 within p, together with the insertions
as described (including the one that is required at the very beginning of p), are accounted for
by S = S(x, y) given by

S :=
∑
ℓ≥0

(x2y)ℓ
(

x2y

1− x2y
· ωℓ+1 +

x

1− x2y
(ωℓ+1 − 1)

)
,

upon considering whether or not the optional 1 is added to the end. Note that in the case
when it is added, the insertions before or after a unit 2, 3 together yield ωℓ+1, with these
insertions yielding ωℓ+1 − 1 if no terminal 1 is added. Simplifying S, we get

S =
x(1 + x)(1 + xy)

(1− x2y)(1− 2x2y − x3y)
− x

(1− x2y)2
=

x2(1 + y + 2xy − x2y2 − x3y2)

(1− x2y)2(1− 2x2y − x3y)
.

Combining the preceding observations, we have that π ∈ T containing 4 prior to the rightmost
2 and not ending in 2 or 21 make a contribution of kS towards f , where k and S are as given.

Now suppose that the precursor p does not end in 2 or contain 4 prior to the final 2. In
this case, we have p = (23)j2β, where j ≥ 1 and β nonempty does not contain 2. Then the
section 2β is accounted for by x(f − 1) since it is unaffected by the letters preceding it with
regard to the avoidance of 3142. We make insertions as described above to the beginning of
p and prior to each subsequent unit 2, 3 or the section 2β as well as possibly appending an
optional 1. This implies that the section (23)j of p where j ≥ 1, together with the insertions
such that at least a single 1 is added somewhere to the right of the first 3, are accounted for
by ∑

j≥1

(x2y)j
(

x2y

1− x2y
· ωj +

x

1− x2y
(ωj − 1)

)
= x2yS.

Thus, π ∈ T not ending in 2 or 21 and not containing 4 prior to the rightmost 2 contribute
x3yS(f − 1) towards f . Note that combining the prior two cases, we get (k + x3y(f − 1))S,
where

k + x3y(f − 1) =
1− x− 2x2y + x3y + x4y2

1 + xy
f − 1− 2x2y + x4y2

1 + xy
.

Next suppose p ends in 2 and we make use of the same subcases as before. First assume
p = α(23)ℓ2 for some ℓ ≥ 0, where the final unit of α contains 4. Since the terminal unit of
p now contains only 2, we must differentiate the cases when ℓ = 0 and ℓ > 0. If ℓ = 0, then
the non-initial insertions are limited to a possibly empty binary sequence ending in 1 with
no levels placed directly prior to the terminal 2 of p or an optional single terminal 1. To see
this, note that for p = α2 in which the final unit of α contains 4, the addition of a 1 (or a
sequence containing 1) prior to any 2 of p other than the first or last is seen to introduce
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3142. Since a 1 must occur to the right of the first 3 after the insertions are made, we have

that the non-initial insertions are accounted for by xy(1+x)
1−x2y

when the optional terminal 1 is

added and by x(1+xy)
1−x2y

when it is not. Further, the precursor p = α2 is seen to be enumerated

by f1 − x− xyf∗
2 , by subtraction, since the final unit of α contains 4 (and hence is not 2, 3).

Combining the prior observations, it follows that π ∈ T ending in 2 or 21 and containing 4
such that no string 23 occurs between the rightmost 4 and 2 make a contribution towards f
of

x

1− x2y
(f1 − x− xyf∗

2 )

(
xy(1 + x)

1− x2y
+

x(1 + xy)

1− x2y

)
=

x3y(1 + y + 2xy)

(1 + xy)(1− x2y)2
f − x3y(1 + y + 2xy)

(1− x2y)2

(
f∗
2 +

1 + x

1 + xy

)
,

upon making use of the fact f1 =
x

1+xy (yf + 1− y).

