
Hermite Polynomial Characterization of
Heartbeats with Graphics Processing Units

Alberto Gil1, Gabriel Caffarena1, David G. Márquez2, and Abraham Otero1

1 University CEU-San Pablo,
Urb. Monteprincipe, 28668, Madrid, Spain

gabriel.caffarena@ceu.es

http://biolab.uspceu.com
2 Centro Singular de Investigación en Tecnolox́ıas da Información (CITIUS),
University of Santiago de Compostela, 15782 Santiago de Compostela, Spain

Abstract. In this paper we address the massive parallelization of the
characterization of heartbeats by means of Graphics Processors. Heart-
beats are represented with Hermite polynomials due to the compactness
and robustness of this representation. Both the off-line and on-line char-
acterization of QRS complexes are covered, thus, assessing the capabili-
ties of Graphics Processors for these tasks. The results yield that off-line
processing with a GPU can be computed 200× faster than a standard
CPU, while on-line processing can be 100× faster.

Keywords: Hermite functions, ECG, QRS, Arrhythmia, GPU, CUDA,
Parallelization, Heartbeat Representation

1 Introduction

Automatic ECG classification stands as a powerful tool supporting cardiologists
in the task of identifying arrhythmias in a long-term ECG recording. This tech-
nique reduces the amount of time that the cardiologist spends performing the
visual inspection of ECG.

The QRS complex is the part of the ECG recording that reflects the electrical
activity of the ventricles and its characterization with Hermite functions has
proved to be a reliable means to perform automatic classification of beats [1].
The two main advantages are the low sensitivity to noise and artifacts, and the
ability to represent a QRS complex using a reduced set of parameters (e.g. a
144-sample QRS can be characterized with 7 parameters [2]). These advantages
have made the Hermite representation a very common tool for characterizing
the morphology of the beats [1–5].

It is common that the implementation of scientific applications requires the
use of parallel systems to provide results within a reasonable computation time.
Among the different available techniques, the parallelization through Graphics
Processing Units (GPU) has thrived in the recent decades. GPUs are cheap, easy
to install and, in many cases, they are as powerful in terms of computation as
hundreds of microprocessors working in parallel. A single commodity PC with a

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 527

2 Alberto Gil et al.

GPU attached – via the PCIe connection – can replace a whole cluster with tens
and even hundreds of computers. Many biomedical applications have benefited
from this technology: MRI reconstruction [6, 7], cardiac tissue simulation [8],
biomolecular dynamics [9, 7], bioinformatics [7], etc.

In this paper, we assess the suitability of GPU parallelization for the fast
characterization of ECG recordings by means of Hermite polynomials. The MIT-
BIH arrhythmia database [10] is used as a benchmark, and two different scenarios
are selected: off-line processing and on-line processing.

The paper is divided as follows: Section 2 introduces the characterization of
beats based on Hermite functions. Section 3 briefly introduces the GPU pro-
gramming model. Section 4 explains the parallelization of the characterization
algorithms for the off-line and on-line scenarios. The results are presented in
Section 5 and, finally, the conclusions are drawn in Section 6.

2 QRS approximation by means of Hermite polynomials

The aim of using the Hermite approximation to estimate beats is to reduce
the number of dimensions required to carry out the ECG classification, without
sacrificing accuracy. The benchmarks used in this work come from the MIT-BIH
arrhythmia database [10] which is made up of 48 ECG recordings whose beats
have been manually annotated by at least two cardiologists. Each file from the
database contains 2 ECG channels, sampled at a frequency of 360 Hz and with a
duration of approximately 2000 beats. In particular, here we are addressing the
characterization of the morphology of the QRS complexes since this morphology,
together with the distance between each pair of consecutive beats, permits the
identification of the majority of arrhythmias.