Now suppose p = α(23)ℓ2, where ℓ ≥ 1 and the final unit of α contains 4. We account for
the subsequence α2 of p in this case as follows. To do so, first note that 3 occurring beyond α
imposes an extra restriction on α when p ends in 2 and implies α (on the alphabet {2, 3, . . .})
is such that α23 avoids 3142. To enumerate such α, let τ be a Catalan word on {2, 3, . . .} of
the form such that τ − 1 has generating function f2 − f∗

2 . Let t denote the final letter of α.
If t = 3, then α is exactly of the form τ and α2 is enumerated by xy(f2 − f∗

2 ). On the other
hand, if t > 3, then replacing the terminal 3 of τ with 2 is seen to yield all of the possibilities
for the subsequence α2 in this case, and hence it is enumerated by f2 − f∗

2 . Combining the
two prior cases implies α2 is accounted for by (1 + xy)(f2 − f∗

2 ) when ℓ ≥ 1. We now insert
letters just as in the case above when p did not end in 2 and α contained 4. Then the section
(23)ℓ of p, together with the inserted letters, are accounted for by∑

ℓ≥1

(x2y)ℓ
(

x2y

1− x2y
· ωℓ+1 +

x

1− x2y
(ωℓ+1 − 1)

)

= S − x(1 + x)(1 + xy)

(1− x2y)2
+

x

1− x2y
=

x4y(2 + y + x(1 + 4y) + 2x2y)

(1− x2y)2(1− 2x2y − x3y)
.

Note that the π ∈ T which arise from making insertions into p as described are those ending
in 2 or 21 and containing 4 such that the string 23 occurs between the rightmost 4 and 2.
Combining the prior observations implies that they make a contribution towards f of

x4y(1 + xy)(2 + y + x(1 + 4y) + 2x2y)

(1− x2y)2(1− 2x2y − x3y)
(f2 − f∗

2 ).

Finally, suppose that the precursor p is given by p = (23)j2 for some j ≥ 1. Then one may
make insertions as previously described prior to any 2 as well as append an optional terminal
1. This implies π ∈ T not containing 4 and ending in 2 or 21 make a contribution towards f
of

x3yS =
x5y(1 + y + 2xy − x2y2 − x3y2)

(1− x2y)2(1− 2x2y − x3y)
.

Combining all of the previous cases regarding nonempty π ∈ C′(3142), and rewriting somewhat
the resulting equation for f , yields (9). □
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Theorem 4.4. The bivariate generating function C3142(x, y) is given by f
(

x
1−x , y

)
, where

f(x, y) = C/D, with

C = 1− x+ x2(x3 + 3x− 8)y + x4(4x2 + x+ 24)y2 − x6(x4 + 3x3 + 6x2 + 9x+ 34)y3

− x8(x3 − 9x− 23)y4 − x10(x2 + 4x+ 6)y5,

D = (1− x)2 − x2(x4 − x3 + 3x2 − 10x+ 8)y − x4(3x3 − 5x2 + 17x− 24)y2

− x6(x3 + 4x2 − 12x+ 34)y3 − x8(2x2 + 2x− 23)y4 − 2x10(x+ 3)y5.

In particular, we have

C3142(x) =
x9 − 11x8 + 9x7 + 82x6 − 244x5 + 297x4 − 192x3 + 69x2 − 13x+ 1

(x− 1)(x2 − 3x+ 1)(5x6 − x5 − 39x4 + 61x3 − 37x2 + 10x− 1)
.

Proof. We first write equations for f∗
2 and f2. For f

∗
2 , let c denote the antepenultimate letter

within ρ ∈ C′(3142) ending in 1, 2 and of length at least three. If c = 2, then we get a
contribution towards f∗

2 of x2yf2. On the other hand, if c > 2, then such ρ are seen to be
enumerated by x(f2 − f∗

2 ), as they may be obtained by inserting a 1 between the final two
letters of a member of C′(3142) ending in c, 2. Thus, we have f∗

2 = x2 + x2yf2 + x(f2 − f∗
2 ),

which implies

(10) f∗
2 =

x2

1 + x
+

x(1 + xy)

1 + x
f2.

To write an equation for f2, first observe that members of C′(3142) that end in 2 in which
no 1 occurs beyond the first 3 (including binary words) are enumerated by

x

1− x2y
f1 =

x2

(1 + xy)(1− x2y)
(yf + 1− y).

To complete the equation for f2, we must enumerate the subset T ′ of T whose members end
in 2, where T is as in the proof of Lemma 4.3. We proceed similarly as before and insert
sequences of letters into precursors p on {2, 3, . . .} containing more than one 2 such that
p− 1 ∈ C′(3142). We first consider the case when p = α(23)ℓ2 for some ℓ ≥ 0, where the final
unit of α contains 4. Again, we must differentiate the cases ℓ = 0 and ℓ > 0. Note that one
may proceed as in the proof of Lemma 4.3 in determining the contributions towards f2 in
these cases. The chief difference is that now no terminal 1 can be added to a precursor, as the
final resulting word after all of the insertions are made must end in 2. Recall that in order to
create a member of T , and, in particular, of T ′, at least one 1 must be inserted beyond the
first 2 of p in all cases.

Thus, when ℓ = 0, the members of T ′ resulting from the insertions into precursors p of the
stated form make a contribution towards f2 of

x2(1 + xy)

(1− x2y)2
(f1 − x− xyf∗

2 ) =
x3y

(1− x2y)2
f − x3y(1 + xy)

(1− x2y)2

(
f∗
2 +

1 + x

1 + xy

)
.

If ℓ > 0, then the members of T ′ that arise from the insertions contribute

x(1 + xy)(f2 − f∗
2 )

1− x2y

∑
ℓ≥1

(x2y)ℓ(ωℓ+1 − 1) =
x4y(1 + xy)(2 + x(1 + 2y) + x2y)

(1− x2y)2(1− 2x2y − x3y)
(f2 − f∗

2 ).
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The remaining possibility is for a precursor to have the form p = (23)j2 for some j ≥ 1.
Insertion of letters into such p yields the remaining members of T ′, which are thus accounted
for by

x2

1− x2y

∑
j≥1

(x2y)j(ωj − 1) =
x5y(1 + xy)

(1− x2y)2(1− 2x2y − x3y)
.

Combining the contributions from the various cases above yields

f2 =
x5y(1 + xy)

(1− x2y)2(1− 2x2y − x3y)
+

x2(1− y)

(1 + xy)(1− x2y)
+

x2y(1 + x)

(1 + xy)(1− x2y)2
f

+
x4y(1 + xy)(2 + x(1 + 2y) + x2y)

(1− x2y)2(1− 2x2y − x3y)
(f2 − f∗

2 )−
x3y(1 + xy)

(1− x2y)2

(
f∗
2 +

1 + x

1 + xy

)
.(11)

Solving the system of equations (9), (10) and (11) for f = f(x, y) yields the desired formula

for C ′
3142(x, y). We omit writing the full expression for C3142(x, y) = f

(
x

1−x , y
)
, which is

rather lengthy, and state only the y = 1 case. □

4.3. The case 4321.

Let f = C ′
4321(x, y) and g = C ′

321(x, y). Replacing x with x
1+x in [4, Theorem 14] gives

g = 1−x−x2(1+y)+x3(1+y)+x4y
(1−x)(1−x−x2(1+y)+x3)

. To aid in finding f , let fm = fm(x, y) for m ≥ 2 denote the

restriction of f to those members of C′(4321) with prefix 12 · · ·m1 and let gm = gm(x, y) be
defined comparably in conjunction with the pattern 321. The fm and gm satisfy the following
recursive relations.