Firstly, the ECG files are preprocessed to remove baseline drift and high
frequency noise. Secondly, the QRS complexes for each beat are extracted by
finding the peak of the beat (e.g. the R wave) and selecting a window of 200 ms
centered on the beat. Given that all the Hermite functions converge to zero both
in t =∞ and t = −∞, the original QRS signal is extended to 400 ms by adding
100-ms sequences of zeros at each side of the complex. Thus, the QRS data are
stored in a 144-sample vector x = {x(t)}. This vector can be estimated with a
linear combination of N Hermite basis functions

x̂(t) =
N−1∑
n=0

cn(σ)φn(t, σ), (1)

with

φn(t, σ) =
1√

σ2nn!
√
π
e−t

2/2σ2

Hn(t/σ) (2)

being H(t/σ) the Hermite polynomials. These polynomials can be computed
recursively as Hn(x) = 2xHn−1(x) − 2(n − 1)Hn−2(x), where H0(x) = 1 and
H1(x) = 2x. The σ parameter controls the width of the polynomials. In [1] the

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 528

Hermite Polynomial Characterization of Heartbeats with GPUs 3

Fig. 1. Representation of heartbeat: left – original beat; center – 3-polynomial repre-
sentation; right – 6-polynomial representation.

maximum value of σ for a given order n is computed and it holds that the bigger
n is the smaller σMAX becomes.

The optimal coefficients that minimize the estimation error for a given σ are

cn(σ) =
∑
t

x(t) · φn(t, σ) [1]. (3)

Once the suitable set of σ and c = {cn(σ)} (n ∈ [0, N − 1]) are found for
each beat, it is possible to use only these parameters to reconstruct the beat
(see Fig. 1) and, thus, to perform the morphological classification of the beats
[1, 4].

3 GPU acceleration

GPUs enable the massive parallelization of algorithms and they reach speedups
ranging from 10× to 300× [7] keeping a low power consumption [11]. Internally,
they are formed of hundreds of processor cores that work in parallel, executing
the same task (kernel). They have been welcomed by the scientific community
due to their low cost, their relatively programming simplicity and their suitabil-
ity for floating-point computations – widely adopted in scientific computation.
They have been applied to many disciplines, being well accepted among bioengi-
neering research projects [6, 7]. Currently, the most popular GPUs are connected
to the PC by means of a PCIe connection, opening the door to low cost high-
performance computing. Basically, they are tuned for executing the same task
using a huge volume of data. If we move apart from this situation (data de-
pendency, conditional flows, etc.) they do not provide perceptible performance
gains. C-like programming languages, such as CUDA [6] (Compute Unified De-
vice Architecture), can be used to program the GPUs. These languages enable

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 529

4 Alberto Gil et al.

parallel programming and they provide fast compilation and easy integration
with traditional programs executed by the CPU. In this work, CUDA was se-
lected since it is specially designed for the GPU devices chosen in this work for
the acceleration (Nvidia GPUs).

The programming model of CUDA is intended for encapsulating the inner
hardware details of the GPU to the programmer, in order to ease the develop-
ment process, as well as to facilitate portability to different GPU devices. The
GPU is composed of several streaming processors (SP) that possess several cores
that can work in parallel. As previously mentioned, the GPU executes the same
piece of code (kernel) in parallel using different data sets. A thread is a particu-
lar execution of the kernel. Each SP handles in parallel a set of threads grouped
together in the so-called warps. The execution of the threads in a warp is paral-
lel as long as there are no conditional branches. If there are different execution
paths, the SP executes in parallel all threads that point at the same instruction.
This implies, that the SP must first cluster all threads that are in the same
execution point, then, execute sequentially each cluster. Thus, the presence of
conditional branches can deteriorate performance considerably.

The programmer has some control on the way that threads work in parallel.
Threads are grouped in blocks using a 1D, 2D, or 3D mesh. As a result, each
thread has a 3-dimension identifier (ID). During scheduling, each block is as-
signed to an SP, and the SP starts the execution of all of its threads (by means
of warps). In a similar fashion, blocks are distributed in a 1D/2D mesh, called
a grid. Thus, the block also has an identifier, and this identifier is visible to
the threads belonging to it. Each thread can use the block and thread IDs to
generate the memory locations of the data sets that they have to access.