Lemma 4.5. We have

(12) fm =
xm+1y(1− x2)

1− x2y
+

x2(1 + x)

1− x2y
fm−1 −

x5

1− x2y
(fm−2 − ygm−2), m ≥ 4,

with f2 = x2y(f − 1) and f3 = x3y(f − 1), and

(13) gm = xm+1y + x2gm−1, m ≥ 3,

with g2 = x2y(g − 1).

Proof. The initial conditions of both recurrences follow readily from the definitions. To show
(13), note that π enumerated by gm where m ≥ 3 is either given by 12 · · ·m1 or has the form
12 · · ·m1σ, where σ is nonempty and does not contain 1. Then both of the 1’s in π may be
deleted in the latter case leaving a Catalan word on {2, 3, . . .} of the form enumerated by
gm−1, which implies (13). Note that the formula for g above may also be obtained using (13)
by noting the equality g = 1 + xg +

∑
m≥2 gm. To show (12), consider inserting letters into

a 4321-avoiding precursor p = 23 · · ·m2σ, where m ≥ 4 and σ does not contain 1, so as to
obtain Catalan words enumerated by fm containing more than one letter 2. We consider the
following cases on the section σ of p: (i) σ = ∅, (ii) σ ̸= ∅ and does not have a 2, with mσ
not containing an occurrence of the pattern 321, (iii) σ does not have a 2, with mσ containing
an occurrence of 321, or (iv) σ has a 2.

If (i) holds, to obtain π enumerated by fm from p, in addition to prepending a 1 to p,
we insert a sequence of letters into p of the form (12)i1 for some i ≥ 0 between m and 2
as well as append an optional single 1 to the end of p. This is seen to yield a contribution

of x2(1+xy)
1−x2y

· xmy towards fm in this case. If (ii), first note that the subsequence 34 · · ·mσ
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of p is of the form enumerated by gm−2, and hence p is accounted for by x2gm−2 in this
case, upon inserting two additional letters 2. By making the same insertions as described in

(i), one obtains a contribution of x4(1+xy)
1−x2y

gm−2 from precursors in (ii). If (iii) holds, then

the subsequence 34 · · ·mσ of p is now accounted for by fm−2 − gm−2. In this case, one can
make the same insertions as in (i) and (ii) above except that the optional 1 added to the
end is not permitted due to mσ containing 321. This yields a contribution from (iii) of

x4

1−x2y
(fm−2 − gm−2).

Finally, in (iv), we write p = 23 · · ·m2α2β, where α does not contain 2 and β may contain
2 and is possibly empty. In this case, we add a single 1 at the beginning of p, (12)i1 for some
i ≥ 0 between m and 2 and an optional 1 directly preceding the section 2β. Note that a 1
may not be inserted elsewhere into p without introducing 4321 and that the precursor p in
this case is seen to have generating function fm−1 −xmy−x2fm−2, by subtraction. Thus, we

obtain a contribution of x2(1+x)
1−x2y

(fm−1 − xmy − x2fm−2) from (iv). One may verify that each

member of C′(4321) enumerated by fm with the exception of 12 · · ·m1 is seen to arise uniquely
as one makes the various insertions into precursors of the forms (i)–(iv). Thus, combining
the contributions of (i)–(iv) obtained above, we have

fm = xm+1y +
xm+2y(1 + xy)

1− x2y
+

x4(1 + xy)

1− x2y
gm−2 +

x4

1− x2y
(fm−2 − gm−2)

+
x2(1 + x)

1− x2y
(fm−1 − xmy − x2fm−2), m ≥ 4,

which may be simplified to give (12). □

Theorem 4.6. The bivariate generating function C4321(x, y) is given by f
(

x
1−x , y

)
, where

f(x, y) = K/L, with

K = (x+ 1)3(x− 1)6(x2 + x+ 1) + x2(x+ 2)(x+ 1)2(x− 1)4(x3 − 2)y

+ x4(x+ 1)(x− 1)2(2x5 + 4x4 + 2x3 − 2x2 + 5)y2 − x6(x+ 2)(x3 − x+ 1)y3,

L = (1− x)((x+ 1)(x− 1)2 − x2y)·
· ((x+ 1)2(x− 1)4(x2 + x+ 1)− x2(x+ 1)(x− 1)2(x2 + 2x+ 3)y − x4(x3 + 2x2 − 2)y2).

In particular, we have that C4321(x) is given by

x12 + 3x11 − 11x10 − 21x9 + 79x8 − 39x7 − 211x6 + 477x5 − 471x4 + 259x3 − 82x2 + 14x− 1

(2x− 1)(x3 + 3x2 − 4x+ 1)(x8 + 3x7 − 6x6 − 2x5 + 28x4 − 45x3 + 30x2 − 9x+ 1)
.

Proof. We first write an equation for f . Let π denote a nonempty member of C′(4321). First
suppose π is of the form (i) 1α, where α does not contain 1, (ii) 1(23)iu1α, where i ≥ 0,
u ∈ {ϵ, 2} such that u = 2 if i = 0 and α may contain 1, or (iii) 1(23)i4σ1, where i ≥ 1 and
σ does not contain 1 or 2. Note that the subsequence 34σ in (iii) is counted by g − 1 − x,
since it must avoid 321. It is then seen that the π from (i)–(iii) make respective contributions

towards f of xf , x2y(1+x)
1−x2y

(f − 1) and x3y
1−x2y

(g − 1− x).

Let S denote the subset of C′(4321) whose members contain at least two 1’s such that a 4
occurs somewhere between the first and second 1 and 2 occurs somewhere to the right of the
first 4. To complete the equation for f , we need to determine a formula for the generating
function that enumerates members of S in terms of f , fm and gm. To obtain members of S,
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consider inserting letters into precursors p ∈ C′(4321) of the form

p = 1(23)i4 · · ·mα2βγ,

where m ≥ 4, i ≥ 1, p contains only a single 1, α if nonempty starts with a letter in [3,m− 1]
and does not contain 2, β may be empty and does not contain 2 and γ if nonempty starts
with 2 (with γ assumed to be empty if β is empty). First assume α ̸= ∅. In this case, we
insert a single 1 directly prior to the section 2β of p, which is the only possible place where
a 1 may be inserted without introducing 4321, as the first letter of α belongs to [3,m − 1].
Note that, by subtraction, the section 23 · · ·mα2βγ of p has generating function given by
f − 1− xf − x2y(f − 1)−

∑
m≥3 fm. Hence, one gets a contribution towards f in this case of

x2

1− x2y

(
(1− x− x2y)f − 1 + x2y −

∑
m≥3

fm

)
.

So assume α = ∅ in p. We consider the following subcases: (a) β = ∅, (b) β ̸= ∅ and
γ = ∅, with mβ containing an occurrence of the pattern 321, (c) β ̸= ∅ and γ = ∅, with mβ
not containing an occurrence of 321, or (d) γ ̸= ∅. We wish to determine the contributions
towards f coming from the subcases (a)–(d).

If (a) holds, then p = 1(23)i4 · · ·m2, and we insert (12)j1 or (21)j for some j ≥ 0 between
m and 2 as well as add an optional 1 to the end of p such that at least one 1 occurs to
the right of m in the resulting Catalan word. If the optional 1 is appended to p, then

all of the letters added to p are accounted for by xy(1+x)
1−x2y

, whereas if not, then the added

letters are accounted for by x(1+xy)
1−x2y

. Considering all m implies the possible precursors p

have weight
∑

m≥4
xm+1y
1−x2y

= x5y
(1−x)(1−x2y)

. Combining the preceding observations, one obtains

a contribution of x6y(1+y+2xy)
(1−x)(1−x2y)2

towards f from the precursors in (a). If (b) holds, then the

subsequence 3 · · ·mβ of p is counted by
∑

i≥2(fi−gi) since β starts with 3, withmβ containing

an occurrence of 321, and hence p is enumerated by x3

1−x2y

∑
i≥2(fi − gi). In this case, we

insert (12)j1 or (21)j+1 for some j ≥ 0 between m and 2 within p, leading to a contribution

towards f of x4(1+xy)
(1−x2y)2

∑
i≥2(fi − gi).