Regarding memory, all threads can access global memory (DRAM), all threads
within a block access shared memory (SRAM), and each individual thread ac-
cesses a set of local registers. The key point here is that global memory has a high
capacity (i.e. 1-6 GB) but it is slow, while shared memory has a small capacity
(i.e. 16-48 KB) but it is fast (a couple of orders of magnitude faster than global
memory). Global memory must be accessed coalescedly, since the read and write
operations work with several consecutive bytes (32, 64, 128, etc.), otherwise,
there are prohibitive delays. Shared memory can be accessed randomly.

As a final remark, given that an algorithm is suitable for parallelization, the
key to success in acceleration with a GPU are both the wise selection of the
block and grid shapes and sizes, and a correct use of the memory hierarchy.

4 CUDA implementation

4.1 Baseline implementation

Algorithm 1 shows the computations involved in the characterization of the
ECG beats. The inputs to the algorithm are the ECG data and the maximum
polynomial order N , and the output is the set with the N + 1 parameters used
to characterize the QRS complexes.

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 530

Hermite Polynomial Characterization of Heartbeats with GPUs 5

Algorithm 1 QRS characterization

Input: ECG data, maximum polynomial order N
Output: Best set of parameters for each beat ({σ, c})

1: # Loop 1
2: for all σ and n do
3: Compute φn(t, σ) (2)
4: end for

5: Extract QRS complexes from the ECG file (xi(t))

6: # Loop 2
7: errmin =∞
8: for all xi(t) do
9: for all σ do

10: for all n do
11: Compute cn(σ) # eqn. (3)
12: end for
13: Compute x̂i(t) # eqn. (1)
14: Compute err = MSE(x̂i(t), xi(t)) # eqn. (4)
15: if errmin > err then
16: σBEST = σ; cBEST = {cn(σ)}
17: end if
18: end for
19: end for

First, the QRS complexes are extracted from the ECG recording, outputting
a 144-sample signal xi(t) for each beat. Then, in the first loop (Loop1, lines 2-4),
the values of φ(t, σ) are precomputed, aiming at reducing computation time,
since these values are used repeatedly during the second loop. The benefit of
this precomputation was tested in an Intel i7 leading to a speedup of 105×. The
second loop (Loop2, lines 7-19) is devoted to finding the optimal set of σ and
coefficients c for each beat. It is composed of two nested loops: the outer one
traverses all xi and the inner one finds the optimal coefficients for the set of σ.
A total of S sigmas are tried from the set σ = {1 . . . σmax(N)}, where σmax(n)
is a function of n [1]. Typical values of S are smaller than 100. Thus, for each
beat and for different values of σ, the optimal coefficients (c) are found and the
combination of σ and coefficients that reduces the mean squared error (MSE)
between estimation x̂i and the actual QRS complex xi is selected to characterize
the beat. The MSE is defined as

MSE =
∑

(xi(t)− x̂i(t))2 (4)

4.2 Parallel implementation

The approach taken is to parallelize Loop1 and Loop2 (Algorithm 1) using
two different kernels: kernel φ and kernel Hermite. Algorithm 2 shows the way

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 531

6 Alberto Gil et al.

Algorithm 2 Host-side code

Input: ECG data, polynomial order N
Output: Best set of parameters for each beat ({σ, c})

1: Allocate GPU memory
2: Call kernel φ
3: Send all xi(t) to GPU (Write onto GPU Global memory)
4: Call kernel Hermite
5: Wait for GPU to finish processing
6: Read {σi, ci} (Write onto Host memory)

that the host (CPU) sends data to the GPU, calls the different kernels to do
the processing, and finally, retrieves the data and stores them in the computer’s
RAM. It is worth noting that while the GPU is executing kernel phi (line 2), the
host can send data to the GPU at the same time (line 3). Also, before reading
the results (line 6), it is necessary to synchronize with the GPU execution (line
5) to avoid reading inconsistent data. Following, these kernels are explained and
also the way to optimize the data transfers for real-time processing as well as
for the processing of very long ECG recordings.

Precomputation of φ
The parallelization of Loop1 in algorithm 1 is straight forward. The Hermite

functions φn(t, σ) are composed of 144 samples with disregard of the values of
n and σ. Thus, we can have 144 threads working in parallel, so that each thread
evaluates eqn. (2) at a different time step t. The value t is the same as the
thread ID and the values of n and σ are derived from the block ID. Hence, a
block contains 144 threads and deals with the computation of all the samples
of a function φ for a concrete (n, σ) couple. Blocks are arranged in a S × N
mesh. The 2-dimensional block ID has as a first component the index of σ and
as a second one the weight of the Hermite polynomials. This scheme results in
the parallel computation of as many φ functions as SPs are in the GPU. Fig. 2
displays the distribution of threads and blocks.

Search for the optimal coefficients
Loop2 in Algorithm 1 requires a more thorough parallelization. Now, each block

is going to handle a different QRS complex xi(t), so there are as many blocks as
beats in the ECG recording (i.e. approximately 2000 for MIT-BIH files). Each
block holds 144 threads, since most of the time all the treads are able to work
in parallel. A thread can use the block ID to select the beat to work on and
the thread ID to know the index of the sample of the beat that is using for the
computations.

The pseudocode for kernel Hermite is in Algorithm 3. It must be borne in
mind that the kernel is executed by all the threads in a block. The number of
the beat (i) and the sample associated to the thread (t) are obtained in lines 1-2

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 532

Hermite Polynomial Characterization of Heartbeats with GPUs 7

GPU-based Acceleration of Electron
Microscopy and ECG algorithms Gabriel Caffarena © 2013

BLOCK(0,0) σB=σ0
BLOCK(0,0) σB=σ0

ECG: Hermite Polynomial Approximation
GPU Parallelization: Computation of Φ (kernel 1)

TH0
Φ0[0, σ0]

TH143
Φ0[143, σ0]...

...

• block(sigma, order of polynomial)
• thread(sample of Φ)

BLOCK(S-1,0) σF=σS-1
BLOCK(S-1,0) σF=σS-1

TH0
Φ0[0, σS-1]

TH143
Φ0[143, σS-1]

...

BLOCK(0,N-1) σB=σ0
BLOCK(0,N-1) σB=σ0

TH0
ΦN-1[0, σ0]

TH143
ΦN-1[143, σ0]...

...
BLOCK(S-1,N-1) σF=σS-1

BLOCK(S-1,N-1) σF=σS-1

TH0
ΦN-1[0, σS-1]

TH143
ΦN-1[143, σS-1]

...

...

...






!2

)/(],[
22 2/

n

mHe
m

n

n
m

n





Fig. 2. Thread and block distribution for kernel φ

from the block and threads IDs. Then, since the beat data are going to be used
several times by the kernel and for each thread, these data are copied onto shared
memory (line 3), so from now on, any reference to xi(t) implies a fast reading
from shared memory. As in the original code (Algorithm 1), a loop traversing
all values of σ is included (lines 5-21). For each σ, the vector of coefficients
c is computed (lines 6-11) and the best one is kept. First, the multiplication
between the original signal sample (xi(t)) and the Hermite functions (φn(t, σ))
are computed in parallel – each thread performs a multiplication on its own
(lines 6-8). Then, a reduction technique is applied to carry out the summation
[6] (lines 6-8). Unfortunately, it is unviable to perform this with full parallelism,
so the performance is deteriorated. In order to compute the MSE, it is necessary
to have the estimation of the beat for the current coefficients. Lines 11-14 shows
how each thread iterates through the different polynomial orders, computing
in parallel the multiplication of the coefficients by the original samples of the
QRS complex. The MSE is computed in two steps. The squared error between
xi(t) and x̂i(t) is computed in parallel and then, the summation is performed
by reduction (lines 15-16). Finally, thread 0 updates the best solution if the new
MSE computed is the minimum so far.