If (c) holds, then the subsequence 3 · · ·mβ of p is accounted for by
∑

i≥2 gi, and hence the

precursor by x3

1−x2y

∑
i≥2 gi. In additional to making an insertion of letters between m and

2 within p as described in (b), one may append an optional 1 to the end of p. Moreover, if
the optional 1 is added, we need not insert any letters between m and 2. Thus, the addition

of letters in this case is accounted for by xy(1+x)
1−x2y

if the optional 1 is added, and by x(1+xy)
1−x2y

if it isn’t. Combining these cases yields a contribution of x4(1+y+2xy)
(1−x2y)2

∑
i≥2 gi towards f from

precursors in (c).
Finally, if (d) holds, then the subsequence 23 · · ·m2βγ of p is accounted for by

∑
m≥3(fm−

xm+1y)− x2
∑

i≥2 fi, and hence the precursor by

x

1− x2y

∑
m≥3

fm − x2
∑
i≥2

fi −
x4y

1− x

 .

To obtain π ∈ S from p in this case, we may insert (12)j1 or (21)j for some j ≥ 0 between m
and 2 as well as insert an optional 1 directly preceding the section γ such that at least one
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1 is inserted to the right of m in p. Then the inserted letters are accounted for by x(2+x+xy)
1−x2y

and one obtains a contribution towards f of

x2(2 + x+ xy)

(1− x2y)2

∑
m≥3

fm − x2
∑
i≥2

fi −
x4y

1− x

 .

Note that all members of S arise uniquely by making the insertions as described to the
various precursors in (a)–(d). To see this, we decompose π ∈ S as

(14) π = 1(23)k4 · · ·mλ(0)α(1)λ(1) · · ·α(ℓ)λ(ℓ),

for some k ≥ 1, ℓ ≥ 0 and m ≥ 4, where each λ(i) is binary and each α(i) contains letters
in {3, 4, . . .} such that the λ(i) for 1 ≤ i ≤ ℓ − 1 are nonempty, all α(i) are nonempty and

∪ℓ
i=0λ

(i) contains both 1 and 2. Observe that each λ(i) for 1 ≤ i ≤ ℓ − 1 must end in 2,

with λ(0) doing so if nonempty and ℓ ≥ 1 (note λ(ℓ) may possibly end in 1). It is seen that

precursors p with α ̸= ∅ give rise to π in (14) for which ℓ ≥ 1 with λ(0) = ∅. Moreover, one
may verify that the subcases (a)–(d) of p above wherein α = ∅ give rise to π in (14) for which

λ(0) ̸= ∅ and the following further respective conditions are satisfied: (a′) ℓ = 0, (b′) ℓ = 1,

with mα(1) containing 321 (and hence λ(1) = ∅), (c′) ℓ = 1, with mα(1) not containing 321

and λ(1) ∈ {ϵ, 1}, (d′) ℓ = 1, with λ(1) ∈ {2, 12}, or ℓ ≥ 2.
Combining all of the cases above concerning the form of π (including those in S), we have

that f satisfies

f = 1 + xf +
x2y(1 + x)

1− x2y
(f − 1) +

x3y

1− x2y
(g − 1− x) +

x2

1− x2y

(
(1− x− x2y)f − 1 + x2y

−
∑
m≥3

fm

)
+

x6y(1 + y + 2xy)

(1− x)(1− x2y)2
+

x4(1 + xy)

(1− x2y)2

∑
i≥2

(fi − gi) +
x4(1 + y + 2xy)