Data transfer optimization
In the event that the amount of beats is too high that there is not enough

memory in the GPU to store them, it is necessary to resort to divide the set of
data in subsets that can then be computed sequentially. This idea can also be
applied to real-time processing, and, in this case, the size of the subsets must be
small (e.g. from 10 to 100 beats). Fig. 3 shows how it is possible to maximize
performance by overlapping data transfer with GPU computation. During the
computation of kernel φ it is possible to also send the first subset of beats (subset
0). While kernel Hermite is characterizing subset 0, subset 1 is being sent to the
GPU. During the third kernel call, subset 1 is being characterized, subset 2 is
being transfered to the GPU, and subset 0 is being transferred to the computer

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 533

8 Alberto Gil et al.

Algorithm 3 Pseudocode for kernel Hermite (executed at the GPU)

Input: ECG data, polynomial order N
Output: Best set of parameters for each beat ({σ, c})

1: i = block.ID # beat index
2: t = thread.ID # sample index

3: Copy xi(t) to shared memory # full parallelization

4: err =∞
5: for all σ do
6: for all n do
7: Compute sumt = xi(t) · φn(t, σ) # eqn. (3) – fully parallel
8: end for

9: for all n do
10: Compute cn(σ) =

∑
sumt # eqn. (3)) – reduction technique [6]

11: end for ˆxi(t) = 0

12: for all n do
13: Compute ˆxi(t)+ = cn(σ) · xi(t) # eqn. (1)) – fully parallel
14: end for

15: Compute errtmp(t) = (xi(t)− x̂i(t))2 # eqn. (4) – fully parallel
16: Compute MSE =

∑
errtmp(t) # eqn. (4) – reduction technique

17: # This only for thread 0
18: if t = 0 and err > MSE then
19: σbest = σ; cbest = c
20: end if
21: end for

memory. The process continues for the rest of subsets. Thus, it is possible to
compute in a pipeline fashion and performance is optimized.

5 Results

Algorithm 1 was coded in C language to be executed on a CPU and also in
CUDA for the GPU execution. The test platform was a PC with an Intel-i7
(1,6 GHz and 4 GB of RAM) and graphics processor Nvidia TESLA C2050 (448
cores, 4 GB of RAM). The baseline was a single-thread execution of the CPU
code. Three different tests were performed:

– Test A: Off-line processing, short recordings. It intends to assess the
processing of short ECG recordings. The length of the recordings with which
the text was carried out was 10, 100, 1000 and 2273 beats. Beats were rep-
resented both with Hermite polynomials of order 6 and 9.

– Test B: Off-line processing, long recordings. It intends to simulate the
offline processing of long ECG recordings, such as Holter recordings. It uses
streaming and divides the data in 200 blocks of 5000 beats. The orders of
the Hermite polynomials were 6 and 9.

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 534

Hermite Polynomial Characterization of Heartbeats with GPUs 9

GPU-based Acceleration of Electron
Microscopy and ECG algorithms Gabriel Caffarena © 2013

ECG: Hermite Polynomial Approximation

GPU Parallelization: Kernel and data transfer

Send subset 0 Send subset 1

kernel_Φ kernel_Hermite
(subset 0)

Read output
(subset 0)

Send subset 2

...
kernel_Hermite
(subset 1)

Read output
(subset 1)

Send subset 3

kernel_Hermite
(subset 2)

time

Fig. 3. Streaming processing to optimize performance for real-time processing and the
processing of very long ECG recordings

– Test C: On-line processing. It intends to simulate the online processing
of ECG recordings, such as the real-time processing of the ECG of a patient
admitted to a critical care unit. It uses streaming with blocks of short dura-
tion and divides the data in 1000 blocks of 10 and 100 beats (two different
tests). The polynomial order were 6.

5.1 Off-line processing, short recordings

Table 1 shows the computation time and speedup for Test A. The first column
indicates the number of beats processed. The second column the number of
Hermite polynomials used. The third and fourth columns hold the computation
time in ms of the baseline (CPU) and Test A (GPU). The last column shows
the speedup.

Table 1. Performance results for Test A

Beats N CPU time GPU time Speedup

(ms) (ms)

10
6 34 163 0.21×
9 59 164 0.37×

100
6 175 163 1.11×
9 258 165 1.56×

1000
6 1603 173 8.67×
9 2204 169 11.28×

2273
6 3592 187 17.04×
9 4922 198 23.19×

The results yield that the GPU does not provide a significant benefit for a
small number of beats (e.g.N < 1000). The maximum speedup obtained is 23×,
which might just be in the limit to justify the use of these devices, instead of
using a multi-thread implementation with a standard CPU. Also, it is interesting
to see that the GPU times for 10 and 100 beats are virtually the same, mainly

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 535

10 Alberto Gil et al.

because the time needed to allocate GPU memory and to transfer data to the
GPU are similar for both 10- and 100-beat blocks and much longer than the
kernel computation time.

5.2 Off-line processing, long recordings

Test B is performed processing 200 blocks of 500 beats. Data transfer is opti-
mized following the pipeline scheme from section 4.2. Table 2 shows the compu-
tation time and speedup obtained for N = {6, 9}.

Table 2. Performance results for Test B

Beats Blocks Beats/block N CPU time GPU time Speedup

(msec) (msec)

106 200 5000
6 1986951 11542 171×
9 2639662 11550 228×

The results show that the benefit of using a GPU for the processing of a high
number of beats is significant, since speedups up to 228× are achieved. It is worth
noting that the GPU computation times for N = 6 and N = 9 are virtually the
same, while the CPU times increases 30%. Hence, the GPU enables increasing
the accuracy of the beat estimation without increasing computation time. To
put these results in perspective, for a Holter recording of 24 hours, and 6 leads,
the characterization of the beats on the CPU would require approximately 25
minutes, while the GPU would need about 12 seconds.

The big difference between the speedups for Test A and Test B is due to
the overlapping between GPU computation and data transfer carried out in the
latter (see subsection 4.2). Even though the classification stage is not included
in this study, the current results already show that for off-line processing the use
of a GPU is a real asset.

5.3 On-line processing

Test C intends to assess the performance of the GPU for real-time processing.
The computation performed and the data transfer scheme are the same as for
Test B. The only differences are the size and number of blocks used. The size
must be small to achieve real-time, and the number of blocks must be very
high to simulate a continuous ECG processing. The maximum polynomial order
selected was N = 6.

Table 3 contains the results for this third experiment. The first column in-
dicates the number of blocks sent to the GPU (and also the number of kernel
executions) and the second the number of beats conforming each block. The third
column shows the time that a human heart takes to beat as many times as the
number of beats processed, considering a heart rate of 60 beats per minute. The

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 536

Hermite Polynomial Characterization of Heartbeats with GPUs 11

next two columns hold the computation times for the CPU and GPU. Finally,
column number six displays the speedup obtained with the GPU.

Table 3. Performance results for Test C

Blocks Beats/Block Heart time CPU time GPU
time

Speedup

(sec) (ms) (ms)

1000
10 104 153083 5474 28.96×
100 105 1582625 15677 102×

First, the results show that the CPU is able to perform real-time processing,
since the computation time required to process a single heart beat is much
shorter than the beat period (around 1 second). The GPU outperforms the
CPU for blocks of both 10 and 100 beats, with speedups of 28.96× and 102×,
respectively. For off-line processing, it was clear that a GPU reduces the time that
the cardiologist needs to analyze a long ECG recording. As aforementioned, for a
Holter recording of 24 hours, and 6 leads, the characterization of the beats on the
CPU would require approximately 25 minutes, while the GPU would need about
12 seconds. In the case of real-time processing, both technologies (CPU and
GPU) are able to work in real-time, leading to think that the use of a GPU is not
justified. However, until the classification stage is not included in the experiment,
it is not sensible to make such a statement. Since the GPU is working several
orders of magnitude faster than the CPU, everything points at the possibility of
applying more complex (and therefore more accurate) classification techniques
on real time on the GPU than a CPU will be able to handle.

Let us point out that the speedup obtained for 10-beat blocks is much higher
than the one obtained in Table 1, where there was no speedup at all. The reason
for that is that the time required for the pipeline processing – that overlaps data
transfer and kernel computation – along with the time for GPU memory alloca-
tion – that is performed only once – is negligible compared with the computation
time of processing a thousand of beats.