(1− x2y)2

∑
i≥2

gi

+
x2(2 + x+ xy)

(1− x2y)2

(∑
m≥3

fm − x2
∑
i≥2

fi −
x4y

1− x

)
,

which may be simplified and rewritten as(
1− x(1 + xy)

1− x2y
− x2(1− x− x2y)

1− x2y

)
f

=
1− x2(1 + 2y)− x3y + x4y

1− x2y
+

x3y

1− x2y
(g − 1− x) +

x6y(y − 1)(1 + x)

(1− x)(1− x2y)2

+
x2(1 + x)(1 + xy)

(1− x2y)2

∑
m≥3

fm − x4(1 + x)

(1− x2y)2

∑
i≥2

(fi − ygi).(15)

Define f̃ =
∑

m≥2 fm and g̃ =
∑

m≥2 gm. By summing (12) over m ≥ 4 and (13) over

m ≥ 3, and then solving the resulting system for f̃ and g̃, we obtain

f̃ =
x2y(1 + x)(x2y + x2 − 1)(1− x− x2(1 + y) + x4 + (1− x− x2(1 + y) + x3)f)

(1− x2(1 + y)− x3 + x5)(1− x− x2(1 + y) + x3)
,

g̃ =
x3y(1 + x)

1− x− x2(1 + y) + x3
.
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Note (15) may be written as(
1− x(1 + xy)

1− x2y
− x2(1− x− x2y)

1− x2y

)
f

=
1− x2(1 + 2y)− x3y + x4y

1− x2y
+

x3y

1− x2y
(g − 1− x) +

x6y(y − 1)(1 + x)

(1− x)(1− x2y)2

+
x2(1 + x)(1 + xy)

(1− x2y)2
(f̃ − f2)−

x4(1 + x)

(1− x2y)2
(f̃ − yg̃).

Thus, by solving for f = f(x, y) in the last equation, we obtain the desired formula for

C ′
4321(x, y) (and omit stating the full expression for C4321(x, y) = f

(
x

1−x , y
)
, which is rather

lengthy). □

5. Concluding remarks

In this paper, employing a variety of techniques, we have found an explicit formula for
the generating function Cp(x, y) enumerating members of C(p) according to the number of
descents for all permutation patterns p of length four. In each case, Cp(x, y) was rational
and hence Cp(x) is as well for such p. Taken together with the comparable results for length
three patterns from [4], we believe that this is evidence that Cp(x) might be rational for all
permutation patterns p. Future work will focus on patterns of length four with one or more
repeated letters and on generalized classes of patterns.

Additional evidence of the possible rationality of Cp(x) for all permutation patterns p is
provided by the fact that there are several infinite families of patterns each of whose members
give rise to a rational generating function. Let gp(x, y) denote the bivariate generating function
that enumerates members of C′(p) according to the number of 1’s and let p′ = 1(p+1). Then
it can be shown (we omit the details) that the rationality of gp(x, y) implies that of gp′(x, y).
Note that setting y = 1 in a rational generating function gp(x, y) implies the rationality of
C ′

p(x, 1), and hence that of Cp(x), by Remark 1.1. From the preceding observations, it follows
for example that such patterns as 12 · · · k and 12 · · · (k − 2)k(k − 1) have rational generating
functions for all k ≥ 3 since the rationality of gp(x, y) is readily established when p = 123 or
132. Using the rationality of 12 · · · k for all k, one can show in turn that additional families
of patterns are rational such as (ℓ + 1)(ℓ + 2) · · · k12 · · · ℓ, where 1 ≤ ℓ < k. Further results
in this direction may be obtained by extending arguments from particular cases above. For
example, generalizing the proof given for the formula of C3421(x), it is possible to show that
Cp(x) is rational where p = 34 · · · k21 for all k ≥ 4. We leave the problem of proving or
disproving the rationality of Cp(x) for all permutation patterns p as an open question.
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