6 Conclusions

In this paper, a solution for the GPU parallelization of the characterization of
beats by means of Hermite functions was presented. The parallel code, based
on CUDA, was explained in detail and performance results were presented.
Speedups up to 200× where obtained for both off-line and on-line processing.
Regarding the accuracy of the beat characterization, the GPU showed no per-
formance degradation when the order of the Hermite polynomials was increased
from 6 to 9, while the CPU computation time increased 30%. The GPU off-
line processing of long ECG recordings enables reducing computation time of a
6 leads 24 hours Holter recording from approximately 25 minutes to about 12

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 537

12 Alberto Gil et al.

seconds. As for on-line processing, both the CPU and GPU are able to work in
real-time, although the GPU outperforms the former. It remains to study the
impact of using a GPU when also the classification of beats is performed.

As future research lines, the authors propose: i) the addition of a classification
stage [12], again for both off-line and on-line processing; and, ii) the assessment
of GPU technology for higher orders of the Hermite polynomials representation.

Acknowledgments. We thank Nvidia University Program for the support
given to the Laboratory of Bioengineering, University CEU-San Pablo. David
G. Márquez is funded by an FPU Grant from the Spanish Ministry of Education
(MEC) (Ref. AP2012-5053).

References

1. Lagerholm, M., Peterson, C., Braccini, G., Edenbr, L., Sörnmo, L.: Clustering
ECG complexes using Hermite functions and self-organizing maps. IEEE Trans.
Biomed. Eng 47 (2000) 838–848

2. Márquez, D.G., Otero, A., Félix, P., Garćıa, C.A.: On the Accuracy of Representing
Heartbeats with Hermite Basis Functions. In Alvarez, S., Solé-Casals, J., Fred,
A.L.N., Gamboa, H., eds.: BIOSIGNALS, SciTePress (2013) 338–341

3. Braccini, G., Edenbrandt, L., Lagerholm, M., Peterson, C., Rauer, O., Rittner, R.,
Sornmo, L.: Self-organizing maps and Hermite functions for classification of ECG
complexes. In: Computers in Cardiology 1997. (1997) 425–428

4. Linh, T.H., Osowski, S., Stodolski, M.: On-line heart beat recognition using Her-
mite polynomials and neuro-fuzzy network. Instrumentation and Measurement,
IEEE Transactions on 52(4) (2003) 1224–1231

5. Linh, T.H., Osowski, S., Stodolski, M.: On-line heart beat recognition using Her-
mite polynomials and neuro-fuzzy network. Instrumentation and Measurement,
IEEE Transactions on 52(4) (2003) 1224–1231

6. Kirk, D.B., Hwu, W.m.W.: Programming Massively Parallel Processors: A Hands-
on Approach. 1st edn. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
(2010)

7. Nickolls, J., Dally, W.: The GPU Computing Era. Micro, IEEE 30(2) (2010) 56
–69

8. Garcia-Molla, V., Liberos, A., Vidal, A., Guillem, M., Millet, J., Gonzalez, A.,
Martinez-Zaldivar, F., Climent, A.: Adaptive step ODE algorithms for the 3D
simulation of electric heart activity with graphics processing units. Computers in
Biology and Medicine 44(0) (2014) 15 – 26

9. Zhang, Q., Garćıa, J.M., Wang, J., Hou, T., Sánchez, H.E.P.: A GPU based
Conformational Entropy Calculation Method. In Rojas, I., Guzman, F.M.O., eds.:
IWBBIO, Copicentro Editorial (2013) 735–743

10. Moody, G.B., Mark, R.G.: The impact of the MIT-BIH arrhythmia database.
Engineering in Medicine and Biology Magazine, IEEE 20(3) (2001) 45–50

11. Brodtkorb, A., Dyken, C., Hagen, T., Hjelmervik, J., Storaasli, O.: State-of-the-
Art in heterogeneous computing. ACM Trans. Des. Autom. Electron. Syst. 18(1)
(2010) 1–33

12. Barbakh, W., Fyfe, C.: Online Clustering Algorithms. Int. J. Neural Syst. 18(3)
(2008) 185–194

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 538

